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Raoul Harry Bott, FRS, 1923-2005

Kol H. 55—

Raoul Bott was one of the outstanding geometers of our time, whose influence on mathematics
owed much to the warmth of his personality.

Early background

Raoul Bott was born in Budapest on 24 September 1923 but lived, until the age of 16 years,
in Slovakia. He was a typical child of the Austro-Hungarian world, speaking and educated
in a variety of languages: Hungarian, Slovak, German and English (learnt from his English
governesses). His mother was Hungarian and Jewish, whereas his father was Austrian and
Catholic. Despite the fact that his parents’ marriage broke up shortly after he was born, and
that he saw very little of his father, his mother brought him up as a Catholic, and (though
lapsing as a teenager) he remained one throughout his life.

His mother remarried, to the chief executive of the local sugar factory, a position of some
importance in the local community. The family were well off, living a comfortable middle-
class life, the parents travelled extensively and the younger children were educated at home.
Eventually, in 1932, they moved to Bratislava, the capital of Slovakia. Here Raoul finally went to
a proper school where he had to master Slovak, was a mediocre student and only distinguished
himself in singing and in German. His main interests at the time were music, which remained
a passion all his life, and making electrical experiments in the basement, a foretaste perhaps
of his decision many years later to study electrical engineering.

His mother died of cancer when he was just 12 years old, a devastating blow that brought him
closer to his stepfather. He also had a network of uncles, aunts and cousins who provided an
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FIGURE 1. Raoul Bott, McGill University, Montreal 1942. (Photograph kindly provided by
Candace Bott.)

extended family. In 1938/39, with the German designs on Czechoslovakia becoming increasingly
clear, Raoul’s stepfather acted promptly and moved to England, with Raoul following in June
1939, when he met the new stepmother from a wealthy Jewish family in Budapest whom his
stepfather had just married.

Raoul was now sent to a boarding school, but fortunately for him he escaped (for the time
being) the traditional rigours of an English public school. Instead he went to a progressive
private school, which believed in freedom, self-expression and co-education. Raoul remembered
his time there as one of the truly formative periods of his life: ‘in one stroke it made me a
life-time anglophile as well as a great admirer of the opposite sex’.

His step-parents had only a transit visa for England, and they left for Canada early in 1940,
with Raoul following shortly after. In Canada he had to have a further year of schooling and, as
he said, ‘the harsh fate of going to a British public school, which I had miraculously so avoided
in England, caught up with me in Canada’. In the autumn of 1941 he enrolled at McGill
University as an electrical engineering student (Figure 1). Here he had inspiring teachers; he
worked hard and graduated in April 1945. At this stage he decided that he should enlist in the
army, but with the end of the Pacific war his military career was cut short and he went back
to McGill in the autumn for a master’s degree. During this time Raoul was very unsure what
path he should follow, and even tried to take up medicine before being sympathetically but
firmly discouraged by the Dean of Medicine. This rejection triggered a prompt response from
Raoul — he decided there and then to become a mathematician.

With the encouragement of his teachers at McGill he went to the Carnegie Institute of
Technology in Pittsburgh to work on applied mathematics under Professor John L. Synge.
Despite Raoul’s sketchy and formally inadequate mathematical background, he was accepted
as a PhD student and in the spring of 1949 he finally found himself on the verge of becoming
a mathematician. His PhD thesis, written under the direction of Dick Duffin, led to his
first (joint) paper [1]f. Although the ‘Bott-Duffin’ theorem came to be well known among
electrical engineers, it was Bott’s last contact with that profession. However, the paper itself

TNumbers in this form refer to the bibliography at the end of the text.
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172 RAOUL HARRY BOTT

had attracted the attention of the great Hermann Weyl, originally from Goéttingen but now
a colleague of Einstein’s at the Institute for Advanced Study in Princeton. Weyl invited Bott
to come to the institute, a move that immediately opened his eyes to the wider vista of
mathematics and transformed his career.

Princeton and Michigan, 1949-60

The first decade after taking his PhD Raoul Bott spent between the Institute for Advanced
Study at Princeton and the University of Michigan at Ann Arbor. His teaching appointment
on the Faculty at Michigan was preceded by 2 years, 1949-51, as a visitor at Princeton and he
returned there for a sabbatical in 1955-56. He describes both his stays at Princeton as decisive
in his mathematical development.

In 1949, Princeton introduced him to an entirely new mathematical world. There were the
great giants of the time — Albert Einstein, John von Neumann and Weyl, all refugees like
himself from Nazi Germany — together with the leading Americans such as Oswald Veblen
and Marston Morse. Between them, and under their influence, the whole canvas of mathematics
at the highest level was being explored and the young Bott was totally enraptured. He soon
dropped the rather elementary and mundane work he had been doing at Carnegie Institute of
Technology on electrical circuits and started to absorb the new ideas that surrounded him.

Princeton, both at the institute and at the university, was a pioneer in developing the
new field of topology, which was rapidly maturing into the major enterprise it would later
become. Marston Morse at the institute, and formerly at Harvard, had made his name in the
application of topology to the study of critical points of functions, started by Henri Poincaré,
and its extension to the calculus of variations, to derive information about closed geodesics on
Riemannian manifolds. This was a field that attracted Bott and remained a dominating theme
throughout his life.

Bott’s most important work for many years centred on the application of Morse theory to
the topology of Lie groups and their homogeneous spaces. Lie groups, in particular the classical
matrix groups, which originated in the pioneering work of the Norwegian mathematician Sophus
Lie at the end of the nineteenth century, had, by the mid-twentieth century, become of central
importance. Their representation theory had been transformed by Hermann Weyl and they
were playing an important role in both differential geometry and quantum physics.

In the 1950s the time was ripe for bringing together the new fields of topology and Lie groups,
and Raoul Bott was the right man at the right time to bridge this gap. Others contributed to
the algebraic side of the story, but the link with analysis through Morse theory was due to Bott
and his Michigan collaborator Hans Samelson. It was Bott’s good fortune that, when he went to
Michigan in 1951, with his head full of new ideas, he found in Samelson a kindred spirit a little
older in years and knowledgeable about Lie groups. Between them they wrote many papers
about the topology of Lie groups and in particular about their loop spaces [3]. Fortunately the
introduction of loop spaces by J.-P. Serre in his thesis in 1951 had revolutionalized topology by
providing a systematic approach to calculating homotopy groups. Bott and Samelson mastered
Serre’s work and combined it with Morse theory in spectacular fashion.

In traditional Morse theory it was customary to assume that the critical points of a function
were isolated, since this would be the generic case. However, Bott realized that ‘in nature’
things are not generic and that critical points often arise along sub-manifolds. But, he also
realized how to incorporate such situations into the theory, and this was applied to great
effect in the study of geodesics on Lie groups. For example the closed geodesics on the group
SU(2), the three-dimensional sphere, come naturally in continuous families parametrized by
the equatorial 2-sphere. The culmination of this work of Bott and Samelson was the famous
periodicity theorems [2] discovered by Bott, but these deserve a section of their own.

d ‘T '0T02 '02T269YT

jo|//:sdny wiosy

TTT'OT/I0p/W00"AS |1

SUORIPUOD PUE SLUKB L 8L} 885 *[SZ0Z/0T/0E] U0 AR1g 1T 8UIIUO /8|1 '80UB|[B9XT 8180 PUR Ul [EaH 04 3Insu| UOIN ‘JOIN Aq £80¢

100" Ao |1mARIq RN

35US017 SUOLILLOD dAIEa1D 3|geal|dde auy Aq pausenob ae sspiie YO ‘asn Josajni Joy Ariq1auluQ A8[Im uo



OBITUARY 173

The periodicity theorems

Calculating the homotopy groups of spheres, and related spaces such as Lie groups, had
become the fundamental goal of homotopy theorists. In the early days, and by fairly crude
geometric methods, this was only possible for low dimensions. Serre’s thesis had, in principle,
provided powerful algebraic machinery for more extensive calculations, but these were tricky
and delicate. By 1955 homotopy theorists had got as far as 7w19(SU(n)), for n large, and found it
to be cyclic of order 3. In contrast, early in 1957, quite independent computations of Hirzebruch
and Borel had concluded that the order of this group was a power of 2.

Such explicit contradictions are a challenge to mathematicians and Bott felt this was right
up his street. He was sure that his methods would settle the issue and so he sat down with
his friend Arnold Shapiro and calculated over an entire weekend. By Sunday evening they had
adjudicated in favour of Borel and Hirzebruch. The homotopy theorists were wrong, reluctantly
conceded defeat and subsequently found their error. Serre, who was watching this battle
from the sidelines, remarked ‘Quel dommage’, observing, tongue-in-cheek, what a triumph
it would have been for topology to be the first subject to demonstrate the inconsistency of
mathematics!

This episode suggested to Bott that, in fact, all the high even-dimensional homotopy groups
mor(SU(n)), for n larger than k, should be zero. Further examination of the evidence then
suggested to him that the (stable) homotopy groups of all the classical groups should be
periodic, with period 2 in the unitary case and period 8 in the orthogonal and symplectic
cases. Moreover, he felt confident that his Morse theory techniques would yield a proof. By the
summer of 1957 he had found the proof, which was then published [2].

This paper was a bombshell. The results were beautiful, far-reaching and totally unexpected.
By using analysis Bott had proved results way out of reach of conventional calculations. Bott’s
reputation was made and shortly afterwards, in 1960, he moved to Harvard, where he remained
for the rest of his life.

At this stage I have to make the move from being the official writer of this memoir to
becoming an active participant in the drama. I had got to know Raoul at the Institute in
Princeton, when I went there in 1955 after my PhD. We were to go on to become lifelong
friends and collaborators, publishing no less than 13 joint papers on a wide variety of topics
and over many years. But, our substantive collaborations really took off from the periodicity
theorems, and their development into K-theory.

Among the many new topics flourishing in the 1950s, algebraic geometry was sharing the
stage with topology, again due in large part to J.-P. Serre, who had applied sheaf theory
first with Henri Cartan in analytic geometry and then in algebraic geometry. The culmination
of this work was the famous generalization of the classical Riemann—Roch theorem proved
by Friedrich Hirzebruch in December 1953. During the first of the influential ‘Arbeitstagung’
organized annually by Hirzebruch in Bonn, Alexandre Grothendieck expounded his spectacular
and beautiful generalization of the Hirzebruch theorem. This involved the introduction of
the K-groups of an algebraic variety, groups whose definition was very abstract but that
were yet simple and effective. Because I was, and remained, a regular attender at the Bonn
Arbeitstagung I absorbed Grothendieck’s K-theory and, when I heard of Bott’s periodicity
theorem, I eventually realized how to combine the two ideas. This led to ‘topological’ K-
theory, which I developed jointly with Hirzebruch and which rested in a fundamental way on
Bott’s periodicity theorem.

We needed Bott’s help at this early stage and he responded with a paper [4] written, as he
said later, ‘in fluent French’. He went on (3):

alas the French is not mine, and I am ashamed to see that there is no reference to
the kind translator. Mathematically it deals with the ‘new’ K-theoretic formulation of
the periodicity theorem. Grothendieck’s K-theory and his brilliant functorial proof of
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174 RAOUL HARRY BOTT

FIGURE 2. Raoul Bott with Michael Atiyah, Oxford 1975. (Photograph kindly provided by
Candace Bott.)

Riemann—Roch in the algebraic category had a tremendous effect on all our thinking.
Nevertheless the ideas of Atiyah and Hirzebruch, interpreting the periodicity theorems
as ‘Kunneth’ formulae in an ‘extraordinary cohomology theory’ came as a complete
surprise to me! In one swoop my special computations had become a potential tool in
all aspects of topology.

The periodicity theorem in the real case, with the period being 8, was subtler than the
complex case when the periodicity was just 2. Bott and Arnold Shapiro had realized that this
could best be understood through the structure of the Clifford algebras, which had the same
periodicity in purely algebraic form. In [5] I joined forces with Bott (Shapiro having sadly died)
to clarify the way the algebra and the topology were linked. This has since proved useful in
index theory.

The study of K-theory and its further developments, including the index theorem, were at
the centre of my subsequent collaborations with Bott, but we were so close in our mathematical
tastes that, over the years, every time we met (Figure 2), a new joint venture would start, as
will become clear in the rest of this memoir.

Index theory

In 1962-63 Isadore Singer and I were working on the index theorem for elliptic differential
operators on compact manifolds (1). This had many ramifications and was so close to Bott’s
interests that he soon joined our enterprise and played an active role in the many discussions
that took place at Harvard and the Massachusetts Institute of Technology (MIT) during my
two visits there in 1962 and 1964. He also spent the year with me in Oxford in 1965-66.
Bott’s first contribution to this area was a direct geometric verification of the index
theorem for holomorphic vector bundles over homogencous spaces [8]. This arose naturally
from his experience with Lie groups. Another key contribution was to the index problems
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OBITUARY 175

for manifolds with boundary [6], which required a deeper understanding of boundary-value
problems. As a by-product we also produced an elementary proof of the periodicity theorem
[7]. I remember planning a talk on this at MIT that was rather abstract. It was only Bott’s
insistence on searching out the essentials that, at the eleventh hour, made the talk genuinely
‘elementary’.

The first major extension of the index theorem concerned the interplay between elliptic
operators and fixed points of maps [10]. It was inspired by questions that Bott and I were asked
by G. Shimura at a conference in Woods Hole in 1964. The general formula that eventually
emerged was similar in appearance to the famous Lefschetz fixed point theorem, which relates
the number of fixed points of a map to its action on cohomology. The elliptic version is a
refinement in which the map is required to be compatible with the elliptic operator, and each
fixed point contributes not an integer but a complex number calculated from the linearized
action at the fixed point.

The fixed point case has several beautiful applications, including a derivation of the Weyl
formula for the characters of the irreducible representations of Lie groups. A very different
application established an old conjecture of Paul Smith. This asserts that if a cyclic group of
odd prime order acts on a sphere with just two fixed points, then the linear actions on the
tangent spaces at these points are isomorphic. It was this wide range of applications that made
our fixed point theorem one of Bott’s favourite results.

Bott’s final contribution in this area was to help clarify the heat-equation approach to
the index formula. Earlier algebraic computations had been very complicated and difficult
to understand. By use of classical invariant theory, Bott, V. K. Patodi and I were able to
present a conceptually simple proof [12]. Bott’s expertise in both Riemannian geometry and
invariant theory were crucial ingredients. The heat-equation proof of the index theorem has
turned out to be very productive and, in particular, established a close link with work in
theoretical physics. In subsequent years these links with physics were greatly strengthened and
lay behind much of Bott’s later work.

Equivariant cohomology

Bott’s interest in Morse theory, together with his expertise in Lie groups, made it natural
for him to be aware of the role of symmetry at critical points of functions or at fixed points
of maps. One outcome of this was the systematic exploitation of equivariant cohomology in
differential geometry.

Our joint paper [17] arose from our attempt to understand papers by Edward Witten on
Morse theory, from a physics perspective (4), and by Duistermaat and Heckman (2) on the
exactness of stationary-phase approximation. The methods were not really original but our
presentation brought several strands together and has subsequently been influential.

Another of our joint papers [15] also used equivariant cohomology but in an infinite-
dimensional context inspired by physics. The outcome was a new derivation of the cohomology
of the moduli space of vector bundles over a compact Riemann surface. This topic has been at
the centre of much activity on the frontier between physics and geometry in recent years, and
our paper has stimulated an extensive development.

Other results

My collaboration with Bott also included a digression into the question of lacunas for hyperbolic
differential equations [11], an old topic going back to Christiaan Huygens and developed by
Igor Petrovsky in the 1940s. The work of Petrovsky was difficult to follow and needed to be
updated using the new topological methods of algebraic geometry. Bott and I were introduced
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176 RAOUL HARRY BOTT

to this problem by Lars Garding, an authority on hyperbolic equations, and he essentially
‘commissioned’ us to take on the project during a visit to Oxford in 1965.

An area in which Bott’s careful approach and geometric insight paid dividends was his
discovery that when a manifold is foliated, the bundle of tangent vectors to the leaves of the
foliation cannot be an arbitrary sub-bundle of the tangent bundle but must satisfy some global
topological conditions. This fairly simple observation generated a substantial follow-up, leading
to a whole new theory.

In a somewhat related area Bott collaborated with Graeme Segal to study [13] the
cohomology of the Lie algebra of vector fields on a manifold, which had been introduced by
Israel Gelfand and D. B. Fuks. The result was to express the vector field cohomology as that of
a space naturally associated to the manifold and its tangent bundle. In a sense the outcome was
disappointing in that the Gelfand—Fuks invariants gave nothing new — they could be identified
as homotopy invariants.

A very different collaboration much earlier was that between Bott and Shing-Shen Chern [9],
who set out to generalize the classical Nevanlinna theory of meromorphic functions to higher
dimensions. A by-product of their investigation was the Bott—Chern class, which is a complex
refinement of the differential form of the Chern class. This has proved extremely useful in many
subsequent developments.

In one of Bott’s last significant papers [18], he and Clifford Taubes gave an elegant
mathematical proof of Witten’s rigidity theorem (5). This was the fruit of the exciting
interaction of recent years between geometers and physicists in which Bott took an active part.

Bott’s influence on theoretical physicists has been well described by Edward Witten:

I came to Harvard, where Raoul Bott was a professor, in the fall of 1976. This turned out
to be just the period when physicists were starting to appreciate that a lot of modern
mathematical ideas that we didn’t know much about were relevant to understanding
quantum gauge theories. Raoul did a lot to educate me and my contemporaries. He
loved explaining things and had a knack for picking out the key point that would make
a difficult subject clear. Later on, I and many other physicists learned much of our
differential topology from the book [16] by Bott and Loring Tu.

In 1979, Raoul was invited to the summer school on particle physics at Cargese, in

Corsica. He began his lecture [14] by saying that he was going to tell us about a favorite
subject of his which might be useful to us some day. The subject was Morse theory.
Quite possibly, none of the physicists in attendance had ever heard of Morse theory,
and certainly I hadn’t. However, several years later, in studying a phenomenon known
as spontaneous breaking of supersymmetry, I ran into some puzzling phenomena. At
some point, a dim recollection of Bott’s lecture sprang to mind and it became clear
that the phenomenon in question was closely related to the fact that, in Morse theory,
a critical point of a function can exist for a good topological reason. This led to my
work (4) relating supersymmetry to Morse theory.

In my paper on that subject, I tried to describe in terms of differential forms a second,
superficially similar supersymmetric construction. Unfortunately, the mathematical
setting for this second construction was not clear. In hindsight, things might have been
clearer if Bott had given another lecture in Cargese! As it was, this construction was
later put in its proper setting by Bott and Atiyah [17]. Bott went on to tutor me, and I
believe other physicists, on the basics of equivariant cohomology, which has turned out
to have numerous applications in gauge theory and topological field theory.

Students

Bott attracted a large number of talented students during his many years at Harvard. They
gravitated towards him because of his friendly, informal manner as well as his obvious passion
for beautiful mathematics. Two of his students, Stephen Smale and Daniel Quillen, went on
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OBITUARY 177

FIGURE 3. Raoul Bott lecturing at the University of Bonn, 1969. (Photo by Wolfgang Vollrath;
reproduced by courtesy of F. Hirzebruch.)

to win Fields medals, and many others had distinguished academic careers. Just before he
died he confided to me, with modest pride, that he had received a letter from a recent Nobel
laureate who told him how inspired he had been by Bott’s teaching. This was George Akerlof
(of Berkeley), who shared the Nobel Prize in Economics for 2001. He wrote:
You probably do not remember but many years ago (39 to be exact) an economics
student from MIT took your course in algebraic topology at Harvard. I was that student.
I worked very hard in it and learned a great deal. You were not just a great teacher,
but a fabulous teacher. What I learned in your course was the foundation of my whole
career.
You did not just teach the technical field of homotopy theory, but showed students
how to decompose problems into their essentials and their technical details. This, of
course, was the same skill that Solow’s papers demonstrated, and that I was learning
separately in economics at MIT.
This year I was named co-recipient of the Nobel Prize in Economics. I merely applied
to economics the common sense about mathematics that I had learned from you.
I know that you are a great mathematician. I also want to thank you for being such
a fine and caring teacher [Figure 3].

Harvard has ‘houses’, modelled on the Oxford and Cambridge colleges, and it was no surprise
to Bott’s friends when they heard that he had been appointed Master of Dunster House. He
and his wife Phyllis moved into the Master’s residence, overlooking the Charles River, and
took an enthusiastic part in student life. Some years earlier he had been approached about the
Mastership of St Catherine’s College, Oxford, where he had spent a sabbatical year and made a
great impression. He declined the somewhat unrealistic offer but subsequently (1985) became
an Honorary Fellow. In the same year he was Hardy Lecturer of the London Mathematical
Society.

Bott received many other honours and awards, including the Wolf Prize in Mathematics
(2000) and the US National Medal of Science (1987). He had honorary doctorates from Notre
Dame, McGill, Carnegie Mellon and Leicester universities. He was a Foreign Associate of both
the US National Academy of Sciences and the French Academy of Sciences. Because he was
too ill to come to London, arrangements were made so that I could admit him as a Foreign
Member of the Royal Society in California shortly before he died.
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I can think of no better way to convey something of Bott’s personality than to reproduce here

RAOUL HARRY BOTT

Memorial

the text of the address I gave in the Harvard Memorial Church on 29 January 2006.

I first met Raoul over 50 years ago at the Institute for Advanced Study in Princeton, and
it was an indication of the important part that Princeton played in his life that, despite
his illness, he came back there last March and we met again at the 75th anniversary of
the Institute.

Over those 50 years we became lifelong friends and worked together in many other
places including Harvard, Oxford and Bonn, where we joined Fritz Hirzebruch’s annual
jamboree. We travelled the world together to conferences in exotic places — India,
Mexico, China, Hungary. I recall an event in Budapest where our bus was held up by a
total traffic snarl. When time passed and the deadlock continued, Raoul took charge. He
stood in the middle of the road and with great authority acted as a policeman, skilfully
directing the traffic and unlocking the jam — that showed he was a real Hungarian!

Even as a young man Raoul exuded charm and made an immediate impression on all
he met. I remember when he was interviewed in 1964 for a Visiting Fellowship at St
Catherine’s, my Oxford College; the Master, Alan Bullock, was so attracted to him that
he felt sure Raoul would turn down the offer, so he was delighted when Raoul accepted.

In our early years together, despite the fact that he was six years older than me, we
were colleagues on the same plane. Ironically as we grew older the relationship subtly
changed and he became more of an avuncular or father-figure. I think it may have been
the beard, but in fact he just grew into his natural role as a ‘pater familias’. He had
indeed a large loving family of children and eventually grandchildren, and he had a
parallel family of students and grand-students. With his large towering frame and his
wide embrace he was really in his element as the head of these large and extended
families. I became part of this family circle, of which Phyllis was, of course, a central
figure, sharing nearly 60 years of married life with Raoul and keeping him under friendly
control with her quiet humour. It is very appropriate that a joint portrait of Raoul and
Phyllis, as co-masters, now hangs in Dunster House.

It was impossible to work with Raoul without becoming entranced by his personality.
Work became a joy to be shared rather than a burden to bear. Historians and
biographers frequently try to make a sharp distinction between the life and work of the
creative artist. No such separation makes sense for Raoul — his personality overflowed
into his work, into his relations with collaborators and students, into his lecturing style
and into his writing. Man and mathematician were happily fused.

This is not the place to describe Raoul’s mathematics, but I should say something
about the way he worked — his style. He loved to discuss mathematics and we would
spend happy hours together in front of a blackboard tossing ideas about and, at Raoul’s
insistence, doing calculations. While he liked to see the big picture, he was never happier
than when he found a good example to work on in detail. He was suspicious of hand-
waving or airy-fairy speculation. To him mathematics was a craft where the artisan
lovingly carved his handiwork in beautiful detail.

Expounding ideas simply was supremely important to him. He was a born teacher
who knew how to engage his audience, getting them involved so that they could really
understand. It is no accident that Raoul attracted so many talented students who
went on into successful careers. Unlike some great mathematicians he did not try to
intimidate his students, by exposing their ignorance. On the contrary he would descend
to their level and provide encouragement and advice to suit the individual student.
When attending a seminar he would frequently ask an elementary question, even when
he himself knew the answer, in order to help the more inhibited students in the audience.

He had great sensitivity to people and situations. I remember one occasion when
I wrote the draft introduction to a joint paper in which I referred to the ‘modest
contribution’ that each of us had made in earlier papers. He told me to remove the word
‘modest’ saying it was false modesty. He was of course quite right: genuine modesty does
not advertise itself.
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Humour and laughter was an important part of Raoul’s character. He enjoyed
recounting amusing episodes of the past, such as the time Stephen Smale got them
trapped between the rising tide and a sheer cliff, or the time when he arrived in India
without a visa but was given red carpet treatment, while on our return journey I was
incarcerated in quarantine at Cairo airport!

In any group he was always the centre of attraction — like the sun he radiated
warmth and we planets circulated around. But beneath the jollity and humour there
was a deeply serious side. On occasion Raoul would turn on you a pensive penetrating
look that seemed to see into your soul. He could see through pretensions or poses. He
was anchored to the hard core of his beliefs, even though they rarely came to the surface.
In Shakespearean terms he was part Falstaff and part Hamlet but without the extremes
of either, so that they happily coexisted.

His love of beauty in mathematics was reflected in his deep love of music. His
enjoyment of life found its counterpart in the sparkle of Mozart, while his more serious
side found its solace in the spirituality of Bach.

All of us who knew Raoul understood what a marvellous person he was, and anything
we say is inadequate. But let me give the last word to my son Robin who, as a young
teenager said, after meeting Raoul, ‘Now I know what is meant by charisma’.

Acknowledgements. Much of the material on Bott’s early life came from his own
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