

Qinhai Zhang

From minimal non-abelian subgroups to finite non-abeian *p*-groups

Qinhai Zhang

Shanxi Normal University, China

Conference of Groups St Andrews 2017 in Birmingham

7th August 2017

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

A p-group G is said to be minimal non-abelian if G is non-abelian but all its proper subgroups are abelian.

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

A p-group G is said to be minimal non-abelian if G is non-abelian but all its proper subgroups are abelian.

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

A p-group G is said to be minimal non-abelian if G is non-abelian but all its proper subgroups are abelian.

Some known facts about minimal non-abelian p-groups are:

• the smallest order of minimal non-abelian p-groups is p^3 .

Qinhai Zhang

A p-group G is said to be minimal non-abelian if G is non-abelian but all its proper subgroups are abelian.

- the smallest order of minimal non-abelian p-groups is p^3 .
- A minimal non-abelian *p*-group is a finite non-abelian *p*-group with the "largest" and most abelian subgroups.

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

A p-group G is said to be minimal non-abelian if G is non-abelian but all its proper subgroups are abelian.

- the smallest order of minimal non-abelian p-groups is p^3 .
- A minimal non-abelian *p*-group is a finite non-abelian *p*-group with the "largest" and most abelian subgroups.
- Every finite non-abelian *p*-group contains a minimal non-abelian subgroup.

Qinhai Zhang

A p-group G is said to be minimal non-abelian if G is non-abelian but all its proper subgroups are abelian.

- the smallest order of minimal non-abelian p-groups is p^3 .
- A minimal non-abelian *p*-group is a finite non-abelian *p*-group with the "largest" and most abelian subgroups.
- Every finite non-abelian *p*-group contains a minimal non-abelian subgroup.
- \bullet A finite non-abelian $p\mbox{-}{\rm group}$ is generated by its minimal non-abelian subgroups.

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

In a sense, a minimal non-abelian subgroup is a "basic element" of a finite p-group. As numerous results show, the structure of finite p-groups depends essentially on its minimal non-abelian subgroups.

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

In a sense, a minimal non-abelian subgroup is a "basic element" of a finite p-group. As numerous results show, the structure of finite p-groups depends essentially on its minimal non-abelian subgroups.

Based on the observation, Y. Berkovich and Z. Janko in their joint paper [*Contemp. Math.*, 402(2006), 13–93] introduced a more general concept than that of a minimal non-abelian group. That is, \mathcal{A}_t -groups.

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

In a sense, a minimal non-abelian subgroup is a "basic element" of a finite p-group. As numerous results show, the structure of finite p-groups depends essentially on its minimal non-abelian subgroups.

Based on the observation, Y. Berkovich and Z. Janko in their joint paper [*Contemp. Math.*, 402(2006), 13–93] introduced a more general concept than that of a minimal non-abelian group. That is, \mathcal{A}_t -groups.

A finite non-abelian *p*-group is called an $\underline{\mathcal{A}_t}$ -group if its every subgroup of index p^t is abelian, but it has at least one non-abelian subgroup of index p^{t-1} .

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

In a sense, a minimal non-abelian subgroup is a "basic element" of a finite p-group. As numerous results show, the structure of finite p-groups depends essentially on its minimal non-abelian subgroups.

Based on the observation, Y. Berkovich and Z. Janko in their joint paper [*Contemp. Math.*, 402(2006), 13–93] introduced a more general concept than that of a minimal non-abelian group. That is, \mathcal{A}_t -groups.

A finite non-abelian *p*-group is called an $\underline{\mathcal{A}_t}$ -group if its every subgroup of index p^t is abelian, but it has at least one non-abelian subgroup of index p^{t-1} .

In other words, an $\underline{\mathcal{A}_t}$ -group is a finite non-abelian *p*-group whose every non-abelian subgroup of index p^{t-1} is minimal non-abelian.

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

In a sense, a minimal non-abelian subgroup is a "basic element" of a finite p-group. As numerous results show, the structure of finite p-groups depends essentially on its minimal non-abelian subgroups.

Based on the observation, Y. Berkovich and Z. Janko in their joint paper [*Contemp. Math.*, 402(2006), 13–93] introduced a more general concept than that of a minimal non-abelian group. That is, \mathcal{A}_t -groups.

A finite non-abelian *p*-group is called an $\underline{\mathcal{A}_t}$ -group if its every subgroup of index p^t is abelian, but it has at least one non-abelian subgroup of index p^{t-1} .

In other words, an $\underline{\mathcal{A}_t$ -group is a finite non-abelian *p*-group whose every non-abelian subgroup of index p^{t-1} is minimal non-abelian.

For convenience, abelian *p*-groups are called \mathcal{A}_0 -groups

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

In a sense, a minimal non-abelian subgroup is a "basic element" of a finite p-group. As numerous results show, the structure of finite p-groups depends essentially on its minimal non-abelian subgroups.

Based on the observation, Y. Berkovich and Z. Janko in their joint paper [*Contemp. Math.*, 402(2006), 13–93] introduced a more general concept than that of a minimal non-abelian group. That is, \mathcal{A}_t -groups.

A finite non-abelian *p*-group is called an $\underline{\mathcal{A}_t}$ -group if its every subgroup of index p^t is abelian, but it has at least one non-abelian subgroup of index p^{t-1} .

In other words, an $\underline{\mathcal{A}_t$ -group is a finite non-abelian *p*-group whose every non-abelian subgroup of index p^{t-1} is minimal non-abelian.

For convenience, abelian *p*-groups are called \mathcal{A}_0 -groups

The structure of subgroups of \mathcal{A}_t -groups

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

The structure of subgroups of \mathcal{A}_t -groups

1

	order
G is an \mathcal{A}_t -group	p^n
$\mathcal{A}_0,\mathcal{A}_1,\mathcal{A}_2,\cdots,\mathcal{A}_{t-2},\mathcal{A}_{t-1}$	p^{n-1}
$\mathcal{A}_0,\mathcal{A}_1,\mathcal{A}_2,\cdots,\mathcal{A}_{t-2}$	p^{n-2}
$\mathcal{A}_0,\mathcal{A}_1,\mathcal{A}_2$	$p^{n-(t-2)}$
$\mathcal{A}_0,\mathcal{A}_1$	$p^{n-(t-1)}$
\mathcal{A}_0	p^{n-t}

The structure of subgroups of \mathcal{A}_t -groups

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

The structure of subgroups of \mathcal{A}_t -groups

	order
G is an \mathcal{A}_t -group	p^n
$\mathcal{A}_0, \mathcal{A}_1, \mathcal{A}_2, \cdots, \mathcal{A}_{t-2}, \mathcal{A}_{t-1}$	p^{n-1}
$\mathcal{A}_0, \mathcal{A}_1, \mathcal{A}_2, \cdots, \mathcal{A}_{t-2}$	p^{n-2}
$\mathcal{A}_0,\mathcal{A}_1,\mathcal{A}_2$	$p^{n-(t-2)}$
$\mathcal{A}_0,\mathcal{A}_1$	$p^{n-(t-1)}$
\mathcal{A}_0	p^{n-t}

All possible types of \mathcal{A}_i -subgroups of order p^{n-j} are \mathcal{A}_0 , \mathcal{A}_1 , $\mathcal{A}_2, \dots, \mathcal{A}_{t-2}, \mathcal{A}_{t-j}$ and G has at least one \mathcal{A}_{t-j} -subgroup for $j = 1, 2, \dots, t, t \leq n-2$.

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

• An \mathcal{A}_1 -group is exactly a minimal non-abelian *p*-group.

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

- An \mathcal{A}_1 -group is exactly a minimal non-abelian *p*-group.
- Every finite p-group must be an \mathcal{A}_t -group for some t. Hence the study of finite p-groups is equivalent to that of \mathcal{A}_t groups. In particular, if a finite p-group is of order p^n , then $t \leq n-2$.

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

- An \mathcal{A}_1 -group is exactly a minimal non-abelian *p*-group.
- Every finite p-group must be an \mathcal{A}_t -group for some t. Hence the study of finite p-groups is equivalent to that of \mathcal{A}_t groups. In particular, if a finite p-group is of order p^n , then $t \leq n-2$.
- The classification of \mathcal{A}_t -groups for all t is hopeless. However, the classification of \mathcal{A}_t -groups is possible and useful for small t.

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

- An \mathcal{A}_1 -group is exactly a minimal non-abelian *p*-group.
- Every finite p-group must be an \mathcal{A}_t -group for some t. Hence the study of finite p-groups is equivalent to that of \mathcal{A}_t groups. In particular, if a finite p-group is of order p^n , then $t \leq n-2$.
- The classification of \mathcal{A}_t -groups for all t is hopeless. However, the classification of \mathcal{A}_t -groups is possible and useful for small t.

The talk is to introduce some results about finite *p*-groups determined by \mathcal{A}_1 -subgroups. These results were obtained by the members of my team, a *p*-group team of Shanxi Normal University, and me.

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

- An \mathcal{A}_1 -group is exactly a minimal non-abelian *p*-group.
- Every finite p-group must be an \mathcal{A}_t -group for some t. Hence the study of finite p-groups is equivalent to that of \mathcal{A}_t groups. In particular, if a finite p-group is of order p^n , then $t \leq n-2$.
- The classification of \mathcal{A}_t -groups for all t is hopeless. However, the classification of \mathcal{A}_t -groups is possible and useful for small t.

The talk is to introduce some results about finite *p*-groups determined by \mathcal{A}_1 -subgroups. These results were obtained by the members of my team, a *p*-group team of Shanxi Normal University, and me.

Qinhai Zhang

Some results about finite *p*-groups determined by \mathcal{A}_1 -subgroups

Qu et al. classified finite p-groups which are a center extension of a cyclic p-group, and elementary abelian p-groups by a minimal non-abelian p-group, respectively. Their results were contained in the following four papers.

Qinhai Zhang

Some results about finite p-groups determined by \mathcal{A}_1 -subgroups

Qu et al. classified finite p-groups which are a center extension of a cyclic p-group, and elementary abelian p-groups by a minimal non-abelian p-group, respectively. Their results were contained in the following four papers.

- L.L. Li, H.P. Qu and G.Y. Chen, Central extension of minimal nonabelian p-groups (I), Acta Math. Sinica, 53:4(2010), 675–684. (in Chinese).
- H.P. Qu and X.H. Zhang, Central extension of minimal non-abelian p-groups (II), Acta Math. Sinica, 53:5(2010), 933–944. (in Chinese).
- H.P. Qu and R.F. Hu, Central extension of minimal non-abelian pgroups (III), Acta Math. Sinica, 53:6(2010), 1051–1064. (in Chinese).
- H.P. Qu and L.F. Zheng, Central extension of minimal non-abelian p-groups (IV), Acta Math. Sinica, 54:5(2011), 739–752. (in Chinese).

Qinhai Zhang

Some results about finite *p*-groups determined by \mathcal{A}_1 -subgroups

An, Qu, Xu and Zhang et al. classified finite *p*-groups with an \mathcal{A}_{1} -subgroup of index *p*. Their results were contained in the following five papers.

Qinhai Zhang

Some results about finite p-groups determined by \mathcal{A}_1 -subgroups

An, Qu, Xu and Zhang et al. classified finite p-groups with an A_1 -subgroup of index p. Their results were contained in the following five papers.

- H.P. Qu, S.S. Yang, M.Y. Xu and L.J. An, Finite p-groups with a minimal non-abelian subgroup of index p (I), J. Algebra, 358(2012), 178–188.
- L.J. An, L.L. Li, H.P. Qu and Q.H. Zhang, Finite p-groups with a minimal non-abelian subgroup of index p (II), Sci China Ser A, 57:4(2014), 737–753.
- H.P. Qu, M.Y. Xu and L.J. An, Finite p-groups with a minimal nonabelian subgroup of index p (III), Sci China Ser A, 56:4(2015), 763– 780.
- L.J. An, R.F. Hu and Q.H. Zhang, Finite p-groups with a minimal non-abelian subgroup of index p (IV), J. Algebra Appl., 14:2(2015), 1550020(54 pages)
- H.P. Qu, L.P. Zhao, J. Gao and L.J. An, Finite p-groups with a minimal non-abelian subgroup of index p (V), J. Algebra Appl., 13:7(2014), 1450032(35 pages).

Qinhai Zhang

Some results about finite p-groups determined by \mathcal{A}_1 -subgroups

The \mathcal{A}_t -groups with $t \leq 3$ were classified respectively by

R. Rédei, Comment. Math. Helvet., 20(1947), 225–267. A₁-groups

Qinhai Zhang

Some results about finite p-groups determined by \mathcal{A}_1 -subgroups

The \mathcal{A}_t -groups with $t \leq 3$ were classified respectively by

R. Rédei, Comment. Math. Helvet., 20(1947), 225–267. A1-groups

Q. H. Zhang et al., Algebra Colloq., 15:1(2008), 167–180. *A*₂-groups

Qinhai Zhang

Some results about finite p-groups determined by \mathcal{A}_1 -subgroups

The \mathcal{A}_t -groups with $t \leq 3$ were classified respectively by

R. Rédei, Comment. Math. Helvet., 20(1947), 225–267. $\mathcal{A}_1\text{-groups}$

Q. H. Zhang et al., Algebra Colloq., 15:1(2008), 167–180. A_2 -groups

Q. H. Zhang et al., Commun. Math. Stat., 3:1(2015), 69–162. A₃groups

Qinhai Zhang

Some results about finite p-groups determined by \mathcal{A}_1 -subgroups

The \mathcal{A}_t -groups with $t \leq 3$ were classified respectively by

R. Rédei, Comment. Math. Helvet., **20**(1947), 225–267. *A*₁-groups

- Q. H. Zhang et al., Algebra Colloq., 15:1(2008), 167–180. $\mathcal{A}_{2}\text{-groups}$
- Q. H. Zhang et al., Commun. Math. Stat., 3:1(2015), 69–162. A₃groups

Although we use the results of classification mentioned above, the classification of \mathcal{A}_3 -groups is still an enormous work. The classification provide many useful information to the study of *p*-groups. Some new results are discovered and proved, and some new problems are proposed.

Qinhai Zhang

Some results about finite *p*-groups determined by \mathcal{A}_1 -subgroups

The \mathcal{A}_t -groups with $t \leq 3$ were classified respectively by

R. Rédei, Comment. Math. Helvet., 20(1947), 225–267. A₁-groups

- Q. H. Zhang et al., Algebra Colloq., 15:1(2008), 167–180. $\mathcal{A}_{2}\text{-groups}$
- Q. H. Zhang et al., Commun. Math. Stat., 3:1(2015), 69–162. A₃groups

Although we use the results of classification mentioned above, the classification of \mathcal{A}_3 -groups is still an enormous work. The classification provide many useful information to the study of *p*-groups. Some new results are discovered and proved, and some new problems are proposed.

The sketch of the classification of \mathcal{A}_3 -groups are showed as follows.

Qinhai Zhang

Some results about finite *p*-groups determined by \mathcal{A}_1 -subgroups

The \mathcal{A}_t -groups with $t \leq 3$ were classified respectively by

R. Rédei, Comment. Math. Helvet., 20(1947), 225–267. A₁-groups

- Q. H. Zhang et al., Algebra Colloq., 15:1(2008), 167–180. $\mathcal{A}_{2}\text{-groups}$
- Q. H. Zhang et al., Commun. Math. Stat., 3:1(2015), 69–162. A₃groups

Although we use the results of classification mentioned above, the classification of \mathcal{A}_3 -groups is still an enormous work. The classification provide many useful information to the study of *p*-groups. Some new results are discovered and proved, and some new problems are proposed.

The sketch of the classification of \mathcal{A}_3 -groups are showed as follows.

How is \mathcal{A}_3 -groups classified ?

How is \mathcal{A}_3 -groups classified ?

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

We observed that

• \mathcal{A}_2 -groups are the *p*-groups all of whose \mathcal{A}_1 -subgroups are of index *p*.

Facts	and	Prob	lems
Facts	and	Prob	lem

Qinhai Zhang

We observed that

- \mathcal{A}_2 -groups are the *p*-groups all of whose \mathcal{A}_1 -subgroups are of index *p*.
- \mathcal{A}_3 -groups are the *p*-groups all of whose \mathcal{A}_1 -subgroups are of index *p* or p^2 .

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

We observed that

- \mathcal{A}_2 -groups are the *p*-groups all of whose \mathcal{A}_1 -subgroups are of index *p*.
- \mathcal{A}_3 -groups are the *p*-groups all of whose \mathcal{A}_1 -subgroups are of index *p* or p^2 .

In other words, the A_1 -subgroups of A_2 -, A_3 -groups are of large order. A nature question is :

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

We observed that

- \mathcal{A}_2 -groups are the *p*-groups all of whose \mathcal{A}_1 -subgroups are of index *p*.
- \mathcal{A}_3 -groups are the *p*-groups all of whose \mathcal{A}_1 -subgroups are of index *p* or p^2 .

In other words, the A_1 -subgroups of A_2 -, A_3 -groups are of large order. A nature question is :

What can be said about finite p-groups all of whose A_1 -subgroups are of smallest order?

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

We observed that

- \mathcal{A}_2 -groups are the *p*-groups all of whose \mathcal{A}_1 -subgroups are of index *p*.
- \mathcal{A}_3 -groups are the *p*-groups all of whose \mathcal{A}_1 -subgroups are of index *p* or p^2 .

In other words, the A_1 -subgroups of A_2 -, A_3 -groups are of large order. A nature question is :

What can be said about finite p-groups all of whose A_1 -subgroups are of smallest order?

Moreover, Berkovich and Janko in their book "Groups of Prime Power Order Vol.2" proposed the following

From minimal non-abelian subgroups to finite non-abeian *p*-groups

Qinhai Zhang

We observed that

- \mathcal{A}_2 -groups are the *p*-groups all of whose \mathcal{A}_1 -subgroups are of index *p*.
- \mathcal{A}_3 -groups are the *p*-groups all of whose \mathcal{A}_1 -subgroups are of index *p* or p^2 .

In other words, the A_1 -subgroups of A_2 -, A_3 -groups are of large order. A nature question is :

What can be said about finite p-groups all of whose A_1 -subgroups are of smallest order?

Moreover, Berkovich and Janko in their book "Groups of Prime Power Order Vol.2" proposed the following

Problem[Problem 920]. Classify the *p*-groups all of whose \mathcal{A}_1 -subgroups are of order p^3 .

From minimal non-abelian subgroups to finite non-abeian *p*-groups

Qinhai Zhang

We observed that

- \mathcal{A}_2 -groups are the *p*-groups all of whose \mathcal{A}_1 -subgroups are of index *p*.
- \mathcal{A}_3 -groups are the *p*-groups all of whose \mathcal{A}_1 -subgroups are of index *p* or p^2 .

In other words, the A_1 -subgroups of A_2 -, A_3 -groups are of large order. A nature question is :

What can be said about finite p-groups all of whose A_1 -subgroups are of smallest order?

Moreover, Berkovich and Janko in their book "Groups of Prime Power Order Vol.2" proposed the following

Problem[Problem 920]. Classify the *p*-groups all of whose \mathcal{A}_1 -subgroups are of order p^3 .

Qinhai Zhang

Facts and Problems

For p = 2, the problem was solved by Janko, see [2, Theorem 90.1]. In particular, finite non-abelian 2-group all of whose \mathcal{A}_1 -subgroups are isomorphic to Q_8 or D_8 were classified by Janko, respectively, see [1, Theorem 10.33] and [2, App.17. Cor.17.3].

- Y. Berkovich, Groups of Prime Power Order Vol.1, Water de Gruyter
 Berlin · New York, 2008.
- 2. Y. Berkovich and Z. Janko, Groups of Prime Power Order Vol.2, Water de Gruyter · Berlin · New York, 2008.

Qinhai Zhang

Facts and Problems

For p = 2, the problem was solved by Janko, see [2, Theorem 90.1]. In particular, finite non-abelian 2-group all of whose \mathcal{A}_1 -subgroups are isomorphic to Q_8 or D_8 were classified by Janko, respectively, see [1, Theorem 10.33] and [2, App.17. Cor.17.3].

- Y. Berkovich, Groups of Prime Power Order Vol.1, Water de Gruyter
 Berlin · New York, 2008.
- 2. Y. Berkovich and Z. Janko, Groups of Prime Power Order Vol.2, Water de Gruyter · Berlin · New York, 2008.

For odd prime p, the problem was **open**.

Qinhai Zhang

Facts and Problems

For p = 2, the problem was solved by Janko, see [2, Theorem 90.1]. In particular, finite non-abelian 2-group all of whose \mathcal{A}_1 -subgroups are isomorphic to Q_8 or D_8 were classified by Janko, respectively, see [1, Theorem 10.33] and [2, App.17. Cor.17.3].

- 1. Y. Berkovich, Groups of Prime Power Order Vol.1, Water de Gruyter
· Berlin · New York, 2008.
- 2. Y. Berkovich and Z. Janko, Groups of Prime Power Order Vol.2, Water de Gruyter · Berlin · New York, 2008.

For odd prime p, the problem was **open**.

For convenience, we use $M_p(2, 1)$ to denote the metacyclic *p*-group of order p^3 , and $M_p(1, 1, 1)$ the non-metacyclic *p*-group of order p^3 , respectively.

Qinhai Zhang

Facts and Problems

For p = 2, the problem was solved by Janko, see [2, Theorem 90.1]. In particular, finite non-abelian 2-group all of whose \mathcal{A}_1 -subgroups are isomorphic to Q_8 or D_8 were classified by Janko, respectively, see [1, Theorem 10.33] and [2, App.17. Cor.17.3].

- Y. Berkovich, Groups of Prime Power Order Vol.1, Water de Gruyter
 Berlin · New York, 2008.
- 2. Y. Berkovich and Z. Janko, Groups of Prime Power Order Vol.2, Water de Gruyter · Berlin · New York, 2008.

For odd prime p, the problem was **open**.

For convenience, we use $M_p(2, 1)$ to denote the metacyclic *p*-group of order p^3 , and $M_p(1, 1, 1)$ the non-metacyclic *p*-group of order p^3 , respectively.

We give some properties of the *p*-groups all of whose \mathcal{A}_1 -subgroups are of order p^3 . In particular, we classify the *p*-groups all of whose \mathcal{A}_1 -subgroups are isomorphic to $M_p(1, 1, 1)$. For the other cases, The problem is still **open**.

Qinhai Zhang

Facts and Problems

For p = 2, the problem was solved by Janko, see [2, Theorem 90.1]. In particular, finite non-abelian 2-group all of whose \mathcal{A}_1 -subgroups are isomorphic to Q_8 or D_8 were classified by Janko, respectively, see [1, Theorem 10.33] and [2, App.17. Cor.17.3].

- Y. Berkovich, Groups of Prime Power Order Vol.1, Water de Gruyter
 Berlin · New York, 2008.
- 2. Y. Berkovich and Z. Janko, Groups of Prime Power Order Vol.2, Water de Gruyter · Berlin · New York, 2008.

For odd prime p, the problem was **open**.

For convenience, we use $M_p(2, 1)$ to denote the metacyclic *p*-group of order p^3 , and $M_p(1, 1, 1)$ the non-metacyclic *p*-group of order p^3 , respectively.

We give some properties of the *p*-groups all of whose \mathcal{A}_1 -subgroups are of order p^3 . In particular, we classify the *p*-groups all of whose \mathcal{A}_1 -subgroups are isomorphic to $M_p(1, 1, 1)$. For the other cases, The problem is still **open**.

Qinhai Zhang

Theorem(Q.H. Zhang). Assume G is a finite nonabelian pgroup with d(G) = n, p an odd prime. Then all \mathcal{A}_1 -subgroups of G are isomorphic to $M_p(1, 1, 1)$ if and only if G is one of the following groups:

(1) nonabelian groups with $\exp(G) = p$;

(2) $G = H_p \rtimes \langle a \rangle$, a semidirect product of H_p and $\langle a \rangle$, where $H_p = B_1 \times B_2 \times \cdots \times B_{n-1}$ is an abelian Hughes subgroup of index $p, a^p = 1$. Moreover, $\langle B_i, a \rangle$ is a groups of maximal class with an abelian subgroup of index p and whose union elements are of order p, or an elementary abelian group of order p^2 , where $i = 1, 2, \ldots, n-1$.

The structure of subgroups of p-groups we classified

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

The structure of subgroups of p-groups we classified

orderG is an
$$\mathcal{A}_t$$
-group p^n $\mathcal{A}_{t-1}, \dots, \mathcal{A}_{t-1}, \mathcal{A}_0, \dots, \mathcal{A}_0$ p^{n-1} $\mathcal{A}_{t-2}, \dots, \mathcal{A}_{t-2}, \mathcal{A}_0, \dots, \mathcal{A}_0$ p^{n-2} \dots \dots $\mathcal{A}_2, \dots, \mathcal{A}_2, \mathcal{A}_0, \dots, \mathcal{A}_0$ p^4 $\mathcal{A}_1, \dots, \mathcal{A}_1, \mathcal{A}_0, \dots, \mathcal{A}_0$ p^3

The structure of subgroups of p-groups we classified

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

The structure of subgroups of p-groups we classified

orderG is an
$$\mathcal{A}_t$$
-group p^n $\mathcal{A}_{t-1}, \dots, \mathcal{A}_{t-1}, \mathcal{A}_0, \dots, \mathcal{A}_0$ p^{n-1} $\mathcal{A}_{t-2}, \dots, \mathcal{A}_{t-2}, \mathcal{A}_0, \dots, \mathcal{A}_0$ p^{n-2} \dots \dots $\mathcal{A}_2, \dots, \mathcal{A}_2, \mathcal{A}_0, \dots, \mathcal{A}_0$ p^4 $\mathcal{A}_1, \dots, \mathcal{A}_1, \mathcal{A}_0, \dots, \mathcal{A}_0$ p^3

All possible types of \mathcal{A}_i -subgroups of order p^{n-j} are \mathcal{A}_0 and \mathcal{A}_{t-j} and G has at least one \mathcal{A}_{t-j} -subgroup for $j = 1, 2, \cdots, t-1, t \leq n-2$.

Qinhai Zhang

The structure of subgroups of \mathcal{A}_t -groups and more

In addition, my colleagues have also classified finite p-groups with the structure of subgroups showed as follows.

order

G is an
$$\mathcal{A}_t$$
-group p^n $\mathcal{A}_{t-1}, \dots, \mathcal{A}_{t-1}, \mathcal{A}_0(\leq p)$ p^{n-1} $\mathcal{A}_{t-2}, \dots, \mathcal{A}_{t-2}, \mathcal{A}_0(\leq p)$ p^{n-2} \dots \dots $\mathcal{A}_2, \dots, \mathcal{A}_2, \mathcal{A}_0(\leq p)$ $p^{n-(t-2)}$ $\mathcal{A}_1, \dots, \mathcal{A}_1, \mathcal{A}_0(\leq p)$ $p^{n-(t-1)}$ $\mathcal{A}_0, \dots, \mathcal{A}_0, \mathcal{A}_0$ p^{n-t}

Qinhai Zhang

The structure of subgroups of \mathcal{A}_t -groups and more

In addition, my colleagues have also classified finite p-groups with the structure of subgroups showed as follows.

orderG is an
$$\mathcal{A}_t$$
-group p^n $\mathcal{A}_{t-1}, \dots, \mathcal{A}_{t-1}, \mathcal{A}_0(\leq p)$ p^{n-1} $\mathcal{A}_{t-2}, \dots, \mathcal{A}_{t-2}, \mathcal{A}_0(\leq p)$ p^{n-2} \dots \dots $\mathcal{A}_2, \dots, \mathcal{A}_2, \mathcal{A}_0(\leq p)$ $p^{n-(t-2)}$ $\mathcal{A}_1, \dots, \mathcal{A}_1, \mathcal{A}_0(\leq p)$ $p^{n-(t-1)}$ $\mathcal{A}_0, \dots, \mathcal{A}_0, \mathcal{A}_0$ p^{n-t}

All possible types of \mathcal{A}_i -subgroups of order p^{n-j} are \mathcal{A}_0 and \mathcal{A}_{t-j} and G has at least one \mathcal{A}_{t-j} -subgroup for $j = 1, 2, \dots, t$, $t \leq n-2$.

Qinhai Zhang

The structure of subgroups of ordinary metacyclic p-groups

Qu et al. in [J. Algebra Appl. 13:4(2014)] classified finite *p*-groups with the structure of subgroups showed as follows.

order

G is an \mathcal{A}_t -group	p^n
\mathcal{A}_{t-1}	p^{n-1}
\mathcal{A}_{t-2}	p^{n-2}
\mathcal{A}_2	$p^{n-(t-2)}$
\mathcal{A}_1	$p^{n-(t-1)}$
\mathcal{A}_0	p^{n-t}

Qinhai Zhang

The structure of subgroups of ordinary metacyclic p-groups

Qu et al. in [J. Algebra Appl. 13:4(2014)] classified finite *p*-groups with the structure of subgroups showed as follows.

order

G is an \mathcal{A}_t -group	p^n
\mathcal{A}_{t-1}	p^{n-1}
\mathcal{A}_{t-2}	p^{n-2}
\mathcal{A}_2	$p^{n-(t-2)}$
\mathcal{A}_1	$p^{n-(t-1)}$
\mathcal{A}_0	p^{n-t}

It turns out that such p-groups are exactly ordinary metacyclic p-groups.

Qinhai Zhang

The structure of subgroups of ordinary metacyclic p-groups

Qu et al. in [J. Algebra Appl. 13:4(2014)] classified finite *p*-groups with the structure of subgroups showed as follows.

order

G is an
$$\mathcal{A}_t$$
-group
 p^n
 \mathcal{A}_{t-1}
 p^{n-1}
 \mathcal{A}_{t-2}
 p^{n-2}

 ...

 \mathcal{A}_2
 $p^{n-(t-2)}$
 \mathcal{A}_1
 $p^{n-(t-1)}$
 \mathcal{A}_0
 p^{n-t}

It turns out that such p-groups are exactly ordinary metacyclic p-groups.

Such p-groups can be regarded as the p-groups "with least possible types of \mathcal{A}_i -subgroups".

Qinhai Zhang

The structure of subgroups of ordinary metacyclic p-groups

Qu et al. in [J. Algebra Appl. 13:4(2014)] classified finite *p*-groups with the structure of subgroups showed as follows.

order

G is an
$$\mathcal{A}_t$$
-group
 p^n
 \mathcal{A}_{t-1}
 p^{n-1}
 \mathcal{A}_{t-2}
 p^{n-2}

 ...

 \mathcal{A}_2
 $p^{n-(t-2)}$
 \mathcal{A}_1
 $p^{n-(t-1)}$
 \mathcal{A}_0
 p^{n-t}

It turns out that such p-groups are exactly ordinary metacyclic p-groups.

Such p-groups can be regarded as the p-groups "with least possible types of \mathcal{A}_i -subgroups".

Qinhai Zhang

The structure of subgroups of \mathcal{A}_t -groups and more

My colleagues Zhang et al. have classified finite p-groups with the structure of subgroups showed as follows.

	order
G is an \mathcal{A}_t -group	p^n
$\mathcal{A}_0,\mathcal{A}_1,\mathcal{A}_2,\cdots,\mathcal{A}_{t-2},\mathcal{A}_{t-1}$	p^{n-1}
$\mathcal{A}_0,\mathcal{A}_1,\mathcal{A}_2,\cdots,\mathcal{A}_{t-2}$	p^{n-2}
$\mathcal{A}_0,\mathcal{A}_1,\mathcal{A}_2$	$p^{n-(t-2)}$
$\mathcal{A}_0,\mathcal{A}_1$	$p^{n-(t-1)}$
\mathcal{A}_0	p^{n-t}

Qinhai Zhang

The structure of subgroups of \mathcal{A}_t -groups and more

My colleagues Zhang et al. have classified finite p-groups with the structure of subgroups showed as follows.

1

	order
G is an \mathcal{A}_t -group	p^n
$\mathcal{A}_0, \mathcal{A}_1, \mathcal{A}_2, \cdots, \mathcal{A}_{t-2}, \mathcal{A}_{t-1}$	p^{n-1}
$\mathcal{A}_0,\mathcal{A}_1,\mathcal{A}_2,\cdots,\mathcal{A}_{t-2}$	p^{n-2}
$\mathcal{A}_0,\mathcal{A}_1,\mathcal{A}_2$	$p^{n-(t-2)}$
$\mathcal{A}_0,\mathcal{A}_1$	$p^{n-(t-1)}$
\mathcal{A}_0	p^{n-t}

Such *p*-groups can be regarded as the *p*-groups "with most possible types of \mathcal{A}_i -subgroups".

Members of *p*-group team of Shanxi Normal University

From minimal non-abelian subgroups to finite non-abeian p-groups

Qinhai Zhang

Qinhai Zhang

Thank you!