On the orders of elements in almost simple groups with exceptional socle

Maria Zvezdina

Novosibirsk State University (Novosibirsk, Russia)

Groups St Andrews in Birmingham

Definitions

 $\omega(G)$ – the set of orders of the elements of G, or its spectrum.

Groups are isospectral if their spectra coincide.

h(G) — the number of pairwise non-isomorphic groups isospectral to G.

G is recognizable by its spectrum if h(G) = 1, i.e. for any group H

$$\omega(H) = \omega(G) \Rightarrow G \simeq H.$$

Recognition by spectrum problem is solved for a group G if we know h(G) (and if h(G) is finite then the groups isospectral to G are determined).

Recognition problem for simple groups

Main goal

To solve recognition problem for all nonabelian finite simple groups.

Theorem (2015)

Let S be one of the following nonabelian simple groups:

- Sporadic groups other than J_2
- Alternating groups other than A_6 and A_{10}
- Exceptional groups of Lie type other than ${}^{3}D_{4}(2)$
- $PSL_n(q)$ and $PSU_n(q)$ with $n \ge 45$
- $PSp_{2n}(q)$, $\Omega_{2n+1}(q)$ and $P\Omega_{2n}^{\pm}(q)$ with $n \ge 31$.

If G is a finite group having the same set of the orders of elements as S then $S \leq G \leq \text{Aut } S$.

Almost simple groups isospectral to their socles

Problem

For all nonabelian finite simple groups S, determine all groups G such that $\omega(G) = \omega(S)$ and $S \leq G \leq \text{Aut } S$.

Almost simple groups isospectral to their socles

Problem

For all nonabelian finite simple groups S, determine all groups G such that $\omega(G) = \omega(S)$ and $S \leq G \leq \text{Aut } S$.

Theorem (Zavarnitsine, 2004)

Let $S = PSL_3(q)$, where $q = p^m > 3$, p is an odd prime. Then finite groups isospectral to S are precisely:

- S if $q \equiv 3, 11 \pmod{12}$;
- S and $S \rtimes \langle \gamma \rangle$ if $q \equiv 5,9 \pmod{12}$;
- G with S ≤ G ≤ S ⋊ ⟨φ⟩, where φ is a field automorphism of S of order (m)₃ (the highest power of 3 dividing m) if q ≡ 1 (mod 6).

- ²B₂(q), ²G₂(q), ²F₄(q) recognizable (Brandl, Shi, Deng, 1992–1999)
- $G_2(3^m)$ recognizable (Vasil'ev, 2002)
- F₄(2^m) recognizable (Vasil'ev, Mazurov, Shi, ..., 2005)
- $E_8(q)$ recognizable (Kondrat'ev, 2010)
- G₂(q) recognizable (Vasil'ev, Staroletov, 2013)

- ²B₂(q), ²G₂(q), ²F₄(q) recognizable (Brandl, Shi, Deng, 1992–1999)
- $G_2(3^m)$ recognizable (Vasil'ev, 2002)
- F₄(2^m) recognizable (Vasil'ev, Mazurov, Shi, ..., 2005)
- $E_8(q)$ recognizable (Kondrat'ev, 2010)
- G₂(q) recognizable (Vasil'ev, Staroletov, 2013)

Does there exist a finite group G isospectral to a finite simple exceptional group S of Lie type, but G is not isomorphic to S?

•
$$h(^{3}D_{4}(2)) = \infty$$
 (Mazurov, 2013)

- ²B₂(q), ²G₂(q), ²F₄(q) recognizable (Brandl, Shi, Deng, 1992–1999)
- $G_2(3^m)$ recognizable (Vasil'ev, 2002)
- F₄(2^m) recognizable (Vasil'ev, Mazurov, Shi, ..., 2005)
- $E_8(q)$ recognizable (Kondrat'ev, 2010)
- G₂(q) recognizable (Vasil'ev, Staroletov, 2013)

Does there exist a finite group G isospectral to a finite simple exceptional group S of Lie type, but G is not isomorphic to S?

•
$$h(^{3}D_{4}(2)) = \infty$$
 (Mazurov, 2013)

Remaining groups: ${}^{3}D_{4}(q \neq 2)$, $F_{4}(q \neq 2^{m})$, $E_{6}^{\varepsilon}(q)$, $E_{7}(q)$

- ²B₂(q), ²G₂(q), ²F₄(q) recognizable (Brandl, Shi, Deng, 1992–1999)
- $G_2(3^m)$ recognizable (Vasil'ev, 2002)
- F₄(2^m) recognizable (Vasil'ev, Mazurov, Shi, ..., 2005)
- $E_8(q)$ recognizable (Kondrat'ev, 2010)
- G₂(q) recognizable (Vasil'ev, Staroletov, 2013)

Does there exist a finite group G isospectral to a finite simple exceptional group S of Lie type, but G is not isomorphic to S?

•
$$h(^{3}D_{4}(2)) = \infty$$
 (Mazurov, 2013)

Remaining groups: ${}^{3}D_{4}(q \neq 2)$, $F_{4}(q \neq 2^{m})$, $E_{6}^{\varepsilon}(q)$, $E_{7}(q)$

If S is one of the remaining groups and $\omega(G) = \omega(S)$, then $S \leq G \leq \text{Aut } S$. In particular, h(S) is finite.

Main results

- ${}^{3}D_{4}(q)$, $F_{4}(q)$ (Grechkoseeva, Z., 2015)
- E^ε₆(q), E₇(q) (Z., 2016)

Theorem 1

Let $S = F_4(q)$, $q = p^m$, and $S < G \leq \operatorname{Aut}(S)$. Then $\omega(G) = \omega(S)$ iff G/S is a 2-group, and $p \notin \{2, 3, 7, 11\}$.

Theorem 2

Let
$$S = {}^{3}D_{4}(q)$$
, $q = p^{m}$, and $S < G \leq \operatorname{Aut}(S)$. Then $\omega(G) = \omega(S)$ iff G/S is a 2-group, and $p \geq 7$.

Theorem 3

Let $S = E_7(q)$, $q = p^m$, and $S < G \leq \text{Aut } S$. Then $\omega(G) = \omega(S)$ iff G is an extension of S by a field automorphism, G/S is a 2-group $\mu p \notin \{2, 13, 17\}$.

Main results

Notation:
$$\varepsilon \in \{+, -\}$$
, $E_6^+(q) = E_6(q)$, $E_6^-(q) = {}^2E_6(q)$.

Theorem 4

Let $S = E_6^{\varepsilon}(q)$, where q is a power of a prime p, and $S < G \leq \text{Aut } S$. Then $\omega(G) = \omega(S)$ if and only if G is an extension of S by a field automorphism, G/S is a 3-group, 3 divides $q - \varepsilon 1$, and $p \notin \{2, 11\}$.

Main results

Notation:
$$\varepsilon \in \{+, -\}$$
, $E_6^+(q) = E_6(q)$, $E_6^-(q) = {}^2E_6(q)$.

Theorem 4

Let $S = E_6^{\varepsilon}(q)$, where q is a power of a prime p, and $S < G \leq \text{Aut } S$. Then $\omega(G) = \omega(S)$ if and only if G is an extension of S by a field automorphism, G/S is a 3-group, 3 divides $q - \varepsilon 1$, and $p \notin \{2, 11\}$.

Example

If $S = E_6(5^6)$, $S < G \leq \text{Aut } S$ and $\omega(G) = \omega(S)$, then $G \simeq S \rtimes \langle \varphi \rangle$, where φ is a field automorphism of S of order 3. In particular, h(S) = 2. Let S be a simple exceptional group of Lie type ${}^{d}X_n(q)$, where $q = p^m$, p is a prime. Then h(S) is as indicated in Table 1. If $1 < h(S) < \infty$, then a finite group is isospectral to S if and only if it is isomorphic to a group G such that $S \leq G \leq S \rtimes \langle \varphi \rangle$, where φ is a field automorphism of a group S of the order given in the table.

S	Conditions	$ \varphi $	h(S)
$^{2}B_{2}(q)$		—	1
$^{2}G_{2}(q)$		—	1
$^{2}F_{4}(q)$		—	1
$G_2(q)$		_	1
$E_8(q)$		—	1
$^{3}D_{4}(q)$	$p \notin \{2, 3, 7, 11\}, (m)_2 = 2^s \geqslant 2$	2 ^s	s+1
	$(p \in \{2,3,7,11\}$ or m is odd) and $q \neq 2$	_	1
	q = 2	—	∞
$F_4(q)$	$p \notin \{2, 3, 7, 11\}, (m)_2 = 2^s \ge 2$	2 ^s	s+1
	otherwise	—	1
$E_6^{\varepsilon}(q)$	$p \notin \{2,11\}$, $3 q-arepsilon 1$, $(m)_3 = 3^s \geqslant 3$	3⁵	s+1
	otherwise	—	1
<i>E</i> ₇ (<i>q</i>)	$p \notin \{2, 13, 17\}, (m)_2 = 2^s \ge 2$	2 ^s	s+1
	otherwise	—	1