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A p-group G is said to be minimal non-abelian if G is
non-abelian but all its proper subgroups are abelian.

Some known facts about minimal non-abelian p-groups
are:

e the smallest order of minimal non-abelian p-groups is

p°.

e A minimal non-abelian p-group is a finite non-abelian
p-group with the “largest” and most abelian subgroups.

e Every finite non-abelian p-group contains a minimal
non-abelian subgroup.

e A finite non-abelian p-group is generated by its minimal
non-abelian subgroups.
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of a finite p-group. As numerous results show, the structure of
finite p-groups depends essentially on its minimal non-abelian
subgroups.
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The structure of subgroups of A;-groups

G is an Az-group
AOa A17 A27 o 7~'4t—2aAt—1
A07 A17 A27 o )At—2

order
pn
pn—l

pn—2
n—(t—2)
n—(t—1)

n—t
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The structure of subgroups of A;-groups

order

G is an Az-group p"
Ao, A1, Az, oo s Ap—2, A prt
Ao, A1, Az, -+, Ap—2 pr?
Ao, A1, Az pr (=2
Ao, A pr =D
Ao Pt

All possible types of Aj;-subgroups of order p"~7 are Ay, Aj,
Az, -+, Ai—2, A;—; and G has at least one A;_j-subgroup for
§=1,2,- f t<n—2.
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e Every finite p-group must be an A;-group for some ¢. Hence
the study of finite p-groups is equivalent to that of A;-
groups. In particular, if a finite p-group is of order p”, then
t<n-—2.
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the classification of A;-groups is possible and useful for small
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termined by Aj-subgroups. These results were obtained by
the members of my team, a p-group team of Shanxi Normal
University, and me.
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Qu et al. classified finite p-groups which are a center exten-
sion of a cyclic p-group, and elementary abelian p-groups by a
minimal non-abelian p-group, respectively. Their results were
contained in the following four papers.
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sion of a cyclic p-group, and elementary abelian p-groups by a

contained in the following four papers.

1. L.L. Li, HP. Qu and G.Y. Chen, Central extension of minimal non-
abelian p-groups (I), Acta Math. Sinica, 53:4(2010), 675-684.

(in Chinese).
2. H.P. Qu and X.H. Zhang, Central extension of minimal non-abelian
p-groups (II), Acta Math. Sinica, 53:5(2010), 933-944. (in Chinese).
3. H.P. Qu and R.F. Hu, Central extension of minimal non-abelian p-
groups (III), Acta Math. Sinica, 53:6(2010), 1051-1064. (in Chinese).

4. H.P. Qu and L.F. Zheng, Central extension of minimal non-abelian

p-groups (IV), Acta Math. Sinica, 54:5(2011), 739-752. (in Chinese).
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subgroup of index p. Their results were contained in the following five
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An, Qu, Xu and Zhang et al. classified finite p-groups with an A;-
subgroup of index p. Their results were contained in the following five

papers.

1. H.P. Qu, S.S. Yang, M.Y. Xu and L.J. An, Finite p-groups with a
minimal non-abelian subgroup of index p (I), J. Algebra, 358(2012),
178-188.

2. L.J. An, L.L. Li, HP. Qu and Q.H. Zhang, Finite p-groups with
a minimal non-abelian subgroup of index p (II), Sci China Ser A,
57:4(2014), 737-753.

3. H.P. Qu, M.Y. Xu and L.J. An, Finite p-groups with a minimal non-
abelian subgroup of index p (III), Sci China Ser A, 56:4(2015), 763—
780.

4. L.J. An, R.F. Hu and Q.H. Zhang, Finite p-groups with a minimal
non-abelian subgroup of index p (IV), J. Algebra Appl., 14:2(2015),
1550020(54 pages)

5. H.P. Qu, L.P. Zhao, J. Gao and L,J. An, Finite p-groups with a
minimal non-abelian subgroup of index p (V), J. Algebra Appl., 13:7(2014),
1450032(35 pages).
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R. Rédei, Comment. Math. Helvet., 20(1947), 225-267. A;-groups
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Although we use the results of classification mentioned above,
the classification of As-groups is still an enormous work. The
classification provide many useful information to the study of
p-groups. Some new results are discovered and proved, and
some new problems are proposed.
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p-groups. Some new results are discovered and proved, and
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The sketch of the classification of A3-groups are showed as
follows.
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The sketch of the classification of A3-groups

G is an Agz-groups having an Aj-subgroup of index p

G has an abelian subgroup of index p G has no abelian subgroup of index p

d(@) =2 d(G@) =3 G has at least two G has a unique
Y 4 Aj-subgroups of index p Aj-subgroup of index p
6 types (([7])) 20 types ([5])
10 types ([4,8])

d(G) £ 2 d(G) =3

t t
17 types (7]) 19 types ([6])
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The sketch of the classification of A3-groups

G is an Agz-groups having no Aj-subgroup of index p

O

G has an abelian subgroup of index p G has no abelian subgroup of index p

d(G) =2 d(G) =3 d(G)=

= d(M) =2 for all M < G 3 M < G such that d(M) =3
9 types

8 types ([3]) 5 types ([3])

12 types ([7)) /\
wqsher sdize sz SN e
10 types ([5])

11 types 2 types

d(G) 52 d(G) =3 d(G)=4
t 1

4
59 types 28 types 6 types
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For p = 2, the problem was solved by Janko, see [2, Theorem
90.1]. In particular, finite non-abelian 2-group all of whose A;-
subgroups are isomorphic to Qg or Dg were classified by Janko,
respectively, see [1, Theorem 10.33] and [2, App.17. Cor.17.3].

1. Y. Berkovich, Groups of Prime Power Order Vol.1, Water de Gruyter
- Berlin - New York, 2008.

2. Y. Berkovich and Z. Janko, Groups of Prime Power Order Vol.2, Water
de Gruyter - Berlin - New York, 2008.
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For convenience, we use M,(2,1) to denote the metacyclic p-
group of order p3, and M,(1,1,1) the non-metacyclic p-group
of order p?, respectively.
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We give some properties of the p-groups all of whose .4;-subgroups
are of order p3. In particular, we classify the p-groups all of
whose Aj-subgroups are isomorphic to My(1,1,1). For the
other cases, The problem is still open.
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Theorem(Q.H. Zhang). Assume G is a finite nonabelian p-
group with d(G) = n, p an odd prime. Then all A;-subgroups
of G are isomorphic to M,(1, 1, 1) if and only if G is one of the
following groups:

(1) nonabelian groups with exp(G) = p;

(2) G = Hp x (a), a semidirect product of H, and (a), where
H, = By X By x --- x B,_ is an abelian Hughes subgroup of
index p, a? = 1. Moreover, (B;,a) is a groups of maximal class
with an abelian subgroup of index p and whose union elements
are of order p, or an elementary abelian group of order p?,
where i =1,2,...,n — 1.
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Such p-groups can be regarded as the p-groups “with most
possible types of A;-subgroups”.




Members ot p-group team of Shanxi Normal
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