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Fusion Systems

Let G be a finite group and T a p-subgroup of G .A fusion category FT (G) is a category whose
objects are subgroups of T and whose morphisms are as follows

HomG (P,Q) = {φ ∈ Hom(P,Q) | φ = cg |P,Q where g ∈ G and Pg ≤ Q}.

where cg |P,Q : P → Q, u 7→ g−1ug .

Idea of an abstract fusion system: Forget about G , while keeping the maps.

A fusion system F = F(T ) over a finite p-group T is a category whose objects are subgroups of
T and whose morphisms are injective group homomorphisms such that for any P,Q ≤ T :

HomF (P,Q) ⊇ HomT (P,Q),

Every morphism is a composition of an isomorphism and an inclusion map, both of which are
in F .

Composition of morphisms is the composition of group homomorphisms.

A saturated fusion system F over a finite p-group T is a fusion system which satisfies additional
properties.

There exists a unique largest fusion system, the ”universal” fusion system U(T ), where, for
every P,Q ≤ T , HomU(T )(P,Q) = Inj(P,Q).

We have a unique smallest fusion system FT (T ), where, for every P,Q ≤ T ,
HomFT (T )(P,Q) = HomT (P,Q).

FT (T ) ≤ F(T ) ≤ U(T ).
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Finite Groups ’Realizing’ Fusion Systems

Lemma

Let T be a p-subgroup of a finite group G. Then FT (G) is a fusion system. If T ∈ Sylp(G), then
FT (G) is a saturated fusion system.

A saturated fusion system F over a finite p-group T is called exotic if it is not equal to FT (G)
for any finite G and T ∈ Sylp(G). Otherwise it is called realizable.
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Infinite families of exotic fusion systems

Example (Infinite families of exotic fusion systems)

Let r = 2k + 1 ≥ 5 be odd. Let B be a rank two 3-group of order 3r with the presentation

B = 〈s, s1, .., sr−1 | si = [si−1, s], [si , s1] = s3
j s3

j+1sj+2 = s3 = 1〉

for 2 ≤ i ≤ r − 1, 1 ≤ j ≤ r − 1 assuming that sr = sr+1 = 1.

A = 〈s1, s2〉. Then A ∼= (Z3k × Z3k ) / B.

B ∼= A o 〈s〉
B is a group maximal nilpotency class with the following lower central series

B > A2 > .. > Ar−1 = 〈z〉 > 1, where Ai = 〈si , si+1〉.

Vi = 〈ss i
1, s

3k−1

2 〉 for i = −1, 0, 1. Then Vi
∼= Z3 × Z3, Out(Vi ) ∼= GL2(3).

Ei = 〈ss i
1, s

3k−1

1 〉 for i = −1, 0, 1. Then Ei
∼= 31+2

+ , Out(Ei ) ∼= GL2(3).

ω : B → B : s 7→ s−1, s1 7→ s2
1 s2 η : B →: s 7→ s, s1 7→ s−1

1 .
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B = 〈s, s1, .., sr−1 | si = [si−1, s], [si , s1] = s3
j s3

j+1sj+2 = s3 = 1〉
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3k−1
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Infinite families of exotic fusion systems

Theorem (Alperin)

Let F be a saturated fusion system over a p-group T . Then F = 〈AutF (T ), AutF (P) | P is F-essential in T〉

Theorem (Diaz, Ruiz, Viruel)

Let F be a saturated fusion system over B with at least one proper F-essential subgroup. Then the outer automorphism group of
the F-essential subgroups are as follows:

B V0 E0 E1 E−1 A
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Finite Groups ’Realizing’ Fusion Systems

Lemma

Let T be a p-subgroup of a finite group G. Then FT (G) is a fusion system. If T ∈ Sylp(G), then
FT (G) is a saturated fusion system.

A saturated fusion system F over a finite p-group T is called exotic if it is not equal to FT (G)
for any finite G and T ∈ Sylp(G). Otherwise it is called realizable.

Theorem (Park, ’10)

Let F be a saturated fusion system over a finite p-group T . Then there is a finite group G
containing T such that F = FT (G) (with T not necessarily sylow in G).

Theorem (Park, ’15)

Let F be a fusion system over a finite p-group T . Then there is a finite group G containing T
such that F = FT (G) (with T not necessarily sylow in G).

Question: What is this G , and how do we construct it?

Groups St Andrews 2017 Athar Ahmad Warraich 7



Finite Groups ’Realizing’ Fusion Systems

Lemma

Let T be a p-subgroup of a finite group G. Then FT (G) is a fusion system. If T ∈ Sylp(G), then
FT (G) is a saturated fusion system.

A saturated fusion system F over a finite p-group T is called exotic if it is not equal to FT (G)
for any finite G and T ∈ Sylp(G). Otherwise it is called realizable.

Theorem (Park, ’10)

Let F be a saturated fusion system over a finite p-group T . Then there is a finite group G
containing T such that F = FT (G) (with T not necessarily sylow in G).

Theorem (Park, ’15)

Let F be a fusion system over a finite p-group T . Then there is a finite group G containing T
such that F = FT (G) (with T not necessarily sylow in G).

Question: What is this G , and how do we construct it?

Groups St Andrews 2017 Athar Ahmad Warraich 7



Finite Groups ’Realizing’ Fusion Systems

Lemma

Let T be a p-subgroup of a finite group G. Then FT (G) is a fusion system. If T ∈ Sylp(G), then
FT (G) is a saturated fusion system.

A saturated fusion system F over a finite p-group T is called exotic if it is not equal to FT (G)
for any finite G and T ∈ Sylp(G). Otherwise it is called realizable.

Theorem (Park, ’10)

Let F be a saturated fusion system over a finite p-group T . Then there is a finite group G
containing T such that F = FT (G) (with T not necessarily sylow in G).

Theorem (Park, ’15)

Let F be a fusion system over a finite p-group T . Then there is a finite group G containing T
such that F = FT (G) (with T not necessarily sylow in G).

Question: What is this G , and how do we construct it?

Groups St Andrews 2017 Athar Ahmad Warraich 7



Finite Groups ’Realizing’ Fusion Systems

Lemma

Let T be a p-subgroup of a finite group G. Then FT (G) is a fusion system. If T ∈ Sylp(G), then
FT (G) is a saturated fusion system.

A saturated fusion system F over a finite p-group T is called exotic if it is not equal to FT (G)
for any finite G and T ∈ Sylp(G). Otherwise it is called realizable.

Theorem (Park, ’10)

Let F be a saturated fusion system over a finite p-group T . Then there is a finite group G
containing T such that F = FT (G) (with T not necessarily sylow in G).

Theorem (Park, ’15)

Let F be a fusion system over a finite p-group T . Then there is a finite group G containing T
such that F = FT (G) (with T not necessarily sylow in G).

Question: What is this G , and how do we construct it?

Groups St Andrews 2017 Athar Ahmad Warraich 7



Characteristic Sets

If G is a group and X is a (right) G -set we write

X G = {x ∈ X | x · g = x for all g ∈ G}.

Let φ : P → Q for some P,Q ≤ T . Define

∆φ
P = {(x , (x)φ) | x ∈ P}.

Then the set of right cosets (T × T )/∆φ
P is an (T × T )-set defined by right multiplication.

Oφ := (T × T )/∆φ
Dφ

Oψφ := ((T × T )/∆φ
Dφ

)
∆
ψ
Dψ

Lemma

Let φ, ψ be two maps inside T . Then

|Oψφ | =
|Nψ,φ||CT (Iψ)|

|Dφ|
≤
|NT (Dψ ,Dφ)||CT (Iψ)|

|Dφ|

where Nψ,φ = {x ∈ T | ∃y ∈ T with (Dψ)x ≤ Dφ, and cx |Dψ ◦ φ ◦ cy = ψ}.
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Characteristic Sets

An T × T -set Ω for F is (right) semicharacteristic if and only if

Every orbit in Ω is of the form Oφ for some φ ∈ F .

|Ωφ| = |ΩId|Dφ | for every φ ∈ F .

If additionally |Ω|/|T | 6≡ 0 mod p, then Ω is called (right) characteristic for F .

Lemma (Broto, Levi, Oliver, ’03)

Let F be a saturated fusion system over a finite p-group T . Then there exists a characteristic set
for F .

Lemma (Park, ’15)

Let F be a fusion system over a finite p-group T . Then there exists a semicharacteristic set for F .

Question: How do we construct Ω?
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Construction of Ω

Ω =
⊔
φ∈F

C(φ) · Oφ for C(φ) ≥ 0

Let φ, ψ ∈ F . φ ∼ ψ, T -T -equivalent if ∃x , y ∈ T such that (Dψ)x = Dφ and
cx |Dψ ◦ φ ◦ cy = ψ.

Let φ, ψ be conjugation maps with (Dψ)x = Dφ for some x ∈ T . Then ψ ∼ φ.

The relation ∼ is an equivalence relation.

Lemma

Let F be a saturated fusion system over a finite p-group T . Let φ, φ1, ψ, ψ1 ∈ F . If ψ ∼ ψ1 and

φ ∼ φ1, then |Oψφ | = |Oψ1
φ1
|.

Let φ ∈ F . Define Γφ = {ψ ∈ F | ψ ∼ φ} and Γ, a set of T -T -equivalence class representatives.

Ω =
⊔
φ∈Γ

C1(φ) · Oφ,

where C1(φ) =
∑
ψ∈Γφ

C(ψ) ≥ 0.
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Construction of G

Theorem (Park, ’10)

Let F be a fusion system [saturated fusion system] over a finite p-group T . Let Ω be a right
semicharacteristic set [characteristic set] corresponding to F . Define G to be a group of
permutations of Ω that preserve the action on the right in the following way:

G = {π ∈ Sym(Ω) | (x ◦ (s1, s2))π = (x ◦ (s1, 1))π(1, s2) for all x ∈ Ω, s1, s2 ∈ T}

Then F = FT (G), under the identification ι : T ↪→ G : s → (x → (x ◦ (s−1, 1))).

G ∼= T o Sym(|Ω|/|T |)

The exoticity index, e(F), for any fusion system F , over a finite p-group T is:

min{logp |S : T | | T ≤ S ∈ Sylp(G) for some finite G with F = FT (G)}.

An upper bound of the exoticity index derived from the theorem is

(|Ω|/|T | − 1)logp(|T |) +
∑
i=1

⌊
|Ω|/|T |

pi

⌋

Smaller characteristic set =⇒ smaller exoticity index.

e(F) 6= 0⇔ F is exotic.
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Infinite families of exotic fusion systems

Theorem (Diaz, Ruiz, Viruel)

Let F be a saturated fusion system over B with at least one proper F-essential subgroup. Then
the outer automorphism group of the F-essential subgroups are as follows:

T V0 E0 E1 E−1 A

〈ω〉 SL2(3)
〈ω〉 SL2(3) SL2(3)
〈ω〉 SL2(3) SL2(3) SL2(3)
〈η〉 SL2(3)
〈ωη〉 SL2(3)
〈η, ω〉 GL2(3)
〈η, ω〉 SL2(3)
〈η, ω〉 SL2(3) GL2(3)
〈η, ω〉 GL2(3)
〈η, ω〉 GL2(3) GL2(3)
〈η, ω〉 GL2(3) SL2(3)
〈η, ω〉 GL2(3) SL2(3) GL2(3)
〈η, ω〉 GL2(3)
〈η, ω〉 GL2(3) GL2(3)
〈η, ω〉 GL2(3) SL2(3)
〈η, ω〉 GL2(3) SL2(3) GL2(3)
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Infinite families of exotic fusion systems

Example (1)

Let F = 〈AutF (T ),AutF (E0)〉 with OutF (T ) ∼= 〈ω〉 and OutF (V0) ∼= SL2(3) be a saturated
fusion system over B. Then the minimal characteristic set is given by

Ω = (OId t Oω) t nk (OId|〈s,z〉 t Oω|〈s,z〉 ) t (Oθ0
t O

θ−1
0

)

where nk = 32k−3 − 1 and the maps

θ0 : E0 → E0 : s 7→ s3k−1

1 ; s3k−1

1 7→ s−1

The exoticity index satisfies e(F) ≤ (32k−2 − 1)2(4k + 3)− 4k.

k = 2 =⇒ e(F) ≤ 696

k = 3 =⇒ e(F) / 9.5× 104

k = 4 =⇒ e(F) / 1.0× 107
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Example (2)

Let F = 〈AutF (T ),AutF (A)〉 with OutF (T ) ∼= 〈ω, η〉 and OutF (A) ∼= GL2(3) be a saturated
fusion system over B. Then the minimal characteristic set is given by

Ω ∼= (OId t Oω t Oη t Oω◦η) t (OθA
t O

θ−1
A
t OαA t OβA

)

where, if ak ≡ −(a2
k−1 − 3ak−1 + 3) (mod 3k ); a1 ≡ 0 (mod 3) and bk =

1+a2
k

1+ak
(mod 3k ),

then

θA =

[
ak bk

−(ak + 1) −ak

]
, αA =

[
ak bk

1− 2ak −ak

]
, and βA =

[
−ak −bk

2ak − 1 ak

]

The exoticity index satisfies e(F) ≤ 30k + 21.

k = 2 =⇒ e(F) ≤ 81.

k = 3 =⇒ e(F) ≤ 111.

k = 4 =⇒ e(F) ≤ 141.

F is realizable, via G ∼= A o GL2(3) =⇒ e(F) = 0.
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, and βA =

[
−ak −bk

2ak − 1 ak

]

The exoticity index satisfies e(F) ≤ 30k + 21.

k = 2 =⇒ e(F) ≤ 81.

k = 3 =⇒ e(F) ≤ 111.

k = 4 =⇒ e(F) ≤ 141.

F is realizable, via G ∼= A o GL2(3) =⇒ e(F) = 0.
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Example (3)

Let F = 〈AutF (T ),AutF (V0)〉, with OutF (T ) ∼= 〈ω, η〉 and OutF (V0) ∼= GL2(3) be a saturated
fusion system over B. Then the minimal characteristic set is given by

Ω ∼=(OId t Oω t Oη t Oω◦η) tmk · (OId|〈s〉 t Oω|〈s〉 t Oη|〈s〉 t Oω◦η|〈s〉 )

t (OθV0
t O

θ−1
V0

t OαV0
t OβV0

)

where mk = 32k−2 − 1 and the maps:

θV0
: V0 → V0 : s 7→ z; z 7→ s−1

αV0
: V0 → V0 : s 7→ z; z 7→ s

βV0
: V0 → V0 : s 7→ z−1; z 7→ s−1

The exoticity index satisfies e(F) ≤ 2(32k−1 − 1)2(4k + 3)− 4k.

k = 2 =⇒ e(F) / 1.5× 104

k = 3 =⇒ e(F) / 1.8× 106

k = 4 =⇒ e(F) / 1.8× 108

F is realizable, =⇒ e(F) = 0.
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Infinite families of exotic fusion systems

Theorem (Diaz, Ruiz, Viruel)

Let F be a saturated fusion system over B with at least one proper F-essential subgroup. Then
the outer automorphism group of the F-essential subgroups are as follows:

T V0 E0 E1 E−1 A |Ω|/|T |
X 〈ω〉 SL2(3) 2(32k−2 − 1)2

X 〈ω〉 SL2(3) SL2(3) 2[2 · 32k−2(32k−2 − 2) + 1]

X 〈ω〉 SL2(3) SL2(3) SL2(3) 2[32k−1(32k−2 − 2) + 1]

〈η〉 SL2(3)
〈ωη〉 SL2(3)

X 〈η, ω〉 GL2(3) 24

X 〈η, ω〉 SL2(3) 22[23(32k−2)2−22 ·32k−2 +1]

〈η, ω〉 SL2(3) GL2(3)

X 〈η, ω〉 GL2(3) 22(32k−2 − 1)2

〈η, ω〉 GL2(3) GL2(3)
〈η, ω〉 GL2(3) SL2(3)
〈η, ω〉 GL2(3) SL2(3) GL2(3)

X 〈η, ω〉 GL2(3) 4(32k−1 − 1)2

〈η, ω〉 GL2(3) GL2(3)
X 〈η, ω〉 GL2(3) SL2(3) 22[23 · 38k−4 − 24 · 36k−2 +

17 · 34k−4 − 23 · 32k−2 + 1]

〈η, ω〉 GL2(3) SL2(3) GL2(3)
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Thank You For Listening!
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