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OBITUARY

Alan Baker, FRS, 1939-2018

1. Life and career

Alan’s paternal grandparents were known as Marks and Mathilda Backer; they were married
in 1902 in Lithuania. The surname presumably changed when children arrived. His parents
were Barnet and Bessie (née Sohn). Alan was born in London on 19 August 1939 into this
Jewish family. His earliest memories of wartime England were of evacuation to Camberley,
Surrey. After the war, the family moved to Forest Gate in East London, where he spent most
of his early life. From a very early age, he showed signs of mathematical brilliance (see the
comments later about ‘brainbox’) and was encouraged by his parents. Already his father (who
had been at school with Jacob Bronowski) was very gifted in this direction, but did not have the
opportunity to develop, and became a tailor instead. This may have explained Alan’s clothes
sense; he was always well-turned-out with quality suits and tasteful ties (which were, however,
not always entirely appropriate to his later travelling, for example, on the beach at Nice after
being awarded the Fields Medal, or climbing a hill in the Australian Bush among snakes —
such episodes may have contributed to his later investing in a distinctive yellow sun hat).

Alan’s first education was at a Franciscan Convent (London E7) 1945-1949, followed by
Godwin County Primary School 1949-1950 and Stratford Grammar School 1950-1958. He then
went with a state scholarship to University College, London (he recalls that the staff included
J. W. Archbold, L. S. Bosanquet, P. Du Val, T. Estermann, C. A. Rogers, and K. Roth), where
he studied mathematics 1958-1961, obtaining a first-class honours BSc (Special) degree.
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OBITUARY 1917

He then moved to Trinity College, Cambridge (where he would soon be based for the rest
of his life) to study from 1961 to 1964 with Harold Davenport, at the time one of the leading
number theorists with many international connections, of whom Alan writes:

‘An excellent mathematician from whom I learnt a great deal; but I tended to follow
my own lines of research.’

Still, Chris Morley recalls a loud mathematical conversation between them in the Trinity
Parlour, and they did write a paper together (see below). It seems that in later life he enjoyed
imitating Davenport’s Lancashire (Accrington) accent (and the writer has carried on this
worthy tradition of imitating one’s supervisor). He obtained his PhD in 1965 and MA in
1966, by which time he had already been awarded a Prize Fellowship for 1964-1968, also at
Trinity. During this period, which included a year 1964-1965 at University College, he took
on John Coates as a PhD student, and recalls also sharing responsibilities with Davenport in
supervising T. W. Cusick, M. N. Huxley, H. L. Montgomery, and R. W. K. Odoni.

In 1966, he was appointed as Assistant Lecturer and in 1968 as Lecturer; in 1972 he was
promoted to Reader in the Theory of Numbers, and finally in 1974 he was elected to a personal
chair for Pure Mathematics, all at Cambridge. Apparently he liked to draw attention to the
unusual chronological order of Fields Medal, then Fellow of the Royal Society, then Professor.
During that period he supervised for a PhD also, in chronological order, the writer, Cameron
Stewart, Yuval Flicker, Roger Heath-Brown, Richard Mason, Mark Coleman, and Ellyn Lee.

At the time of writing, the Mathematical Genealogy Project lists 506 descendants.

The writer recalls meeting Alan every two weeks or so in his college rooms in Whewell’s
Court opposite the Great Gate. Actually these rooms (fitting C. P. Snow’s description ‘not
specially agreeable’) had been occupied previously by G. H. Hardy (about which the great
German mathematician David Hilbert — see later — indignantly wrote to the Master that
Hardy was the best mathematician, not only in Trinity, but in England, and should therefore
have the best rooms). One had to ascend a slightly low and narrow spiral staircase, and then
knock on the thick wooden door. Often in College une porte peut en cacher une autre and
probably he did indeed have a second door immediately behind; at any rate, he was sometimes
a long time coming, and I supposed that he did not hear me through the two doors (also against
the heavy traffic then in Trinity Street). On each visit, I felt obliged to knock or bang harder
and yet harder, sometimes bringing with me a heavy book to protect my hands.

As mentioned, Alan Baker was firmly based in Cambridge; it seems that college life there
suited him — especially in the style of Trinity, whose society he enriched for many years in
an unspectacular way, for example by being an interesting conversationalist (contrary to the
impression given by some newspaper obituaries). He also threw after-seminar parties fuelled
by particularly strong beer (on one occasion Frank Adams challenged others to climb around a
table, underneath it, without the feet touching the ground, after he had himself demonstrated
that it could be done). In the Combination Room, there was a bottle of Madeira kept especially
for him. He was a reasonable ballroom dancer, enthusiastically participating in the College May
Ball. He played regularly on the Trinity Bowling Green, using an unconventional throw which
delivered the ball from waist level instead of lower down.

Outside the College, he enjoyed playing the slot machines in pubs, or playing table-tennis
and snooker at the Graduate Centre. Eva McLean (née Gordon) writes of one occasion:

‘In 1975 a vicious rapist was terrorising the female population of Cambridge. One
evening when I was leaving the Graduate Centre one of the porters who knew me
well expressed great concern that I would be walking home alone. Not to worry,
I assured him brightly, pointing to Alan who was going to escort me. The burly
ex-policeman looked him up and down, all five foot six of him, grabbed his coat and
joined us on our way.’
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1918 ALAN BAKER, FRS, 19392018

She also draws attention to existential dangers of a different kind:

‘Alan was once barricaded in his flat for several days and would not answer the door
as a collector, all the way from America, kept coming back pleading, in vain, for a
contribution to his sperm bank.’

He had learnt to drive in America, and in Cambridge he bought a Rover car, apparently
as an investment (‘you understand’, as he insisted), although Eva McLean soon explained to
him that there were much better ways of investing (and he seems to have acted very well on
this advice). He drove with enthusiasm despite colliding with a stationary fire engine on his
maiden voyage, and despite being stopped for speeding, which caused him to arrive late in
chairing a session in London. William Chen recalls that it was actually the inaugural lecture
of a colleague, and that Alan was very eager to explain that he had not exceeded 90 miles
per hour, so he was only speeding rather than driving recklessly. On one occasion, the car got
badly stuck in a driveway; Alan, however, remained cool and concentrated and succeeded in
extricating it without damage. Later on the enthusiasm waned, and a rusting hulk with flat
tyres had to be removed from New Court. After that, he reverted to his old mode of transport,
which was not by bicycle, as practised by the majority of academics, but on foot. He always
walked very briskly and, without having to unlock and lock a bike, arrived within the city no
later than the others. Keeping up with him could prove a challenge whether walking around in
Cambridge, along the river, to surrounding villages, or, as he liked to do, visiting the nearby
stately homes of Anglesey Abbey, Wimpole Hall, and Audley End House.

He had a flat in Hendon and enjoyed life there in London too, for example, up-market
restaurants, or the theatre at which he always bought the best seats (as at the Footlights
Theatre in Cambridge). The latter interest may be due to his cousin Heather Rechtman, who
writes:

‘We lived near Stratford East (London) where the fledgling company Theatre
Workshop was just beginning to make a name for itself, and as a stage-struck
teenager I dragged him along to many of their plays.’

That was of course edgy stuff under Joan Littlewood, but he also enjoyed musicals. About one
such trip to the theatre, Eva McLean narrates:

‘... we stopped over at his Hendon flat. While there, he decided to show me his
mother’s mink coat. When he opened the wardrobe door, hundreds of moths awoke
to greet us. His response to this crisis? He shut the door firmly.’

as well as:

‘On another eventful outing to the West End, we arrived in good time and right
there by the theatre came across a perfect parking place. Alan, however, decided
it was too good to be true and so the search continued. When we next passed the
spot, the parking space was gone — as was the first act of the play by the time we
were inside.’

Her funeral tribute (23 February 2018) sums up such anecdotes:
‘So, in many ways, he was what Americans term “just a regular guy”.’

In his private life, he was quite relaxed, never going beyond sometimes stamping his foot when
frustrated. However, in his professional life, he was often reserved, even insecure in some ways,
and could on occasion be difficult. There were episodes, not just in Cambridge, which perhaps
still have not been entirely forgotten. But it is now impossible to give any balanced accounts.
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Eva McLean also writes:

‘His Jewish identity was also something which he strictly confined to the private
sphere but was happy enough to discuss at length with co-religionists.

I recollect an occasion when I told him about a particularly nasty anti-Semitic
outpouring which I witnessed at a social event, adding how atypical that was these
days. He, however, was convinced that anti-Semitism was never going away and was
perhaps too sensitive to it. It must be remembered that when he first arrived in
Cambridge (in 1961), church and chapel were as yet prominent in university life —
a pillar of the academic establishment. He was worried about fitting in, contrasting
his humble East End origins with the professional and even aristocratic backgrounds
of many of the members of his college.

Nevertheless, he still abided by the dietary rules forbidding the consumption
of pork and shellfish and requiring meat to be kosher — ancient rules that even
vast numbers of practising Jews regularly attending synagogue services conveniently
overlook. Whenever we ate out he ordered fish, preferably smoked, but he found
culinary life more restricted in College until, to his great relief, vegetarianism finally
took hold. When in Hendon, all such requirements were, of course, easily met, and
that is also where he would have shown up for services from time to time — foremost
while his mother was still alive.

All this should help solve a mystery that so baffled Trinity that his obituary in
The Times opened with it — namely as to why he arrived for dinner every evening
late by just the few minutes necessary to miss grace, especially when as the most
senior Fellow he would have been obliged to read it. He just felt that he was not
the right person for the task.’

See (15) for the above-mentioned obituary. And Paula Tretkoff writes about a meeting, also
with her mother:

‘Alan asked to see our Israeli passports that had come up in conversation. He wanted
to see if he could still read the Hebrew writing in them. He managed OK, though
he no doubt only learned Hebrew as a child without pursuing it further.’

Alan was enthusiastic about travel, which in America started already in 1969 with visiting
professorships in Ann Arbor, Michigan, and Boulder, Colorado, and in 1970 membership of
the Institute for Advanced Study in Princeton, New Jersey. He had at least three offers of
chairs. One of these he turned down because the ivy-clad walls were too much like those in
Cambridge, as was the weather. He preferred both modernity and sunshine. It was also thought
that he wanted to look after his mother in London. (This writer recalls around 1980 seeing
two people slowly crossing a Maryland street, and recognizing one, but not the other, and he
followed them into a restaurant, where Alan introduced his mother.) He made many visits to
America, and Eva McLean has shown me a lot of his postcards and other correspondence from
abroad, for example, from Texas (1984), New York (1987), and California (1989). Of course,
as his reputation grew he was able to widen his horizons, for example, to Australia, China and
Hong Kong (missive 1988), India, Japan (postcard 1983), Russia, and many parts of Europe.

In later life, he made regular trips to Switzerland (postcards 1989 and 1990) to work with
Gisbert Wiistholz at ETH (a 1988 missive opens with ‘greetings from a gnome of Ziirich’). There
were social events too, and he thought nothing of occasionally bringing presents such as a frying
pan to dinner invitations — unconventional to be sure, but with its own unassailable logic. It
was there, during a conference in honour of his 60th birthday, that he gave an entertaining and
surprisingly candid speech about his life, starting with his recollections of wartime London, also
mentioning that he was regarded as the ‘brainbox’ of the family, including one more rendering
of Davenport’s accent, and ending with his regrets about never marrying. Some people already
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1920 ALAN BAKER, FRS, 19392018

knew that these regrets were not abstract but concerned specific ladies. I quote again from the
funeral tribute:

‘I first met Alan in 1975 playing table tennis in the Graduate Centre. I was
immediately taken by his generosity of spirit. Unlike some of the others, he never
minded being beaten. He proved to be equally generous and attentive as a suitor,
and later as an old friend.’

Alan’s last years were made more difficult by increasing deafness and a series of falls (he
did not pay serious attention to medical advice on these). He had long since advanced from
Whewell’s Court to Great Court and indeed had been proud to have the very best set of rooms
there, like a maisonette on two floors. It overlooked the Bowling Green where he now could no
longer play (see the cover of (13), the proceedings of the Ziirich conference).

Alan Baker died on 4 February 2018 in Cambridge after a severe stroke a few days earlier.

During a Feast at Trinity given in his memory, he was described as ‘idiosyncratic’ in place
of words like ‘eccentric’ or ‘enigmatic’.

Other biographical articles about Alan Baker can be found in the Hardy—Ramanujan
Journal (1). See also (14) for a scientific appraisal by Wiistholz, which also contains a complete
list of his publications.

2. Mathematics: a preview

For a more structured narrative, we shall divide Alan Baker’s work into eight categories (and
in scientific detachment usually drop the first name).

Diophantine approximation.
Linear forms in logarithms.
Diophantine equations.
Elliptic functions.

Class numbers.

Abcology.

Miscellaneous.

Books.

=0 R o e o
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But before starting, we would like to mention perhaps the most easily stated of all his
deep results.
When we make a list of the perfect squares

1,4,9,16,25,36,49, 64,81,100, 121, 144, . .., 143384152921, . . .,

we see that the gaps between consecutive members get larger and larger (and in a regular way).
Similarly for the perfect cubes

1,8,27,64,125,216, 343,512,729,1000, 1331, 1728, ... ,143384152904, . . . .
But, if we mesh the two lists together to obtain the ‘squbes’
1,4,8,9,16,25,27,36,49,64,81, ...,143384152904, 143384152921, .. .,

then it is not so clear that the gaps become large. Indeed this was proved by Mordell only in
1922; thus, for example, the gap 17 (twice above) or the gap 1621 (to take a year apparently
at random) occurs at most finitely often. Unfortunately Mordell’s proof gave no way of
determining all the occurrences of a given gap.
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To do this amounts to specifying a non-zero k in the set Z of rational integers and finding
all z,y in Z with

vt =a + k. (2.1)
Baker achieved this in 1968 by showing that they all satisfy
max{|z], [y|} < exp{(10"°[k[)"***°}. (2.2)

Despite (2.1) being around since at least the year 1621 (and the cases k = —2, —4 were set by
Fermat in 1657 as a challenge to ‘you English’), there were no estimates at all for x,y until
(2.2) nearly 350 years later.

Thus, for example, to find all gaps 1621, one just has to examine all y? and z* with y,z
between 1 and say

132098
100 )

This looks hopelessly impractical; yet we shall see later that Baker (with Davenport) found
exceedingly efficient ways to do such things.

There is an attractive single-sentence reformulation: for all positive integers x, y with 2% # y2,
we have

|ZIIS _ y2| > 10710(10g1,)1/10000.

3. Diophantine approximation

It is classical that
T =3.1415926 ... and % = 3.1415929. ..

are suspiciously close. This raises the natural question: given a real number &, how well can
we approximate it by a rational number p/q? An answer in convenient form was found by
Dirichlet: provided £ is not already rational, we can find infinitely many p/q with

1
q72.
We pause to give the simple proof, which involves the Box Principle or Pigeonhole Principle.
Pick any Q > 1in Z. Fori = 0,1,...,Q we can find p; in Z with the @ + 1 pigeons 0; = i — p;
in the interval from 0 to 1. We divide this interval into @ holes of length 1/Q. There are more

pigeons than holes, so at least one hole must contain at least two pigeons. With say 6; and 6y,
(j < k), this leads at once to

_ b
’g q‘ < (3.1)

1
—pl< = .
g€ —pl < 0 (3.2)
for p = pr — p; and ¢ = k — j satisfying 1 < ¢ < Q. And now (3.1) follows; it is not too hard
to see that we get infinitely many p/q as @ varies.
But the answer to the next natural question of whether we can beat (3.1) depends critically
on the number &.
For a class of £ particularly interesting to number-theorists, this topic can be said to have
begun in earnest with Liouville in 1844, although it underlies the older concept of continued
fractions such as

1 355

3 -
+7+11—6 113’
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1922 ALAN BAKER, FRS, 19392018

or infinite ones like

3+ =
7 + 15 - 1
2 T
It 5951
More generally,
1
ao + T (3.3)
ay + g+ —=L
Fast s
is usually linearized to just
x = [ag; a1, a2, a3, aq, . . .J. (3.4)
For example,
1 5
a=[1,1,1,1,..] = +2‘[, (3.5)
and this is actually an algebraic number in that a? — a — 1 = 0. On the other hand, Liouville’s
work (see later) shows that, if the positive integers ag, a1, as,as, as, ... increase very rapidly,
then z in (3.4) does not satisfy any equation
box® + bz 4+ 4+ by =0 (3.6)
for by, b1, ...,bs in Z not all zero. Thus by definition x is a transcendental number.
In 1906, Maillet had given a different sort of transcendental continued fraction. A typical
example is to take (3.5) and replace 1 by 2 in the positions k1, ko, . . ., where now these k1, ko, . ..

increase very rapidly.

In his very first paper [1] from 1962, Baker simplified and improved that work and also made
the estimates more explicit. A consequence here is that it suffices to take k,, as small as 4™ for
transcendence. For the proof, one notes that something like

r=[1;1,1,1,1,1,1,1,1,1,1,2,1,.. ]

is rather close to a above, with similar approximations further along. In this case, an

easy generalization of Liouville is applicable, but for other examples it is necessary to use

Klaus Roth’s ‘revolutionary improvement’ (Cassels) of Liouville’s result, or more precisely a

consequence by Davenport and Roth, and even LeVeque’s generalization of Roth.
Acknowledgements such as Baker’s:

‘I should like to thank Professor Davenport for his valuable suggestions and help in
preparing the manuscript.’

can be seen quite often around this time in the journal Mathematika (which Davenport
founded).

The paper [4] from 1964 can be considered as a sort of continuation of [1]. To describe some
of its results, we must recall that what Liouville proved is that, for any algebraic number « of
degree d > 2 (the smallest integer such that « satisfies an equation (3.6) above), there is ¢ > 0
such that

D c
a—=|=z—= (3.7
q‘ q
for all p and ¢ > 1 in Z. When d > 3, Roth improved this to
a— p‘ > £ (3.8)
q q"

for any k > 2, where now c is allowed to depend on k. The Box Principle as in (3.1) shows that
this is essentially best possible.
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OBITUARY 1923

Equivalently, if, for some £ and k > 2, there is an infinite sequence of p; and ¢; > 1 in Z with
pi/q; different and
Pi

\s
qi

1
< (i=1,2,...), (3.9)

then £ must be transcendental.

Baker then shows under an additional condition that £ cannot be too close to an algebraic
number in the sense of what is since called a ‘transcendence measure’. The condition is that
there should exist A with ¢;11 < ¢ for all 4. In that case, he shows that, for each n, there is
n, (possibly depending on &) such that

|ho&™ + P&t + o hy| > H M (3.10)

for all hg, hy,...,h, in Z not all zero, where H = max{2, |ho|, |h1],. .., |hn|}.

The significance of this is the following. From (3.10) by definition (due to Kurt Mahler), &
cannot be a so-called U-number, even though (3.9) implies that the ‘partial quotients’ ag, a, . . .
in (3.4) for x = £ are unbounded. On the other hand, the partial quotients for sums of the
form Y77, 27*" are also unbounded and it is a U-number (for example, (3.10) fails already for
n =1 and ho = 2¥ with k large). Furthermore, Baker shows that the method of [1] produces
U-numbers with bounded partial quotients, and that a suitable generalization of the above
result to quadratic fields produces £ that are not U-numbers, but still have bounded
partial quotients.

More succinctly, there is no correlation between the properties of having bounded partial
quotients and being U-numbers. In fact, Baker is able to sharpen this to involve (also in Mahler’s
classification) T-numbers and S-numbers (see just below), and that was his main motivation.
A spin-off is that either T-numbers exist or S-numbers ‘of type exceeding 1’ exist. This
foreshadows Wolfgang Schmidt’s breakthrough four years later showing that T-numbers exist.

The proofs are rather formidable; indeed (3.9) and (3.10) lie close to a strengthening of
Roth’s Theorem, and accordingly Baker has to ramp up Roth’s entire machinery, even in the
situation of LeVeque’s generalization.

This time he writes only:

‘I am indebted to Professor Davenport for valuable suggestions in connection with
the present work.’

In [15] from 1967, Baker returned to these themes, with generalizations to several numbers,
at least in the case of bounded partial quotients. This property for a single £ is equivalent to
|¢ — p/q| = ¢/q? analogous to (3.7), and the natural extension to a pair (£1,&2) is

P P2
G ——|&——

C
maX{ q q } g q>/?

for all p1,p2 and ¢ > 1 in Z. He shows, for example, that there are U-numbers &1, &5 satisfying
this, and also &;,& that are not U-numbers. This time the proofs need no Roth-type
considerations but follow a still intricate ‘interval nesting’ technique of Cassels and Davenport.

In 1966, Baker [10] investigated certain ‘metrical’ properties of S-numbers. These are defined
by refining (3.10) as follows. There is an w such that for each n and each k£ > nw, we can find
¢ > 0 (possibly depending on &, n, k) such that

|ho€™ + hi €™t + o+ hy| > cH ", (3.11)

)

as in (3.10). For simplicity, we consider only real £&. Much as before, the Box Principle shows
that w > 1. It had been conjectured by Mahler in 1932 that we can in fact take w = 1 (‘of type
exactly 1’) for almost all £ in the sense of Lebesgue measure. This was proved by Sprindzhuk
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1924 ALAN BAKER, FRS, 19392018

in 1965. Having seen only preliminary announcements of that result, Baker was able to refine
(3.11) even further to things like

|ho€™ + hi€" 4+ hy| > cH "(log H) ™ (3.12)

for any A > n.

Later on in 1970, he considered with Schmidt [29] further refinements in terms of Hausdorff
dimension; these are closer to Koksma’s classification into S*-; T*-; and U*-numbers based
instead on the distance from £ to algebraic numbers.

Many of the results above can be expressed more concisely through the notation

|z|| = min |z — m|
meZ

for x in the field R of real numbers, meaning the distance to the nearest integer. For example,
(3.7) says that |qa|| = ¢/q?~! for all ¢ > 1.

This notation can be used in other contexts. Returning to 1964, we may cite Baker’s nice
note [3], which shows that

QIIQO11QO:] = e~ (3.13)

for any non-zero polynomial @ in say R[t], where ©; = ¢'/* and ©, = €2/ (same e, but that
is irrelevant) are interpreted as formal power series in the topological completion with respect
to the valuation |t| = e, and
IX||= min |X — M]
MER(t]
measures the distance to the nearest polynomial. The significance here is that the analogue of
(3.13) with R[t] replaced by Z (see just below) is thought to be false, by a famous conjecture of
Littlewood (still unsolved). The note makes explicit an earlier result of Davenport and Lewis
and provides a simpler proof, essentially by differentiating and using a Padé approximation
(see later in this section). In fact, the Padé element can be eliminated to give a yet simpler
proof as follows.
It can be checked that

Q Py P,
A= 2qQ’ 2P+ P 2P} + 2P,
Q" +2t°Q" t P! + (263 + 2t2)P] + Py t*PY + (213 + 4t*) Py + 4P,

remains unchanged on replacing P;, P, by £ = P, — Qe'/t and & = P, — Qe?/t, respectively.

Now suppose that Q, Py, Ps, even in CJt], are all non-zero. Inspecting the coefficients of
smallest powers of ¢ in each entry shows that A # 0. Thus |A] > 1.

Next, for Q # 0, choose Pp, Py so that |£;] = ||Qe'/t|| < 1 and |&] = [|Qe?/!| < 1. Clearly,
Py #0,P; #0. Using |X'| < e ! X]|, we easily obtain that 1 < |A| < e3|Q||&1]|€2] giving a
slight improvement of the result.

He evidently had this note in mind when writing [7] in 1965, back in R. A special result
there is that, for any € > 0, there is ¢ > 0 such that

C
qllab:lllq02| = e (3.14)

for any ¢ > 1 in Z, where 6, = e, 6, = €2.

More generally Baker treats a product of several terms (as indeed in [3]) involving various
numbers 6 = e¥ with (different) rational ¢ (that then implies quite easily the transcendence of
e with quite a good measure); and he is even able to refine the ¢°. Of course one can no longer
do things just by differentiation; but that does play a role, and the much more elaborate proof
uses techniques introduced by Carl Ludwig Siegel in his work on the so-called E-functions,

together with so-called transference principles.
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OBITUARY 1925

The paper [16] from 1967 is Baker’s only excursion into the Hardy—Littlewood Circle Method.
Here one wants to know that certain approximations actually exist, and this time with prime
values of the variables. For example, he shows that, given any k, there are infinitely many primes
p1, P2, p3 With [p1 — v/2ps — v/3ps| < (log P)™*, where P = max{pi, p2,ps} (with extension to
arbitrary coefficients). This was the first such result with an explicit function of P on the right-
hand side. As Bob Vaughan (who later greatly improved the result, to Baker’s surprise and
dismay) has pointed out, he was also aware that a ‘localized’ version in the style of (3.2), with
P given in advance and just P > max{p1,p2,p3}, is in principle impossible. We may remark
that the result in the enigmatic footnote on the second page of this paper [16] had previously
been proved by Vinogradov.

Returning again to 1964, we examine [5] in some detail. The starting point is again (3.7) and
(3.8). There is a fundamental difference between these two results. Namely, given « in (3.7),
one can calculate an explicit value of ¢ (and in fact rather easily). One says informally that
(3.7) is ‘effective’.

In fact not much attention had been paid to this concept, which dramatically increased in
importance thanks to the works of Alan Baker.

On the other hand, given o and & in (3.8), no-one knows how to calculate any value of c.
This is true even for the simple-looking

q pERin

The obstacle is a logical twist already present in Thue’s improvement on (3.7) in 1909. Namely,
his argument works very well if there happens to be already a very good rational approximation
p2 /g7 to a.. This sounds paradoxical, but it has the effect of ‘repelling’ other p/q # p-/q+ through
the triangle inequality

o1/3 _ P‘ 5 ¢ (3.15)

q @ g
And, if there are no such good approximations p-/q¢-, that is also good news. However, we have
no way of resolving this dichotomy; and in the first case, ¢ will depend on the uncontrollable
p2/a.

In [5], Baker treats some numbers of this special form a = (a/b)'/¢ for positive a,b in Z, as
in (3.15). He proves (3.8), but with different quantifiers. Namely, for each such «, he finds an
explicit k such that (3.8) holds for some effective ¢ > 0. Of course, this already holds for kK = d
by (3.7); but the new x can sometimes be less than d. Furthermore, and this is Baker’s key obser-
vation, one can obtain k arbitrarily close to 2 by choosing « carefully, usually with a, b approxi-
mately equal. This amounts to imposing pz/g» = 1 in advance. For example, if b = 3316, then

1/3
(Hl) _P|s
b q

which is effective ‘but only just’ (as Estermann’s Scotsman (5) said on p. 33); and not as
elegant as (3.15).

Since Thue’s work it is known that any x < d leads to consequences for diophantine equations,
and Baker presents some of these. More about that just below. The proofs follow the so-called
hypergeometric method used by Thue in his earlier paper of 1908 (also see just below).

Actually Thue in a later paper from 1918 had implicitly (in terms of diophantine equations)
obtained results like (3.17). His work implies, for example, an effective |a — p/q| > cq =558 for
a =177 =1.4989. .. thanks to p;/q> = 3/2 = 1.5; this a little more elegant than (3.17).

But the ultimate in elegance was then achieved by Baker [6], also in 1964: namely

10-6
q2.955 :

(3.16)

10— 1024522
- (3.17)

2.1 ’

q

21/3 p‘ >

p (3.18)
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1926 ALAN BAKER, FRS, 19392018

The consequence for diophantine equations is that all solutions x,y in Z of the equation
3 — 2% =m (3.19)
satisfy
max{|z|, [y|} < (300000|m|)* . (3.20)

Even though equations like (3.19) have been around since at least Thue’s work, this was the
first time that (3.19) itself could be solved even in principle. It is similar to the situation around
(2.1) and (2.2) above.

Thus to solve completely, for example, the equation

x® —2y% = 1621, (3.21)

we have to check only all z, y with absolute value at most say 102°°. And with modern computers
this is entirely feasible, using a trick found by Baker and Davenport a few years later (see
Section 5).

Actually to prove these results, one needs infinitely many elements like p/g- in the set Q of
all rationals. An old idea, going back essentially to Hermite, for obtaining many approximations
p/q in Q to a number £ in R is to construct many approximations A/B in Q(x) (preferably
of so-called Padé type) to a suitable function f(z). Then one specializes x.

The choice f(z) = (1 — z)'/? will serve for (3.18). Thue had already used this, and found that
hypergeometric functions turn up. Baker succeeded with (3.18) by means of a nice new twist.

By simple linear algebra, we see that, for any 7 > 0 in Z, there are polynomials A,.(z), B,(x),
not both zero, such that

or(z) = Ap(z) — (1 — 2)/°B,(2) (3.22)

has a zero at © = 0 of order at least 2r 4+ 1 (these are in fact Padé approximations). They are
unique if we normalize B, (0) = 1, and then

B, (x) = F(% —r,—r, —2r, x) = Z b,‘jxj
j=0
for the Gauss function F' (now a polynomial). Here the coefficients

I ((1)3) — r + k) (—r + k)
[1 (1+k)(—2r+k)

brj =
k=0
are all rational, and seem to involve 37 in their denominators.

As 2/3 =1.2599... the choice p;/qz = 5/4 is tempting in the discussion above; and this
translates into putting « = 3/128 in (3.22), when (1 — z)1/% = 2 /213, As ¢, (z) = ca® 1 4 - -
is small, it seems plausible that we obtain a sequence of good rational approximations

5 B,(3/128)

1A G/ (r=0,1,2,...) (3.23)

to 2'/3. For example, with r = 0, 1,2, 3,4, we obtain

5 635 96389 15240955 26990767415
47 5047 76504 12096754 21422586294

(the last being accurate to 19 decimal places). The hope is that these will repel all others as
in (3.16). But to check this we have to estimate denominators in (3.23). For example,

52 —ib' 3
"\ 128 _FO "\ 128 )’
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OBITUARY 1927

and now we see that the 3/ in the denominators of b.; are cancelled out. It is this ‘3-adic’
feature that is Baker’s new twist (which led later to a minor industry). It would fail for the
slightly more tempting p2/q» = 63/50 = 1.26.

In the same paper, he did similar things with a'/? for a = 17,19, 20, 37 and 43. But, at least
before 1988, the method fails for a = 5, and so does not lead to a complete solution of, say,
23 — 5y® = 1621 (see Section 4).

In all, Baker published no fewer than five papers in 1964, each highly non-trivial (he did
even better with six in 1967). We have already discussed four of them. The fifth is [2], which
follows the broad principles of [5, 6] above. Now he is dealing with numbers ¢ = log @ whose
irrationality (or transcendence) is by itself somewhat deep. In fact, for algebraic a # 0,1,
this was proved by Lindemann in 1882 (see just below in Section 4). We indicate just one
consequence in the style of (3.17): if b = 10!, then

b+ 1 P 10—121506
log (b ) — q’ > 7{12_1 .

But he is also able to extend to transcendence measures in the style of (3.11), with & arbitrarily
near n in the spirit of (3.12). In the proofs, the analogue of (3.22) is a system of forms

o(x) = AC2) + AW (2)log(1 — z) + - - + A" () (log(1 — z))" (3.24)

found by Mahler.

This category of Baker’s work is rounded off by [17] in 1967, which extends [5] to linear
forms in various (a/b)%/?, (a/b)?/?, ..., (a/b)*/?, again close to best possible in the spirit of
(3.12). Instead of quoting an approximation result, we mention an attractive application to
diophantine equations. Namely, if h = 10! + 1 and [ = h® — 1, then all solutions z,y,z in Z
of the equation

20 4 1y° + 122° + 5layz(zz —y?) =m (3.25)

satisfy max{|z|, |y|,|z|} < 1°°m?2. This may not be quite so elegant as (3.19) and (3.20), but
the exponent of m is much smaller, and crucially this seems to be the first such example
ever for equations in three variables (where at the time of writing it is unknown whether
23 + 3> + 2% = 114 (see (16)) has any solutions at all). Here another system like (3.24), also
due to Mahler, plays a key role.

This concludes the section on diophantine approximation. Baker did more very important
work around (3.7), but that deserves an extra section, which now follows. In the sequence of
papers just described, it seems that he is exuberantly flexing his muscles on several different
methods, (with hindsight) limbering up for his big achievements. In the early stages, he was
possibly solving every problem Davenport threw at him, but pretty soon his own motivation
took over.

4. Linear forms in logarithms

This title hardly existed before Alan Baker.

The classical theorem of Hermite-Lindemann (1873-1882) is equivalent to the fact that, if
« is a non-zero algebraic number, and log « is any non-zero choice of its complex logarithm,
then 1 and loga are linearly independent over the field Q of all complex algebraic numbers.
This includes the transcendence of e, m and so of

/ bode o
o w2+1 47
and of course the numbers log & mentioned in Section 3, as well as the numbers e” for algebraic

g #0.
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1928 ALAN BAKER, FRS, 19392018

Similarly the classical theorem (1929-1934) of Gelfond and Schneider is equivalent to the fact
that, if a1, o are non-zero algebraic numbers, and log a1, log ais are any choices of logarithms
which are linearly independent over Q, then they are also linearly independent over Q. This
includes the transcendence of €™ and most notably the numbers 2V2 and of mentioned
by Hilbert (Seventh Problem) in his famous 1900 address to the International Congress of
Mathematicians in Paris, as well as numbers like log 3/ log 2.

Before Baker, nothing was known about the independence of 1, log a1, log ao; and practically
nothing about that of log a1, log aa, log a3, despite the assertions of Gelfond and Linnik in 1948
(repeated in Gelfond’s 1960 book) of the enormous importance of the latter problem (for which
see later). There had been a paper about by log a; + by log ais + b3 log g for integers by, bo, b3
by Gelfond and Feldman in 1949; but these coefficients were subject to a restrictive condition
which essentially reduced the problem to two logarithms.

Then, in a sequence of four papers in 1966-1968 (which we shall call the ‘Linear Forms
Quartet’), Baker went straight for any number of logarithms and proved (among much else)
the following.

THEOREM (Baker). If ay, ..., are non-zero algebraic numbers, and log oy, . .., log o, are
any choices of logarithms which are linearly independent over Q, then
1,log oy, ..., log oy, (4.1)

are linearly independent over Q.

The reader may easily construct simple examples of transcendental numbers like e”°a” or

ozf 1045 > not covered by Hermite-Lindemann or Gelfond—Schneider; less simple examples are

/1 dz B 7r\/§+10g2
o ¥¥+1 9 3

quoted by Siegel in his famous 1949 transcendence monograph, and

(4.2)

1
dz

/ - = B1logaq + Bolog as + B3 log as

o x> —3z—1

where
a1:4—a2, ay =2+ q, a3:—a+a2,
—4 —a+2a? 2—a—a? 24 2a —a?
Bl_f’ 52—#7 53—#,

and o® — 3a — 1 = 0 (with say a > 0 to provide unique real choices of logarithms).

We proceed to examine these four papers I, II, III, IV in detail.

Linear Forms I is [11] from 1966. It is one of the great number-theoretic papers of the
twentieth century.

In fact, the main result is a ‘linear independence measure’ (analogous to transcendence
measure in Section 3) for just logay,...,loga, with a condition slightly stronger than that
in the above theorem. We shall return to such measures later; it is these refinements that are
needed for the applications suggested by Gelfond and Linnik.

In an exemplary display of modesty, clarity, and foresight, Baker writes:

‘Finally, as regards the proof of the theorem, our method depends on the construc-
tion of an auxiliary function of several complex variables which would seem to be the
natural generalisation of the function of a single variable used in Gelfond’s original
work. The subsequent treatment employed by Gelfond, however, is not applicable
in the more general context and so it has been necessary to devise a new technique.
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OBITUARY 1929

Nevertheless it will be appreciated that the argument involves many familiar ideas.
The method will probably be capable of considerable development for it applies in
principle to many other auxiliary functions apart from the one constructed here.’

This is immediately followed by:

“The author is grateful to Prof. H. Davenport, who read the original draft of this
paper, for his helpful criticism.’

which makes it clear that Davenport did not suggest the problem. Indeed the problem, despite
its great importance, seems not to have been very well known; for example, there is no mention
of it in Lang’s book on transcendental numbers, which appeared in the same year 1966. It is
not referred to in the section ‘Einige offene Fragestellungen’ in Schneider’s book of 1957; this
section contains his celebrated Eight Problems. And in Siegel’s book from 1949 there is no
mention of logarithms in connection with (4.2). Also in Baker’s paper there is no serious
reference to any paper published after 1948. He sought out the problem himself, despite all
previous transcendence breakthroughs coming through French, Russian, and German sources;
and he solved it in spectacular style.

Let us give an idea of his ‘new technique’. We start with n =2 and Gelfond—Schneider;
slightly changing the notation, we have to deduce a contradiction from a relation

Blog o = log o (4.3)

with «, o, 8 algebraic and g irrational. Gelfond constructs an auxiliary function ®(z) which is
a non-zero polynomial of large degree in

e*, el (4.4)
Note from (4.3) that the functions (4.4) take algebraic values at all points
z = sloga, s=0,1,2,..., (4.5)

and that this is true even of their derivatives, thanks to the differential equation for the expo-
nential function. This enables ® to be constructed, with algebraic coefficients not all zero, such
that

t

d
@q)(slog a) =0 (4.6)

for all non-negative integers s,t in some large range
s< S, t<T. (4.7

Thus ® has many zeros (with multiplicity) inside a large disc in C (say centred at the origin).

Now well-known analytic techniques such as the Schwarz Lemma (or Maximum Modulus
Principle; see (6.1) below) show that ® must be very small on the whole of this disc, and even
on a slightly larger one; and this holds for the derivatives, and even slightly more of them.
Then well-known arithmetic techniques show that (4.6) holds for, say,

s <28, t<2T. (4.8)

This step could be then iterated, even indefinitely, to obtain infinitely many zeros. In fact, a
single zero of infinite multiplicity, say at z = 0, suffices to prove that ® must be identically
zero, and this leads easily to the required contradiction.

How did Baker adapt Gelfond’s proof? For simplicity, we take n = 3 and ignore the extra 1
in (4.1), so that now we have to deduce a contradiction from a relation

Bilogaq + Balogas = logas (4.9)
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with 1, B2 algebraic (under a suitable irrationality condition). The auxiliary function ®(z1, 2z2)
is now a polynomial of large degree in

e, e%2 efrathez (4.10)

which indeed generalize in a fairly natural way (although no-one had previously written them
down) Gelfond’s ®(z) and (4.4). This time (4.9) shows that the functions (4.10) take algebraic
values at all points

(21,22) = (slogai,slogas), s=0,1,2,..., (4.11)
and this is true also of their partial derivatives. This enables ® to be constructed, with algebraic
coefficients not all zero, such that

ot ot
028 92 ®
21 Oz
for all non-negative integers s, t1,t2 in some large range

s<S, ti+t,<T. (4.13)

(slogay,slogas) = 0 (4.12)

Thus ® has many zeros (still with a natural concept of multiplicity) inside a larger disc now
in C2.

In 1941, Schneider had used several complex variables for transcendence purposes, and in
C? was able to go further because the set of zeros was part of a structure like Z2. Later Baker
expressed it:

‘...this type of argument requires that the points in question form a Cartesian
product, a condition that can apparently be satisfied only with respect to particular
multiply-periodic functions.’

But in (4.11) the structure is only Z; and indeed the points all lie on a line. This is too thin a
set for the usual type of Schwarz Lemma. Indeed the function (z1logas — 29 loga1)? has the
same zeros as ®, but it need not be small, even on a disc of radius 1 in C?. And, to this day,
no-one knows how to increase T in (4.13) to 2T as in (4.8).

Here comes Baker’s decisive innovation. It does seem fairly natural to restrict to the line.
But Baker considered also the partial derivatives

oh ot

Dty = ety (2) = 9211 otz
1 2

O(zlog ay, zlog as),

however keeping only t1 + to < %T.
Clearly d'®;, ;,/dz" can be expressed as a linear combination of the ®,, ,, with

1
7'1+7'2<§T+t.

So as long as we keep also t < %T, then 71 + 7o < T, and we see from (4.12) that

dt
@(I)tl,tz (5) =0

for
1

These are very similar to (4.6) and (4.7), firmly back in C.
Now the Schwarz Lemma shows that the ®;, ;, are very small on a slightly larger disc; and
so the arithmetic gives us (4.12) for

S < 25, tl + t2 < T. (414)

DO =
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OBITUARY 1931

We can iterate but not indefinitely in any profitable way, due to the loss of multiplicity.

See (8) for an appropriate limerick.

Already this limited iteration was a new sort of difficulty, which Baker overcame by getting
just as many zeros as are needed for the contradiction (along the principle that a polynomial
of degree D cannot have D + 1 zeros). Here the non-vanishing of a certain Vandermonde
determinant suffices.

Of course all this extends to any number of variables and

atl C’)tn
0z oz

So Baker’s main achievement was to introduce several complex variables, reduce them to
a single variable along a line, introduce the magic trick with multiplicities, and supply the
missing estimates for zeros.

Actually he was helped in this last ‘zero estimate’ by Gelfond himself. In a 1935 paper,
Gelfond had obtained a linear independence measure for two logarithms. This amounts to
assuming that Sloga —loga’ is very small rather than zero as in (4.3). That adds some
technical complications, but more significantly it means that here too one cannot iterate (4.8)
indefinitely; hence the need for some sort of zero estimate.

To state Gelfond’s result, we have at last to introduce heights. Recall that the degree of an
algebraic number « is the smallest d in any equation (3.6) satisfied by x = a. We can then
suppose that the coefficients have no common factor, and we define the height by

H(a) = max{|bo|, b1, - -, |ba|}

(we are using H to distinguish it from a more modern version that need not concern us here;
see, however, the end of this section).

Thus Gelfond was able to show that, for any x > 5 (and later for any x > 3), there is an
effective ¢ > 0 depending only on a1, as and the degrees of 31, 82 such that

|51 IOg ay + Pa 1og 012‘ > CeiGOg B)N, (416)

d(slogay,...,sloga,,) = 0. (4.15)

where B = max{2, H(51), H(B2)}, provided that log a1, log as are linearly independent over Q
and their principal values are chosen.
Accordingly, in Linear Forms I, Baker could prove an analogous

|B1logay + -+ + B log | = ce~ (o8 B)" (4.17)

for any k>mn+1, where now B =max{2,H(S1),...,H(Bn)}, except that now
log aq,...,log a, and 27 have to be linearly independent over Q.

In the second paper, Linear Forms IT [12] from 1967, Baker obtained (4.17) for any x > 2n + 1
when only log aq, . ..,log « are linearly independent over Q. This was crucial to an application
to an effective improvement of Liouville’s inequality (3.7) (see later).

In Linear Forms IIT [13], also from 1967, Baker improved the result of [12] for any
k > n. He also made a start on obtaining lower bounds for the ‘inhomogeneous form’ which is
Bo + B1logay + - - 4+ Brlog ay,. This finally yields the theorem quoted above.

In the last paper of the Quartet, Linear Forms IV [20] of 1968, Baker starts by noting that
the various positive constants ¢ in his lower bounds, although of course effective, are very small
indeed, which could lead to practical computing difficulties in the applications. He gives the
following version leading to explicit values of ¢ which are not so small. Suppose that, for some
6 with 0 < § < 1, there exist by,...,b, in Z with absolute values at most H such that

0 < |bilogay + -+ b, logay,| < e %, (4.18)
Then
H < (4767 1d2" log A)2nt1)” (4.19)
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1932 ALAN BAKER, FRS, 19392018

where d > 4 is an upper bound for the degrees of a,...,a, and A > 4 is an upper bound for
their heights.
Implicit in this paper is the following associated result (see additionally [42, pp. 3, 8]), which

is also the first of its kind. If log aq, ... ,log «, are this time linearly dependent over Q, then
there is a ‘relatively bounded’ relation
0=bilogay + -+ b, loga, (4.20)

for by,...,b, in Z with
0 < max{[bi,..., |ba|} < (47 d2" log A) 2"+, (4.21)

The idea here was greatly exploited in later work on isogenies between elliptic curves and
between abelian varieties and consequences of that (see (10.1) below).

Shortly afterwards, Baker wrote two important papers [18, 19] which further improve the
Quartet results, but since their main emphasis is on diophantine equations we shall postpone
our description to the corresponding section below. It is also [18] that contains the first effective
improvement on Liouville’s inequality (3.7).

Similar remarks hold for his 1971 paper [31], published in the esteemed journal Annals of
Mathematics, in connection with class numbers.

We turn now to the later developments of (4.17). These may seem rather technical, but they
are specifically aimed at marvellous applications, to be described in Sections 5 and 7. We start
with his paper [34] with Stark, also in the Annals and from 1971.

Baker had observed already in [18] that the term (log A)2"+1)” in (4.19) could be replaced
by C(log A,)" for any k > n+ 1, where A,, >4 is an upper bound for H(a,,) alone, and C
(effective) is here allowed to depend on 6, k,d as well as aq,...,a,—1. In [34], he and Stark
replace (4.18) by

0<|Bilogay 4 -+ Bplogay,| < e °H (4.22)

where now fi,..., 3, are algebraic numbers also of degree at most d. The analogue of (4.19)
is

H < max{eV'*s® C'(log A,)"}, (4.23)

now for any x > 1, where B > 4 is an upper bound for the heights of 51,...,8, and C’ has
the same nature as C above.

This indeed technical result could be applied to class number problems (see Section 7), and
also to general effective improvements of Liouville’s inequality (3.7), as described later on. But
actually much interest attaches to the proof. Already in [27] (see Section 6), Baker had the nice
idea of taking s in (4.5) and (4.11) as rational not just integral, but now he and Stark combine
this with another important idea, which for simplicity we illustrate with (4.5). Namely, the
functions (4.4) evaluated at z = (1/p)loga take the values a'/?,o/'/P, and the vanishing of
® there implies an algebraic relation between these values. Such relations can be ruled out
by Kummer theory (based on Galois theory) if p is, for example, a sufficiently large prime
(thus 1,2'/7 41/ are linearly independent over Q for p > 2); this gives another approach to
the zero estimates.

It is not difficult to guess which author wrote the following in a footnote:

‘However, the latter work involves an appeal to Galois theory which we prefer to
avoid.’

We now come to the ‘Sharpening Trio’ I, II, III (changed at the last moment from
‘strengthening’).

In Sharpening I [35] (in memory of Davenport and Sierpiriski) from 1972, Baker is able to
improve (4.23) for § =1 to H < C”log Blog A,, provided that £i,..., 3, are in Z, where C”
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OBITUARY 1933

is allowed to depend only on d,aq,...,a,_1. Effective improvements on Liouville have now
become the main motivation, and a little competition opens up between Baker and Feldman.
Indeed, the much sharper dependence on B (now essentially best possible) comes from a 1968
paper (6) of Feldman (who realized how to avoid certain factorials — Thue himself had to do
this as well). Baker concedes in a footnote that Feldman had recently obtained those effective
improvements (for which having x = 1 in (4.23) is essential), but immediately adds that he can
do it himself with a ‘slight generalization’ of this paper [35].

That slight generalization is Sharpening IT [36], from 1973 (dedicated to Siegel). It contains
a partial improvement of (4.19) when b, = —1 in (4.18), namely: H < C""log A,,, where the
ever-effective C"”' is allowed to depend only on d, d, a1,...,a,_1. Indeed this does do the trick
for Liouville, and it is customary to declare the competition a draw. Thus we have:

THEOREM (Baker—Feldman). Given any algebraic number « of degree d > 3, there is effective
k < d and effective ¢ > 0 such that

C
@

(4.24)
for all p and ¢ > 1 in Z.

Regarding this k, we pause to mention the 1988 work [44] of Baker and Stewart. They gave
explicit values of x and ¢ for every irrational o = a'/3 with a > 2 in Z. We already mentioned
a problem with ¢ = 5 in connection with (3.18); this they solve with

10712900

51/3 p‘ >
q
(which would have left Estermann’s Scotsman without words). The proofs use cubic units (here
41 4 24a + 14a?) and an ad hoc linear form in three logarithms.
The Trio was interrupted with [37] in 1973. Here Baker introduces the now-familiar notation

q2.9999999999998

A= o+ pBilogay + -+ B,logay, (4.25)
(back to inhomogeneous) and shows that, if A # 0, then
|A| > (Blog A,,)~¢""legAn (4.26)
with A,, as above, and now B > 4 is an upper bound for the heights of 8, 81,. .., Bn, and C""
is allowed to depend effectively on d, aq,...,a,—_1. This starts to look more like the modern
versions. Baker gives the application
D 1
PR

= log1
q qc ogloggq

for all p and ¢ > 4 in Z, with C absolute (that is, depending on no additional parameters); this
has never been improved.

The Trio ends with Sharpening III [39] (in memory of Linnik and Mordell) from 1975. There
is now a mini-competition with Stark. Baker shows that when 5y = 0 and 34,...,5, are in Z
in (4.25), still with A # 0, then

|A] > B~Clee (4.27)

Here Q =log A; - - -log A,,, where each A; > 4 is an upper bound for the height #H(«;). Things
seem to be getting more complicated, but now the effective C' depends only on n and d, and so
we are heading back in the direction of totally explicit estimates like (4.19). And the temporary
neglect of a, ..., a,—1 has ended (this had been done by Stark two years earlier).
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1934 ALAN BAKER, FRS, 19392018

Baker gives no applications, but a footnote ‘added in proof’ mentions that the result had
‘recently’ been used by Tijdeman to deliver what is perhaps the most spectacular application
of linear forms in logarithms to diophantine equations; more of that in the next section.

With [42] from 1977, we are finally back to totally explicit estimates. After a detailed account
of the history (up to then), Baker shows first that for A # 0 as in (4.25), we have

A| > (BQ)~Costles (4.28)

with Q' = Q/log A,, and Cy = (16nD)?°°"; now D = [Q(a1,- .-, an, Bo, B1,---,Bn) : Q) mea-
sures degrees in a different way. Second he shows that, when Sy =0 and f4,...,[3, are in Z,
the bracketed factor Q in (4.28) can be eliminated to yield

|A| > B~Colog (4.29)

In the proof, his own formidable techniques are supplemented with ideas of Tijdeman and
van der Poorten (about the new ') and Shorey (about Cj).

And there, Baker’s extraordinary solo work on linear forms in logarithms ended. We have
already mentioned a paper with Stewart in 1988, but it was not until 1993 that he did any
more work on (4.29).

This was [45] with Wiistholz. Its main result was expressed with a more modern version of
height and also took into account non-principal values of the logarithms, but we here give only
the consequence for principal values. Again we are in the so-called ‘rational case’ when 5y = 0
and fB1,..., B, are in Z. They improve (4.29) to

[A] > B~ (4.30)

with C; = (16nD)*"™*. The elimination of logQ’ is due mainly to the zero estimates of
Wiistholz arising from his more general work on group varieties.

Incredibly sharp as all these results are, we should note that there is much room for
conjectural improvement; for example, one believes that the product of logarithms 2 can be
replaced by the sum (see Section 8).

Much more recently, Dimitrov and Habegger (4) have made a conjecture which would have
valuable consequences in the theory of dynamical systems of algebraic origin. In our present
framework, it runs as follows. Given € > 0 and T > 1, there exists C = C(e,T') such that

|b1 log o + bo log(—1)| > exp(—CD(DB)®)

for all algebraic «, not a root of unity, with || =1 and H/(«) < T. Here the notation is
by now familiar, except for H; which is the standard modern version of height (or Mahler
measure) defined using the conjugates of «. The crux is the very good dependence on D.

The theory of Linear Forms in Logarithms (or logarithmic forms for short) continues to
be one of the two main tools for solving diophantine problems in number theory (or indeed
several other branches of mathematics), with a key emphasis on effectivity. The other is
the Subspace Theorem due to Schmidt with important extensions by Schlickewei, which is
partly non-effective.

5. Diophantine equations

We already had several examples of these, such as (3.21), and we even mentioned the year
1621; but the so-called Pell equation

x? — 410286423278424y% = 1 (5.1)

was encountered in the solution of the ‘Cattle Problem’ of Archimedes (see, for example, (12)).
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OBITUARY 1935

In general, it is a question of finding a solution with the variables in Z (which any idiot can
do for Pell above) or more ambitiously finding all solutions (there are infinitely many for Pell
above, all but two of them safely out of the reach of idiots).

To warm up, let us show that there are at most finitely many positive integers 7, s with

37— 25 = 1621 (5.2)

(the equation 3" — 2% = 1, with a musicological background, was already solved by Levi ben
Gershon in 1343; see, for example, (9)). Suppose that H = max{r, s} is large, say H > Hy.
Then 3" is relatively close to 2° and of course

1621

25
Taking logarithms shows that rlog3 — slog2 is very small, and we obtain without trouble
(4.18) with n=2,aq4 = 3,0 =2,by =7,bp = —s,6 = 1/2 for an easily computable Hy. So
(4.19) with d = 4, A = 4 gives H < 102, and this completes the proof.

But for most of this section we shall consider only polynomial equations. It was Thue who,
in 1909, first proved that equations like 2° — 2y = 1621 in (3.21) have at most finitely many
solutions, as a consequence of his improvement on Liouville’s inequality (3.7). But we already
observed the ineffectivity in that his method did not allow all the solutions to be found. We
also saw Baker overcome this problem with (3.20) for 2 — 2y®> = m in (3.19). However, we
noted that his method did not work for z® — 5y = m.

It was in [18], part I of a Duo, from 1968 that Baker was able to treat the general equation
considered by Thue. Namely, if f is a homogeneous polynomial in z,y of degree d > 3 (so Pell
is out), irreducible over Q and with coefficients in Z, and m # 0 is in Z, then all solutions of
f(z,y) = m satisfy

327 =1+

(5.3)

max{|a|, [y[} < Celoslm)" (5.4)

for any k > d + 1, where C depends only on f and k.
He deduces easily the very first effective improvement on (3.7), namely

a—p‘>
q

celloga)'/"

T (5.5)

so he is already on his way to (4.24).

The proof uses a new estimate for linear forms in logarithms (what else?), which we already
commented on. We sketch the method, because it shows that arbitrarily many logarithms may
be needed. For simplicity, we take the equation

zd -2yt =1 (5.6)

with d > 3 an arbitrary prime. Pick any a with a? = 2. Then factorizing the left-hand side
of (5.6) shows that  — ay is a unit in the field Q(«,¢) with ¢ = e2™*/<. Dirichlet’s Theorem
shows the unit group to have rank ¢ =d(d —1)/2 — 1, generated by say 71,...,n: modulo
torsion. Thus we may write

T —ay=0n" -y

with integer exponents and a root of unity 6.
We have d choices for a at our disposal; but it suffices to take just two more, say 3,~. We
deduce analogously

z—By=@m'-ont, w—yy=ynit -
Now ‘Siegel’s Identity’
(B=(r—ay)+ (v —a)(z = By) + (= B)(z —vy) =0
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leads to
577?1761 .- -nffct =1+4¢ (5.7)
(a little as in (5.3) above) with
s (- (B =)z —ay)

=B = (a-B)e—1y)

Choosing « as the real 2'/% it may be seen that, if z,y are very large, then  — ay and so ¢ is
very small. Thus taking logarithms in (5.7) gives an integer a such that

logd + (by —c1)logm + -+ + (by — ¢¢) log . + 2wia

is also very small (note that 27 is a logarithm of 1). This turns out to be more than enough
to contradict (4.17).

A similar treatment of 2% — 2y¢ = m leads to (5.5) with a = 2/¢.

In [19] (part II, also from 1968), Baker solves the Mordell equation y? = z° + k in (2.1), as
we already described in Section 2. He also makes (5.4) completely explicit with

C = exp(d” H""), (5.8)

where v = 32k%d/(k — d — 1) and H is the maximum of the absolute values of the coefficients
of f.

The proofs rely on an explicit version of the linear forms estimate in [18]. The Mordell
equation leads to a Thue equation by the classical method of reduction theory of binary cubic
forms (which he also has to make explicit along the way, itself of no small interest), and then
the general Thue equation needs some simple estimates for units (which were immediately
improved by Siegel himself).

And thick and fast they came at last. Mathematically, next comes [21] in 1967 (dedicated
to Mordell on his 80th birthday). There Baker treats the ‘elliptic’ equation

y? = ax® + b2’ +cx + d (5.9)
for a, b, c,d in Z such that the cubic has distinct zeros. He proves that
max{|z|, [y|} < exp{(loﬁH)loooooo} :

where H = max{|al, |0], |¢|, |d|}. This looks a little like (2.2), but cannot be deduced from it.
Instead Baker now uses explicit versions of reduction theory of binary quartic forms and then
applies (5.8).

Then in [23] from 1969, Baker generalizes to the ‘hyperelliptic’ equation

v =apz" + - +a, (5.10)

with n > 3 and the polynomial on the right having at least three simple zeros, and the
‘superelliptic’ equation

Yy =apx™ + -+ an, (5.11)

with m > 3,n > 3 and the polynomial on the right having at least two simple zeros; where the
coefficients ag, ..., a, are in Z again with H as the maximum of their absolute values.
For (5.11), he proves the doubly exponential

max{|e], [yl} < expexp{(5m)*(n'"H)""}
and for (5.10), the triply exponential ‘finite but only just’

max{|z|, [y|} < expexpexp{(n'*"H)""} (5.12)
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(at which the lecture audience always laughs). We emphasize though that these were the
first ever bounds of their kind. The proofs rely on the calculations of [18, 19] in suitably
generalized form.

In [28] with Coates from 1970, the bounds become even bigger, but the problem is somewhat
different. They take now a polynomial F in z, y with coefficients in Z which is irreducible over C.
Then F(z,y) = 0 defines a curve C in C? which has a certain geometric genus g > 0 in Z. They
suppose in fact that g = 1; this does not restrict the total degree n of F'. Then, for all points
(z,y) in Z? on C, they prove that

7L10
max{|z|, |y|} < expexpexp{(2H)'"" }

(audience goes crazy). The proof reduces to (5.9) (but now with algebraic coefficients) using
the Riemann—Roch Theorem in the classical way. Of course this step must be made effective
and explicit; this is done by Coates in a separate paper of great independent value. They can
then follow the arguments of [23] just above. They remark of their result:

‘It does not seem to extend easily, however, to curves of genus > 1, and an effective
proof in the general case remains an important quest.’

And today no-one has the slightest idea how to extend this even to genus g = 2, even though
the finiteness of integral points is known since Siegel in 1929. Of course the standard forms are
(5.10) for n = 5,6, and so are already covered. But there are many other models; for example
in conversation with Zannier, we found the simple family z* — y* — azy = 0, which does not
seem to be effectively solvable.

We said back in Section 2 that bounds like the above can be efficiently dealt with. This was
done for the first time in 1969 by Baker and Davenport [25].

The numbers 1,3,8,120 have the property that the product of any two, increased by 1, is
a square. Van Lint asked if this can be extended to 1,3,8,120, N for some integer N > 120.
Plainly then the property holds just for 1, 3,8, NV, and he was able to show that, if such an N
exists, then

N 2 101700000 , (513)

which makes its existence unlikely. In [25], Baker and Davenport prove that there is indeed
no N. See (8) for another appropriate limerick.

It seems worthwhile to give some details, as they also illustrate the raw power of linear
forms in logarithms. Clearly, if N exists, it has the form z? — 1 for z in Z; and now the other
conditions amount to

y? =32t = -2, 2 -8*=-7 (5.14)

for y,z in Z. These imply that (yz)? = 242* — 3722 + 14, of the form (5.10); but the bound
(5.12) really may be too big.

Instead we use the Pell theory behind things like (5.1) to see that the first equation of (5.14)
forces

y+av3=(1+V3)(2+V3)" (5.15)
for some r in Z; and the second
24+ 2V8 = (1+V8)(3+V8)* (5.16)

for some s in Z (there is actually a similar second possibility here which we shall ignore).
It is easy to see that (5.15) is very near 22v/3 and (5.16) is very near 2x+/8. Eliminating
x, we see that v/8(1 ++/3)(2 +/3)" is very near v/3(1 + v/8)(3 + v/8)°. This is also like (5.2).
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Taking logarithms in the usual way, we see that by log a1 + bs log ap + b3 log ag is very small
for

V3(14/8)
a1 =2+V3, as=34+V8, az=———""2 bi=r, by=—s by=—1.
1 2 3 V51 +v3) 1 2 3
In fact, we have (4.18), and then (4.19) leads easily to
r < 10%7, (5.17)

But as N = 22 — 1 grows exponentially in r by (5.15), this far from contradicts (5.13).
More explicitly, (4.18) leads to (a stronger form of) say

|r — s+ | < 27" (5.18)

for certain real irrational 6, ¢ whose exact form we can now ignore.
Here comes the new idea. Suppose that in place of (5.17) we have obtained

r<R (5.19)

for some huge integer R. We pick a largish integer K, and then by Dirichlet’s inequality (3.2),
we find ¢ with

1
0 < —5, < KR.
o9l < 7> ¢< KR
It follows easily from (5.18) and (5.19) that
q 1
S oo+ 5.20
lell < 57 + 42 (5.20)

Now ¢ was chosen specifically to make g very near an integer, and there seems no reason to
think that g is also near an integer (shades of Littlewood). For example, we have |||l = 1/200
with ‘probability’ 99/100. If we could have picked K such that ||gp|| > 2/K, then by (5.20) we
obtain 2" < ¢K < K?R. For fixed K, this gives a new bound for r that is logarithmic in R,
and so it is plausible that (5.19) will be improved.

And indeed in the stronger form of (5.18) they pick K around 1033, find ¢ efficiently from the
continued fraction of @, and end up with r < 500 (due to the Atlas Computer Laboratory —
and presumably not to the pocket calculator that Baker bought after seeing that Eva McLean
had one). This does contradict (5.13) and the thing is done: there is indeed no N.

This section would be incomplete without a mention of the Catalan equation, namely

-y’ =1, (5.21)

this time to be solved for x,y, r, s in Z all bigger than 1. Thus it is a combination of (3.21) and
(5.2). It is looking for all gaps 1 when we throw in fourth powers, fifth powers, etc., with the
squbes of Section 2.

In 1842, Catalan conjectured that the only solution is 32 — 23 = 1. Progress was very slow
until a result of Cassels from 1960, who also earlier in 1953 had made the weaker conjecture
that there are only finitely many solutions. Despite all the work of Baker, it came as a sensation
when Tijdeman in 1976 proved the conjecture of Cassels with an ingenious application of linear
forms in logarithms. He used Sharpening III (4.27), together with his own sharpening (now the
knives were really out) of Sharpening I. That was something like (4.27) with a slightly better
dependence on log A,, and a worse dependence on the other factors of € (but not as good as
(4.28) which appeared soon after).

At the time, it was considered as a pinnacle of ‘Bakery’ (van der Poorten) applied to
diophantine equations. Since then Mihailescu proved the original Catalan conjecture in 2004.
Shortly afterwards, in 2006, he found another proof not using linear forms in logarithms (and
no computers either). See, for example, (2).
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OBITUARY 1939

6. Elliptic functions

We have seen that the Hermite-Lindemann Theorem essentially concerns the exponential
function £ = e*, and the simple differential equation £ = £ plays a role in the proofs. It
was Siegel who, in 1921, first investigated what happens for a Weierstrass elliptic function
© = ©(z). This too satisfies a differential equation, namely '? = 4p> — gop — g3, and, since we
are working with algebraic numbers, it is customary to suppose that the ‘invariants’ go, g3 are
algebraic. Minor technical problems are caused by the non-linearity, but a much more serious
difficulty comes from analytic growth. The Schwarz Lemma in its simplest form says that, if f
is an entire function with f(0) = 0, then

#eo)l < 22 sup 172) (6.1)
|z|=R
for any zg with |z0| < R. However, p is far from entire. We can make it entire by multiplying
by the square of the Weierstrass sigma function o(z). Unfortunately, sup,i_p |o(2)| grows
exponentially in R, while sup|,_p|e*| = efl; and this restricts the iteration procedure in the
proof (there is a similar problem with ‘arithmetic growth’).
Nevertheless, in 1937 Schneider could prove the elliptic analogues of Hermite-Lindemann
and Gelfond—Schneider. Above we formulated those in terms of logarithms

loga:/ d—x, (6.2)
1

x
and the elliptic analogue is

/a dz (6.3)
oo V4xd — gox — g3 '

for which there is no standard ‘principal value’ (and not even a standard notation).

Thus it was natural that Baker should start thinking about elliptic analogues of his theorem
that was quoted in Section 4. If we take o« = 1 in (6.2), then there is a loop of integration which
gives 274, a ‘fundamental period’ of €. Similarly, if we take & = oo in (6.3), then there are two
loops which give ‘fundamental periods’ wy,ws of p(z), so that

plztw) =p(2), pz+w)=pz). (6.4)

In [27] from 1970, also a major work with far-reaching consequences later on, Baker succeeded
in proving that, if 5,, 82 are algebraic, then the linear form in elliptic logarithms 1wy + Bows
is either zero or transcendental.

The analogues of the functions (4.10) are

p(21), p(22), Br1z1 + Poz2, (6.5)
and the analogues of the zeros (4.11) are
(z1,22) = ((s+3)wi, (s+3)wa), s5=0,1,2,... (6.6)

(the 1/2 just to avoid poles).

However, the growth problems mentioned above mean that these zeros are not sufficiently
numerous to do the iterative steps. As hinted in Section 4, Baker was forced to use more zeros,
with

s+ b

q
(forp=1,...,¢— 1) in (6.6); such things had not occurred in any earlier transcendence proofs.
Then not only must the range of s be increased step by step, as in (4.14); but simultaneously
also the range of ¢. This brought new problems; for example, p(w1/q), although still an algebraic
number, will have large degree growing like ¢ as g increases. Nevertheless, Baker was able to
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1940 ALAN BAKER, FRS, 19392018

get enough zeros for a contradiction, although the Vandermonde argument had to be ratcheted
up a bit.

In fact, he proved something more general, with w; as a period of a Weierstrass g; and wo
a period of a second Weierstrass po. Schneider had already determined when Sw; + fows can
be zero.

In [24], published in 1969, Baker considered also not just periods of p, but also the
corresponding quasi-periods 71, 72 of the associated Weierstrass zeta function ((z); these satisfy

C(z+w1) =C(2) +n1, C(z +w2) = ((2) +m2

similar to (6.4). He showed that, if 81, 82, 71,72 are algebraic, then Biw; + Bawa + v1m1 + Yan2
is either zero or transcendental. Schneider had already in 1937 considered the numbers fiw; +
v1m1 and f[awsy + Y212 separately. Now Baker had to deal with new algebraic numbers like
C(w1/q) —m/q. He could treat g1, o2 also here. In the paper, he points out that this implies
the transcendence of the sum of the circumferences of two ellipses with algebraic ‘axes-lengths’.

Finally the note [26] from 1970 gives a lower bound for |8y + S1w1 + Baws| like (4.17) which
has the amusing consequence |p(n)| < Ce°8™" for any n > 1 in Z.

7. Class numbers

Now we come to more pinnacles of Bakery.
Inside the field Q, we have the ring Z, and inside Z sit the prime numbers, which it is now
convenient to take as

+£2, 43,45, £7, £11, £13, £17, £19, £23, £29, ..., £163,...,+£1979339339, ... ;

and in the present context one calls them ‘irreducibles’. Euclid more-or-less proved that there
is unique factorization, in the sense that:

(1) every n # 0,£1 in Z is a product of irreducibles;
(2) if two such products p; - pg,q1 - - - q are equal, then k = [;
(3) and in (2), possibly after a permutation, we have p; = £¢; for all 1.

Inside a number field K, we have similarly a natural ring O together with irreducibles, and
one can hope for the analogues of (1), (2), and (3), except that the ‘+’ must be interpreted in
terms of units as in the discussion around (5.6). And indeed, if this were true for all K, then
‘Fermat’s Last Theorem’ would be relatively easy to prove. But this fails already for Q(v/=5).

The nearest approach to these analogues is through ideal classes. One works with ideals
A, which are just (non-zero) O-modules in O. Two ideals A, A’ are said to be equivalent if
there are non-zero o, o’ in O with o/ A = a.A’. The set of equivalence classes is finite, and its
cardinality is the ‘class number’ h of K.

It is elementary that h = 1 is the same as the analogues of (1), (2), and (3).

When K is quadratic over Q and imaginary, all this was known to Gauss, who in his famous
Disquisitiones Arithmeticae of 1801 calculated many K with small given class number (he
actually worked with quadratic forms instead). He conjectured that his lists were complete,
but that rigorous proofs seem to be very difficult: Demonstrationes autem rigorosae harum
observationum perdifficiles esse videntur. Now K = Q(y/—d) for some unique positive square-
free integer d, and we write h(d) for the class number. His list of d for h(d) = 1 was

1,2,3,7,11,19,43,67,163 ,

so nine fields K. The last d here corresponds to Euler’s discovery that the expression 22 + x + 41
takes prime values for x = 0,1,2,...,39, and also to the fact that

e™ 163 — 262537412640768743.999999999999250072597198185688 . . .

is so close to an integer.

'sdny Wwoly pepeo|umoq ‘9 “TZ0¢ ‘02T269vT

sdy) SUONIPUOD PUe SWB | 841 39S *[5Z02/0T/0E] U0 Ariqi auniuo A1 ‘90Us|[pOXT B8O PUE U)EaH 10J 3INNisu| UOIEN ‘3DIN AQ E55ZT SWIA/ZTTT OT/0p/wW00" A8 I AReIq 1 BuI|u0™C

LBYWOD" A3 | I

85UBD17 SUOLILLIOD BAR1D 3|gedt|dde 8u3 Aq pauRA0h 812 S2 I O (88N JO S3INI 10} ARIGIT BUIIUO AB]IM UO (SUORIPUCO-P!



OBITUARY 1941

In 1934, Heilbronn and Linfoot proved that there is at most one more value of d; and, if it
exists, then

d > exp(107). (7.1)

But it was not until Baker’s work in 1966 that this could in principle be ruled out. In his
great paper [11], he remarked that Gelfond and Linnik in 1948 had reduced the problem using
Kronecker’s Limit Formula to a weaker form of his (4.17) with n = 3 logarithms. So that did
it. On 22 December 1966, Serre (3) wrote to Tate:

‘Et Davenport dit qu’un jeune Anglais a prouvé l'inexistence du 10-iéme corps
quadratique imaginaire principal. Pas mal d’un coup!’

to which Tate replied on 13 January 1967 in apparent contradiction:

“The guy who proved the inexistence of the 10th imaginary quadratic field with h = 1
is American, not English. A student of Lehmer, whose thesis proved something like
|D| > 10" if D < —163 and hp = 1. Now he has done better! He talked recently
at MIT about it. I won’t take time to try to give the idea now, although I think I
could if I tried. Stark (that’s his name) says he sees no way to generalize the thing,
in order to determine all D with h(D) = 2, for example. Too bad.’

Then Serre on 24th June 1967:

‘Je reviens a Baker: les anglais sont trés excités par son travail, notamment par
le fait qu’il donne des bornes calculables pour les problémes d’approximation
diophantienne qu’il considere.’

Actually in [32] from 1971, Baker improved the work of Gelfond and Linnik by showing that
there is an effective C' such that, if d > C exists (he later calculated C' = 10?°), then 21d is
also square-free and

57\ 32
h@Mﬂ%<5t¥>—2ﬁrd

This involves just two logarithms (including 27i), and classical estimates for h(21d) then show
that the inequality can be dealt with by Gelfond’s much older bound (4.16). A strange turn of
events! Later, he produced a second inequality like (7.2), and then eliminated 7v/d to obtain
(4.18) for n = 2 for which (4.19) leads to d < 105%°. So by (7.1), ‘the tenth man’ d does not
exist (except as a novel by Graham Greene set in Paris not Vienna).

As hinted above, events turn even stranger when it is realized that Stark (10) in 1967 had
given an independent proof that the tenth man does not exist; that was based on work of
Heegner from 1952 which was, at least in some circles, also accepted as a proof — and then
more widely discounted until it was finally recognized as essentially correct.

Tate refers to difficulties with class number i = 2, which for general K is the same as saying
that the analogue of (1) or (3) fails, but (2) survives (Carlitz). And indeed, doing h(d) = 2 was
much tougher. Here Gauss’s list was

5,6,10, 13, 15,22, 35,37, 51, 58,91, 115, 123, 187, 235, 267, 403, 427.

< e~ mVA/100, (7.2)

We have already referred to Baker’s paper [31] from 1971; here is where he showed how to
settle this in principle.

Already in [22] from 1969, he had used two logarithms to prove that d < 105 if it is not
3 modulo 8. So he could assume d is 3 modulo 8. In that case Gauss’ theory of genera shows
that d = pq for primes p congruent to 1 modulo 4 and ¢ congruent to 3 modulo 4. If ¢ < d'/*,
then [22] also suffices. So he could also assume that g > d'/*.
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1942 ALAN BAKER, FRS, 19392018

He then proves an analogue of (7.2). Namely, there is effective C' such that, if d > C' exists,
then 21d and 21q are square-free and

21 4
5+2\ﬁ> + h'h(21q)logn — 2—171'\/67 < e~ mVa/10, (7.3)

h(21d) log (

where h' is the class number of the real quadratic field Q(1/2Ip) and 7 is a fundamental
unit there. An essential difference with (7.2) is that one of the logarithms, namely logn,
is not fixed. So nothing from the Quartet can be used, except possibly IV. But there the
coefficients were rational; and anyway the exponent (2n + 1)? =49 in (4.19) is far too large.
The troublesome 7 might have (1) as large as pvP, so that log H(n) is as large as d*/%. As H
is around d'/?, we would need an exponent x < 4/3. Baker was able to obtain any x > 1, also
for algebraic coefficients 81, 32, B3 (compare (4.23) above), thereby settling h(d) = 2. This was
another motivation for the Sharpening Trio. It may be noted that Stark (11) independently
settled the problem, and their papers could not have appeared more simultaneously, with
Baker’s occupying pages 139 to 152 and Stark’s 153 to 173 in volume 94 of the Annals.

To this day, no one has been able to treat h(d) =3 by similar methods. However, the
subsequent work of Goldfeld, Gross and Zagier (see, for example, (7)) enables in principle
any class number to be treated effectively.

We already referred to the note [22]. This was used in a paper [33] with Schinzel (in memory
of Davenport), also from 1971, where they make a contribution to the (still unsolved) problem
of showing that Euler’s list

1,2,3,4,5,6,7,8,9,10,12, 13,15, 16, 18,21, 22, 24, . .., 408, 462, 520, 760, 840, 1320, 1365, 1848

of 65 ‘numeri idonei’ is complete. These were defined in terms of binary quadratic forms but
they are also the positive integers not of the form zy 4 yz + zx for distinct positive integers
T, Y,z

8. Abcology

This refers to the abc Conjecture, formulated in 1985 by Oesterlé and the writer. Namely, for
any k > 1, there is C'= C(k) such that, for any non-zero a,b, ¢ in Z with no common factor
and a + b+ ¢ = 0, we have

max{|al, [0], e[} < CS" (8.1)
for the ‘square-free kernel’
s=]lr=2,
plabe
the product being taken over all primes p > 0.

In [46] from 1998, Baker proposes a version

max{|al, ||, |c|} < CopS

Li!‘g ) (8.2)

where s =37 .1 and now Cj is absolute. It is easily seen that s < L = [Cjlog 5/ loglog S|
(if S > 3) for C}, > 0 absolute, and then Stirling’s formula gives (for L < log S)

s L L
(log S) < (log S) < (¢ log S ;
s! Ll L

so (8.2) strengthens (8.1) — but not so much as to contradict known lower bounds.
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He suggested an even stronger version and showed that it is equivalent to a certain lower
bound for

min{1, |A|} Hmin{LpM‘p}
P

for the linear form in logarithms A = by loga; + -+ - + b, loga, with by, ..., by, a1 2 1,...,a, =
1 in Z. Here |A|, is defined in a natural p-adic way. He remarks that this lower bound suggests
that the expression Q =log A;---log A,, in (4.30) could be replaced by T' =log A; +--- +
log A,,. He even speculates that |A| > e~ T B~ where

r
w= Y 1<C{10gF

plai---an

for C1, C} absolute.
But despite the extraordinarily precise works of Yu Kunrui on p-adic linear forms in
logarithms, it seems that this approach to abc remains for future generations to explore.
Later on in [47] from 2004, Baker stuck his neck out by conjecturing (on extensive computer
evidence) that (8.2) holds for Cy = 6/5. See also his paper [48] from 2007 for related remarks.

9. Miscellaneous

Here we comment on five papers that do not so neatly fall into the above categories.
In [8] from 1965, Baker considers algebraic functions f = f(z) satisfying P(z, f) = 0, where
P(x,y) has the special form

P(z,y) =1+ <1 + Z:v>y+xQ(ﬂf,y)

for Q(z,y) in Z[z,y] and coprime p, ¢ in Z with ¢ > 2. As P(0,—1) = 0 but (0P/dy)(0,—1) #
0, imposing f(0) = —1 gives a unique power series f(z) = —1 + a1z + agx? + azx® + ---. He
shows that ¢"a, is in Z and also prime to ¢. This is in accordance with the well-known
Eisenstein Theorem about denominators, but the point is that there is no ¢z > 1 in Z with
q?ilan in Z for all n > 1, so the theorem is best possible in this respect, no matter how we
choose @. The simplest choice @ = 0 gives of course

2 3
p p p
f($)=—1+§x—q7w2+q—3x3+-~-

In [9] from 1966, Baker extends the Padé systems used in [5, 6] (see (3.22) above), [2] (see
(3.24) above) and (later) [17]. Namely, let wo,...,w; be in C distinct modulo Z, and then let
prs r=0,...,k;s=0,...,0]) bein Z with 1 < py < - < ppo (r=0,...,k). Then, if P.s(z)
is in Cl[z] with degree at most p,s — 1, the function

|
3 s ot -

l
r=0 s=0

cannot have a zero of order at least Zf:o le:o prs at = 0 unless all P,;(x) = 0. He mentions
(without proof) that such techniques can be used to prove the transcendence of e™ (see Section 4
above).

In [14] from 1967, Baker extends a famous result of Pdlya to functions of several variables.
As the former played an important part in the history of transcendence, and the latter a key
role in linear forms in logarithms, we should say a few words.
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Pélya shows that, if f(z) is an entire function such that f(0), f(1), f(2),... are all in Z, then
a relatively slow growth rate

f(2)] < Ce’l

for some 6 < log 2 and some C' forces it to be a polynomial. This led about 20 years later to the
Gelfond—Schneider Theorem (compare (4.4) and (4.5) above). The example f(z) = 2% shows
that Polya’s result would be false for 6 = log 2.

Baker proves a similarly sharp result for f(zi,...,2,) with values in Z at the points
Z1,---,2n = 0,1,2,... . Here it suffices that
f (21, ..., 20)| < CelUmItFlzD)

again for some 6 < log2, to force a polynomial. He refers to Schneider’s 1941 paper that
was mentioned in Section 4. He also gives generalizations that involve the partial derivatives
(80/0z1)1 - (0/0z)t f(21,...,2,) as in (4.15), so this paper seems inextricably linked with
Linear Forms I (which appeared just one year earlier).

The paper [38] from 1973, with Birch and Wirsing, uses Linear Forms II and III to
prove several results about a problem of Chowla, for example, that the values of L(1,x) =
Znoo:1 x(n)/n, as x runs over all non-principal characters modulo g, are linearly independent
over Q provided that ¢ is prime to its image ¢(q) under the Euler function.

The paper [41] from 1975 with Coates is diophantine approximation of a different sort.
Let p,q be coprime in Z with p > ¢ > 2. It is trivial that |(p/q)*|| = ¢ % for all k > 1 in Z.
Mahler showed that, for any ¢ > 0, there is ¢ = ¢(p, ¢,€) > 0 such that |(p/q)*|| = cg~=*. For
example, there are at most finitely many k with ||(3/2)"|| < (3% + 2%)/(4F — 2%); this inequality
is significant as (for k > 5) it is implied by the number g(k) in Waring’s Problem not being

given by
@)k] -2 (9.1)

However, the ¢ above is ‘Thue-ineffective’, so these exceptional exponents k cannot be
determined (it is presumed that they do not exist).
Baker and Coates show that there are effective n = n(p, ¢) < 1 and ¢ = ¢(p, q¢) > 0 such that

g(k) =2"+

k
D c
()|
for all k. They admit, however, that obtaining
log(4/3
n(3,2) < BG4 _ psesr

log 2

as would be required to find all exceptions to (9.1), may need fundamentally new ideas.
The proofs use a refinement of the methods of Linear Forms I, Sharpenings I, IT and Coates’s
earlier work on p-adic linear forms in logarithms (but not with p as above).

10. Books

Before Baker, there were three famous books on transcendental numbers written by leaders in
the field: Siegel’s Transcendental numbers (1949), Schneider’s Einfiihrung in die transzendenten
Zahlen (1957), and Gelfond’s Transcendental and algebraic numbers (1960). The dates reflect
a certain irregular growth in the subject corresponding to various breakthroughs. Also Lang’s
Introduction to transcendental numbers (1966) was influential.
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Baker’s own Transcendental number theory [40] from 1975 is a worthy successor to these
(although the writer well remembers the author’s wail of agony over a particularly visible
printing error on page 85). It formed the substance of an essay for the Adams Prize (1972) of
Cambridge University.

After an introductory chapter containing probably some of the world’s shortest proofs (one
page for the transcendence of e, two pages for Lindemann—Weierstrass), he launches straight
into linear forms in logarithms, and the subsequent four chapters give an excellent account
of this topic and its various applications. They are followed by a chapter on elliptic functions
including his own work. The next chapter describes Schmidt’s subspace extension of Roth’s
Theorem. There follows a chapter on Mahler’s Classification including Schmidt’s beautiful
proof that ‘I-numbers do exist’. The next two chapters contain some of his own work in [10]
and [7], and the book finishes with two chapters about the topic of algebraic independence.
One is an account of Shidlovsky’s fundamental work on E-functions and the other contains for
example the proof, due independently to Brownawell and Waldschmidt, that at least one of
¢® and e is transcendental. Nearly all the chapters contain the first account in book form of
major results.

The book was eagerly devoured as soon as it appeared. The concision of the first chapter
sets the tone for the rest, which makes it not so easy for beginners. It ran into a second edition
in 1990, and at the time of writing a reprint is planned.

Some of the material, now updated, found its way into the first three chapters of his
book Logarithmic forms and diophantine geometry [49] with Wiistholz in 2007. The other
chapters are concerned more with developments for general commutative algebraic groups G.
The simplest examples of these are the additive group G, and the multiplicative group Gy,.
The Quartet results can be naturally formulated in terms of G}} and G, x GJ,. The next
simplest example is an elliptic curve E, and Baker’s result in [27] involves in a similar way
G, x E? or even G, X E; x Ey. And given E, there is a unique G = G(F) sitting inside an
exact sequence

0—G,—G—F—0

which is, however, not isomorphic to G, x E; similarly Baker’s paper [24] involves (implicitly)
G(FE1) X G(E3) and even a quotient by a line inside.

The fourth chapter supplies the basic theory of such general G.

As already mentioned, Baker had to work a bit in [27] to obtain enough zeros for a final
contradiction. This indeed was the main obstacle to generalizing even to three elliptic curves. It
was overcome by Wiistholz, and the fifth chapter is devoted to the zero estimate or ‘multiplicity
estimate’ that did the trick. The resulting extension of Baker’s works on linear independence
to general G was Wiistholz’s ‘Analytic Subgroup Theorem’, and this is the topic of the
sixth chapter.

The seventh chapter is concerned with linear independence measures, both improved
versions for linear forms in logarithms (as in [45] above) and versions for general G. Some
consequences of the latter more in the realm of diophantine geometry (due to Wiistholz and
the writer) are also discussed, such as the existence of ‘small’ isogenies between abelian varieties
and polarizations of abelian varieties, as well as effective versions of Serre’s Open Image
Theorem for elliptic curves, the Tate Conjecture for abelian varieties and some of Faltings’s
Finiteness Theorems.

We pause to make clearer the connection between isogenies and (4.20), (4.21). Suppose, for
example, that E and E’ are elliptic curves with periods wy,ws and wi,w), respectively, as in
(6.4). An isogeny between F, E’ leads to relations

Bw) = briws + bows,  Pwh = bojwy + baows , (10.1)
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as in (4.20). The correct analogue of (4.21) then leads to an upper bound on the degree of a
connecting isogeny.

The book closes with concise accounts of other diophantine topics such as Schmidt’s Subspace
Theorem and the André—Oort Conjecture; the latter takes the reader very near to a great deal
of current work.

Baker had already published his A concise introduction to the theory of numbers [43] in
1984. This attractive volume is much more elementary and suitable for a first course in Number
Theory in general. He then developed [43] into A comprehensive course in number theory [50)]
in 2012. This is over twice as long and goes up to the graduate level.

Two conferences that Baker organized led to published proceedings: the first (Cambridge
1976) edited by Baker and the writer (and between the two of us we refereed practically all
the 16 papers there), mentioned in [42]; and the second (Durham 1986) edited by Baker alone
(where a less intensive programme than usual produced more mathematical advances than
usual), mentioned in [44].

11. Fields medal

This medal was for many years the supreme prize in mathematics, and still manages very well
to hold its own among various lifetime awards. It is given only to people aged at most 40, two
or three or four of them every four years at the International Congress. At the time of writing,
there have been 60 winners since it began in 1936.

Baker won the prize at Nice in 1970, just 13 days after his 31st birthday, on the basis of
his outstanding work on linear forms in logarithms and its consequences. See [30] for the
Proceedings Volume containing his address. The citation was:

‘Generalized the Gelfond-Schneider theorem (the solution to Hilbert’s seventh
problem). From this work he generated transcendental numbers not previously
identified.’

(Indeed at the time of writing that is the only accomplishment listed in his somewhat minimal
Wikipedia entry.) Turdn in his talk at Nice spoke of this:

‘The analytic prowess displayed by Baker could hardly receive a higher testimonial.’

However, any reader of this obituary will see that Baker went far beyond that. And Turdn
himself recognized the fact in his closing words:

“To conclude, I remark that his work exemplifies two things very convincingly.
Firstly, that beside the worthy tendency to start a theory in order to solve a problem
it pays also to attack specific difficult problems directly. Particularly is this the case
with such problems where rather singular circumstances do not make it probable
that a solution would fall out as an easy consequence of a general theory. Secondly,
it shows that a direct solution of a deep problem develops itself quite naturally
into a healthy theory and gets into early and fruitful contact with other significant
problems of mathematics. So, let the two different ways of doing mathematics live
in peaceful coexistence for the benefit of our science.’

<

Baker was presented to Président Pompidou at the Elysée Palace and later wrote: ‘... and
was quite impressed by his feat of memory when making a welcoming scientific address.’

He was the third British winner of the Fields Medal (after Roth in 1958 and Atiyah in 1966).

He received many other honours, including the prestigious Adams Prize of Cambridge
University, the election to the Royal Society and the Academia Europaea; and he was made
an honorary fellow of University College, London, a foreign fellow of the Indian Academy of
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Science, a foreign fellow of the National Academy of Sciences, India, an honorary member of
the Hungarian Academy of Sciences, and a fellow of the American Mathematical Society.

Alan Baker single-handedly transformed several areas of number theory. He achieved a major
breakthrough in transcendence, and applied it to obtain a new and important large class of
transcendental numbers (opening the way to the subsequent discovery of several other such
classes); developed quantitative versions and applied them to the effective solutions of many
classical diophantine equations as well as the first effective improvement on Liouville’s 1844
result on diophantine approximation and the resolution of the celebrated Gauss Conjectures
of 1801 on class numbers, not only A =1 but also h = 2, of imaginary quadratic fields; and
started the study of extensions to elliptic curves (opening the way to later generalizations to
abelian varieties and commutative group varieties and in turn their applications to old and
new problems in diophantine geometry).

Despite this, his cousin describes him as ‘extremely modest’. This is confirmed by another
extract from the funeral tribute of Eva McLean:

‘His most striking characteristic, however, was a genuine modesty. He really believed
that his brilliant achievement was merely down to hard work and determination. At
the same time he spoke in great awe of those mathematicians whom he regarded as
the truly greats.’
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grateful to Trinity College, particularly to the Librarian, Nicolas Bell, about Whewell’s Court
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