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RICHARD DAGOBERT BRAUER

J. A. GREEN

Richard Dagobert Brauer, Emeritus Professor at Harvard University and one of
the foremost algebraists of this century, died on April 17, 1977, in Boston, Massachu-
setts. He had been an Honorary Member of the Society since 1963.

Richard Brauer was born on 10 February, 1901, in Berlin-Charlottenburg,
Germany; he was the youngest of three children of Max Brauer and his wife Lilly
Caroline. Max Brauer was an influential and wealthy businessman in the wholesale
leather trade, and Richard was brought up in an affluent and cultured home with his
brother Alfred and his sister Alice.

Richard Brauer's early years were happy and untroubled. He attended the
Kaiser-Friedrich-Schule in Charlottenburg from 1907 until he graduated from there
in 1918. He was already interested in science and mathematics as a young boy, an
interest which owed much to the influence of his gifted brother Alfred, who was seven
years older than Richard.

His youth saved him from service with the German army during the first World
War. He graduated from high school in September 1918, and he and his classmates
were drafted for civilian service in Berlin. Two months later the War ended, and in
February 1919 he was able to enrol at the Technische Hochschule in Berlin-Charlotten-
burg (now the Technische Universitat Berlin). The choice of a technical curriculum
had been the result of Richard's boyhood ambition to become an inventor, but he
soon realised that, in this own words, his interests were " more theoretical than
practical ", and he transferred to the University of Berlin after one term. He studied
there for a year, then spent the summer semester of 1920 at the University of Freiburg
—it was a tradition among German students to spend at least one term in a different
university—and returned that autumn to the University of Berlin, where he remained
until he took his Ph.D. degree in 1925.

The University of Berlin contained many brilliant mathematicians and physicists
in the nineteen-twenties. During his years as a student Richard Brauer attended
lectures and seminars by Bieberbach, Carath6odory, Einstein, Knopp, von Laue,
von Mises, Planck, E. Schmidt, I. Schur and G. Szego, among many others. In the
customary postscript to his doctoral dissertation [1], Brauer mentions particularly
Bieberbach, von Mises, E. Schmidt and I. Schur. There is no doubt that the
profoundest influence among these was that of Issai Schur. Schur had been a pupil
of G. Frobenius, and had gradulated at Berlin in 1901; he had been " ordentlicher
Professor " (full professor) there since 1919. His lectures on algebra and number
theory were famous for their masterly structure and polished delivery. Richard
Brauer's first published paper arose from a problem posed by Schur in a seminar
on number theory in the winter semester of 1921. Alfred Brauer also participated
in this seminar. He was less fortunate than Richard, in that his studies were seriously
interrupted by the War; he had served for four years with the army and been very
badly wounded. The Brauer brothers succeeded in solving Schur's problem in one
week, and in the same week a completely different solution was found by Heinz Hopf.
The Brauer proof was published in the book by Polya and Szego (1925; p. 137,
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318 RICHARD DAGOBERT BRAUER

pp. 347-350), and some time later the Brauers and Hopf combined and generalized
their proofs in their joint paper [2].

Richard Brauer also participated in seminars conducted by E. Schmidt and
L. Bieberbach on differential equations and integral equations—a proof which he
gave in a talk at this seminar in 1922 appears, with suitable acknowledgment, in
Bieberbach's book on differential equations (1923; p. 129). But Brauer became more
and more involved in Schur's seminar. As a participant in this, he reported on the
first part of Schur's paper " Neue Anwendungen der Integralrechnung auf Probleme
der Invariantentheorie" (1924), which shows how Hurwitz's method of group
integration can be used for the study of the linear representations of continuous
linear groups. In the second part of this work, Schur applied his method to determine
all the irreducible (continuous, finite-dimensional) representations of the real ortho-
gonal and rotation groups. He suggested to Brauer that it might also be possible to
do this in a more algebraic way. This became Brauer's doctoral thesis [1], for which
he was awarded his Ph.D. summa cum laude on March 16, 1926.

On September 17, 1925 Richard Brauer married Use Karger, a fellow-student
whom he had first met in November 1920 at Schur's lecture course on number theory.
Use Karger was the daughter of a Berlin physician. She studied experimental physics
and took her Ph.D. in 1924, but she realized during the course of her studies that she
was more interested in mathematics than in physics, and she took mathematics courses
with the idea of becoming a school-teacher. In fact she subsequently held instructor-
ships in mathematics at the Universities of Toronto and Michigan and at Brandeis
University, and she eventually became assistant professor at Boston University. The
marriage of Use and Richard Brauer was a long and very happy one. Their two sons
George Ulrich (born 1927) and Fred Giinther (born 1932) both became active research
mathematicians, and presently hold chairs at, respectively, the University of Minnesota,
Minneapolis, and the University of Wisconsin, Madison.

Brauer's first academic post was at the University of Konigsberg (now Kaliningrad),
where he was offered an assistantship by K. Knopp. He started there in the autumn
of 1925, became Privatdozent (this is the grade which confers the right to give lectures)
in 1927, and remained in Konigsberg until 1933. The mathematics department at
that time had two chairs, occupied by G. Szego and K. Reidemeister (Knopp left
soon after Brauer arrived), with W. Rogosinski, Brauer and T. Kaluza in more junior
positions. The Brauers enjoyed the friendly social life of this small department, and
Richard Brauer enjoyed the varied teaching which he was required to give. During this
time he also met mathematicians from other universities with whom he had common
interests, particularly Emmy Noether and H. Hasse.

This was the time when Brauer made his fundamental contribution to the algebraic
theory of simple algebras. In [4], he and Emmy Noether characterized Schur's
" splitting fields " of a given irreducible representation T of a given finite dimensional
algebra, in terms of the division algebra associated to T. Brauer developed in [3], [5]
and [7] a theory of central division algebras over a given perfect field, and showed in
[13] that the isomorphism classes of these algebras can be used to form a commutative
group whose properties give great insight into the structure of simple algebras. This
group became known (to its author's embarrassment!) as the " Brauer group ", and
played an essential part in the proof by Brauer, Noether and Hasse [14] of the long-
standing conjecture that every rational division algebra is cyclic over its centre.

Early in 1933 Hitler became Chancellor of the German Reich, and by the end of
March had established himself as dictator. In April the new Nazi regime began to
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RICHARD DAGOBERT BRAUER 319

implement its notorious antisemitic policies with a series of laws designed to remove
Jews from the " intellectual professions " such as the civil service, the law and teaching.
All Jewish university teachers were dismissed from their posts. Later some exemptions
were made—it is said at the request of Hindenburg, the aged and by now virtually
powerless President of the Reich—to allow those who had held posts before the
first World War, and those who had fought in that War, to retain their jobs. Richard
Brauer came into neither of these categories, and was not reinstated. It is tragically
well known that the " clemency " extended to those who were allowed to remain at
their posts was short-lived. Alfred Brauer, whose war service exempted him from
dismissal in 1933, eventually came to the United States in 1939. Their sister Alice
stayed in Germany and died in an extermination camp during the second World War.

The abrupt dismissal of Jewish intellectuals in Germany in 1933 evoked shock and
bewilderment abroad. Committees were set up and funds raised, particularly in
Great Britain and the United States, to find places for these first refugees from Nazism.
Through the agency of the Emergency Committee for the Aid of Displaced German
Scholars, which had its headquarters in New York, and with the help of the Jewish
community in Lexington, Kentucky, enough money was raised to offer Richard
Brauer a visiting professorship for one year at the University of Kentucky. He
arrived in Lexington in November 1933, speaking very little English, but already
with a reputation as one of the most promising young mathematicians of his day. His
arrival was greeted with sympathetic curiosity; the local paper reported an interview
with the newcomer, conducted through an interpreter, and recorded Brauer's first
impressions of American football. Use Brauer and the two children, who had stayed
behind in Berlin, followed three months later. The friendly welcome which the Brauers
found in Lexington, and their own adaptability, made the transition to life in the
United States an easy one.

In that same academic year 1933-34 the Institute for Advanced Study at Princeton
came into full operation. Among its first permanent professors was Hermann Weyl.
Brauer did not know Weyl personally, but had always hoped to do so from the time
when he had been writing his thesis on the rotation group; Weyl's classic papers, in
which he combined the infinitesimal methods of Lie and E. Cartan with Schur's
group integration method to determine the characters of all compact semisimple Lie
groups, appeared in 1925-26. It was therefore the fulfilment of a dream for Brauer
to be invited to spend the year 1934-35 at the Institute as Weyl's assistant. Brauer's
great admiration and respect for Weyl were returned. Many years later Weyi wrote
that working with Brauer had been the happiest experience of scientific collaboration
which he had ever had in his life. The famous joint paper on spinors [19] was written
during this year, and also Brauer's paper [21] on the Betti numbers of the classical
Lie groups. Pontrjagin had recently determined these numbers by topological means
(1935), and Brauer, in response to a question by Weyl, was able to give in a few
weeks an alternative purely algebraic treatment based on invariant theory. The
references to Brauer in Weyl's book The Classical Groups (1939) make evident the
esteem in which he held his younger colleague. Brauer collaborated with N. Jacobson,
who had been Weyl's assistant during the second half of 1933-34, in writing up notes of
Weyl's lectures on Lie groups, and of some of the seminar talks which followed. These
appeared under the title The Structure and Representation of Continuous Groups
(Princeton, 1934-1935).

The year at Princeton was very productive of new mathematical contacts for
Brauer. The Institute was already a brilliant centre for mathematics. Besides its
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320 RICHARD DAGOBERT BRAUER

permanent professors (J. W. Alexander, A. Einstein, J. von Neumann, O. Veblen
and Weyl) there were in the School of Mathematics that year four assistants and
thirty-four " workers " (i.e. visiting members). Among the latter were W. Magnuss

C. L. Siegel and O. Zariski, all of whom were to become lifelong friends of the Brauers.
Brauer's mathematical contact with Siegel was particularly close, and bore fruit later
in [52]. In addition to the mathematicians at the Institute, the mathematics faculty at
Princeton University (who were then housed in the same building) included Bochner,
Lefschetz and Wedderburn. The Brauers were also able to see Emmy Noether
regularly, because she was giving a weekly seminar at Princeton that year. Emmy
Noether was another refugee from Nazism, and held a post as visiting professor at
Bryn Mawr College, Pennsylvania, from 1933 until her death in the spring of 1935.

It was as a result of the account of him given by Emmy Noether when she visited
the University of Toronto that Brauer was offered an assistant professorship there.
He took up this post in the autumn of 1935, and was to remain in Toronto, holding
in due course positions as associate and then full professor, until 1948. At Toronto,
Brauer developed his famous modular representation theory of finite groups, which
will probably always be regarded as his most original and characteristic contribution to
mathematics. Some of the preliminaries to this theory appeared in 1935 in [18], but the
first full treatment of modular characters, decomposition numbers, Cartan invariants
and blocks was published jointly with C. J. Nesbitt in 1937 ([27]). Nesbitt was
Brauer's doctoral student at Toronto from 1935-37, and he has given this interesting
account of their collaboration. " Curiously, as thesis advisor, he did not suggest
much preparatory reading or literature search. Instead, we spent many hours exploring
examples of the representation theory ideas that were evolving in his mind. Eventually,
I pursued a few of these ideas for thesis purposes, they received some elegant polishing
by him, and later were abstracted and expanded by another great friend, Tadasi
Nakayama. Professor Brauer generously ascribed joint authorship to several papers
that came out of these discussions but my part was more that of interested auditor."

One of these joint papers with Nesbitt " On the modular characters of groups "
[34] appeared in 1941 and remained for many years the only readily available reference
for modular theory. An essential part of this theory was a new general representation
theory of algebras, initiated by Brauer and developed by him, Nesbitt and Nakayama
during this period.

Brauer's teaching contribution to mathematics at Toronto was considerable; his
lectures and seminars were well-attended, and he had several Ph.D. students apart
from Nesbitt, including R. H. Bruck, S. A. Jennings, N. S. Mendelsohn, R. G. Stanton
and R. Steinberg. Brauer was elected to the Royal Society of Canada in 1945. With
his Toronto colleagues H. S. M. Coxeter and G. de B. Robinson he was involved
in the Canadian Mathematical Congress and the founding of the Canadian Journal
of Mathematics. During his years in Canada he kept up many contacts with the
United States; he was visiting professor at the University of Wisconsin in 1941,
and a visiting member of the Institute of Advanced Study in 1942. In 1942 he also
spent some time with Emil Artin at Bloomington, Indiana. Brauer had met Artin
briefly in Hamburg, but this was their first real mathematical and personal contact.
Their discussions and correspondence over the ensuing years resulted in Brauer's
famous proof [51] of Artin's L-function conjecture, and a series of subsequent papers
relating to class-field theory, for which he received the American Mathematical
Society's Cole Prize in 1949. Artin and Brauer were to remain close friends until
Artin's death in 1962.
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RICHARD DAGOBERT BRAUER 321

By 1948 Brauer was becoming one of the leading figures on the international
mathematical scene, and it can have surprised no one when he moved back to the
United States in that year, to a chair at the University of Michigan, Ann Arbor.
Nesbitt was on the faculty there, but by then had moved into another area of
mathematics, and the few graduate courses in algebra were being taught by R. M.
Thrall, who already had considerable contact with the work of Artin, Brauer and
Nakayama. Brauer at once set about enlarging the graduate programme in algebra
and number theory, and he took on a big personal load of advanced lectures, seminars
and Ph.D. supervision. There was no National Science Foundation to support
research in those days, but many of the best international researchers were prepared
to lecture at summer schools in the United States. Michigan had always had a
particularly good and well-attended summer programme in mathematics, which was
now enhanced by the attraction of Brauer. When Brauer was not involved in such
an Ann Arbor summer, he and Use would take vacations at Estes Park, Colorado,
where there were usually other algebraists present—for example Reinhold Baer, a
former school-fellow of Brauer's in Berlin, and now at the University of Illinois
at Urbana. Michigan became one of the liveliest centres of algebra, with a remarkable
young generation—Ph.D. students of Brauer's included K. A. Fowler, W. Jenner
and D. J. Lewis; and W. Feit, J. P. Jans and J. Walter were students while Brauer was
at Michigan, although they did not take their doctorates with him. A. Rosenberg
was a post-doctoral fellow at Michigan during this time, and the junior faculty included
M. Auslander and J. McLaughlin.

About 1951 Brauer, together with his pupil K. A. Fowler, found the first group-
theoretical characterization of the simple groups LF(2, g)(g ^ 4). At nearly the same
time, M. Suzuki in Japan had proved a similar theorem for the case q = p (prime),
and later introduced important simplifications in the proof of the general case with
his method of " exceptional characters ". G. E. Wall, who was then at Manchester,
had also arrived at Brauer's theorem independently by about 1953. The final version,
a joint paper by Brauer, Suzuki and Wall [70], did not appear until 1959. This work,
together with Brauer and Fowler's paper " On groups of even order " [64], marked
the beginning of a new advance in the theory of finite groups. A few years later
W. Feit and J. Thompson made another breakthrough with their long proof (Feit,
Thompson 1963) of the old conjecture of Burnside that every non-Abelian finite
simple group has even order. Most of the great progress in the understanding and
classification of finite simple groups, which has dominated algebra in the past 25 years,
can be traced to these pioneering achievements. Brauer was to remain a leading
contributor to this progress.

The Brauers were very happy at Ann Arbor, and expected to stay there for the
rest of their lives. However in 1951 Brauer was offered a chair at Harvard University,
which he accepted. He took up this post in 1952, and stayed at Harvard until he
retired in 1971; he and Use lived at Belmont, Massachusetts until his death in 1977.

Brauer was fifty-one years old when he went to Harvard. It is a striking fact of
his career that he continued to produce original and deep research at a practically
constant rate until the end of his life. About half of the 127 publications which he has
left were written after he was fifty; the years 1964-77 produced 44 papers. The mathe-
matical atmosphere at Harvard and at the neighbouring Massachusetts Institute
of Technology was very congenial to Brauer, who had many contacts at both places.
He had an impressive catalogue of successful students at Harvard, including D. M.
Bloom, P. Fong, M. E. Harris, I. M. Isaacs, H. S. Leonard, J. H. Lindsey, D. S.
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322 RICHARD DAGOBERT BRAUER

Passman, W. F. Reynolds, L. Solomon, D. B. Wales, H. N. Ward and W. Wong—
and this list, like those which we have given of Brauer's students at Toronto and
Michigan, isfarf rom complete. Beside students, there were many visitors who came
to Harvard because Brauer was there. The Brauers were a hospitable couple, and had
always liked to entertain colleagues and students in their home. Everyone who had
contact with Brauer in his years at Harvard, whether as student, colleague or visitor,
has spoken of the great warmth and personal interest which he and Use brought
to the mathematical community in the Boston area.

The Brauers travelled abroad regularly, usually to Europe where there were old
friends. They visited the Baers in Frankfurt, after they had returned to Germany
in 1956. They regularly spent summer vacations at Pontresina in Switzerland with
C. L. Siegel, and also visited him in Gottingen—Brauer held the Gauss professorship
at the Akademie der Wissenschaften there for a semester in 1964. In 1959-60 he was
visiting professor at Nagoya University in Japan at the invitation of T. Nakayama,
whom the Brauers had known for many years. They visited England frequently
to stay with the Rogosinskis in Newcastle. Brauer was made honorary member of the
London Mathematical Society in 1963, and was Hardy Lecturer in 1971. He and
Use spent a term at Warwick in 1973, which is remembered there with great pleasure;
Brauer's paper [126] had its origin in the seminar on modular representations which
he held on this occasion. In 1972 Brauer was visiting professor at Aarhus University
in Denmark.

Early in 1969 Brauer began to suffer from myasthenia gravis, a neurological
disease which causes a selective weakening of the muscles, in his case the muscles of the
eye. Although he could still read, this partial paralysis impaired his side vision and
made him see double from beyond a certain distance. He adjusted himself with great
fortitude to this distressing condition, and managed to lead an almost normal life
in spite of it.

Brauer received many honours in the course of his life, and a list of these is given
at another place in this notice. We mention here his election to the National Academy
of Sciences in 1955, the Cole Prize of the A.M.S. in 1949 for his work on class-field
theory, and the National Medal for Scientific Merit awarded to him by the President
of the United States in 1971.

In 1976 Brauer became sufficiently ill to require hospital treatment on two
occasions—in his own words, " For the first time in my life I have seen hospital rooms
at night." He made a good recovery and continued his busy working life. But in the
middle of March 1977 he had to be rushed to hospital again. He was suffering from
aplastic anaemia, a condition in which the body no longer produces enough blood
cells, and consequently loses its natural defences against infection. He knew that
he was very ill, but did not doubt that he would recover eventually. He continued to
deal with his correspondence from his hospital bed, dictating letters to Use, who stayed
with him throughout his illness. A general sepsis led to his death on 17 April.

Richard Brauer has been one of the most consistent and effective influences in
algebra this century. His work provides an example of mathematical research and
scholarship at its best. He solved important problems which had been long out-
standing in group representation and number theory, and in the process he made
major theoretical advances which have since become incorporated into the ground-
work of algebra. We shall discuss Brauer's work in more detail later, and so mention
here only one example, the theory of linear associative algebras. This was enriched
by Brauer in two ways: first by his theory of simple algebras, which led to the paper by
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RICHARD DAGOBERT BRAUER 323

him, Noether and Hasse on rational division algebras, and which was the result of
Brauer's studies on the Schur index of a representation. His second contribution
to the theory of algebras was his analysis of the regular representations of a non-
semisimple algebra, which led to the idea of projective and injective modules, the
local (p-adic) theory of orders in a semisimple algebra, and to Nakayama's researches
on Frobenius algebras. This work was one of the by-products of Brauer's theory of
group representations over a field of finite characteristic.

The progress of this " modular " theory of group representations shows all of
Brauer's remarkable mathematical qualities at work. Frobenius and Burnside had
revolutionized the theory of finite groups in the first decade of this century, and some
of their deepest results were those obtained by the application of the new theory of
group characters. The idea of a modular theory of group representations was not
new; Dickson had already done some pioneering work in the early 1900's (Dickson
1902, 1907). Schur suggested, in lectures at Berlin, an " arithmetic " approach:
a given rational prime p generates, in the integral group ring ZG of a given finite
group G, an ideal whose prime divisors, in a suitable order containing ZG, correspond
to the types of irreducible representations of G over a field of characteristic p. But it
was Brauer who solved, one by one, the enormous technical and conceptual problems
which stood between Schur's idea and a theory which could contribute to the under-
standing of the structure of the group G. Brauer always considered that the aim of
his theory was to give information about the structure of groups; more particularly,
he used modular theory as a way of obtaining refined " local " information on the
ordinary character table of G—his beautiful theory of blocks being the principal means
to this end. His judgment was brilliantly vindicated in the event, and it is hard to
imagine any other contemporary algebraist with the superb creative and technical
resource necessary to carry through Brauer's programme.

Brauer's many students, and others who were influenced by his teaching at an
early stage in their careers, are now to be found at universities throughout the United
States and Canada. To them he transmitted a fine tradition of German algebra and
number theory which can be traced back through Schur to Frobenius and Kronecker.
Brauer's lectures were carefully prepared and undramatic; he was very concerned to
give proofs in complete detail (in contrast to the prevailing fashion), and would
sometimes go back and rephrase an argument two or three times in order to make
things clearer. Some students found this tedious, but there were others who came to
realize that Brauer had few equals as an expositor, both of mathematical ideas and
of techniques. A former student at Michigan has said of his lectures, " You had the
feeling you were seeing a magnificent structure being built before your eyes by a
master craftsman, brick by brick, stone by stone." Many people have expressed the
hope that some of Brauer's lecture courses might eventually be published.

It is not possible to separate Richard Brauer's mathematical qualities from his
personal qualities. All who knew him best were impressed by his capacity for wise
and independent judgment, his stable temperament and his patience and determination
in overcoming obstacles. He was the most unpretentious and modest of men, and
remarkably free of self-importance. He was embarrassed to find his name attached
adjectivally to some of his discoveries, and rebuked a student, gently but seriously,
for referring to " Brauer algebra classes " in the theory of simple algebras—this was
at Harvard, and the offending terminology had been standard for at least twenty
years!
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324 RICHARD DAGOBERT BRAUER

Brauer's interest in people was natural and unforced, and he treated students and
colleagues alike with the same warm friendliness. In mathematical conversations,
which he enjoyed, he was usually the listener. If his advice was sought, he took this as a
serious responsibility, and would work hard to reach a wise and objective decision.

Richard Brauer occupied an honoured position in the mathematical community,
in which the respect due to a great mathematician was only one part. He was honoured
as much by those who knew him for his deep humanity, understanding and humility;
these were the attributes of a great man.
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Honours and honorary posts held by Richard Brauer

Elected memberships of learned societies

Royal Society of Canada 1945
American Academy of Arts and Sciences 1954
National Academy of Sciences 1955
London Mathematical Society (Honorary Member) 1963
Akademie der Wissenschaften Gottingen (Corresponding Member) 1964
American Philosophical Society 1974

Prizes, etc.

Guggenheim Memorial Fellowship 1941-42
Cole Prize (American Mathematical Society) 1949
National Medal for Scientific Merit 1971

Honorary doctorates

University of Waterloo, Ontario 1968
University of Chicago 1969
University of Notre Dame, Indiana 1974
Brandeis University, Massachusetts 1975
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RICHARD DAGOBERT BRAUER 325

Presidencies of Mathematical Societies

Canadian Mathematical Congress 1957-58
American Mathematical Society 1959-60

Editorships of learned journals

Transactions of the Canadian Mathematical Congress 1943-49
American Journal of Mathematics 1944-50
Canadian Journal of Mathematics 1949-59
Duke Mathematical Journal 1951-56, 1963-69
Annals of Mathematics 1953-60
Proceedings of the Canadian Mathematical Congress 1954-57
Journal of Algebra 1964-70

Mathematical Work of Richard Brauer

This survey of Brauer's mathematical work can be no more than an outline. I
have attempted to describe those of Brauer's ideas which have had the greatest
influence on contemporary mathematics; I have made no attempt to review separately
each of his major papers.

Some of the gaps in my account can be filled by reading W. Feit's obituary article
on Brauer in the Bulletin of the American Mathematical Society.

The section on number theory is adapted from a manuscript which D. J. Lewis has
kindly given me. I should also like to thank W. Feit, M. Suzuki, J. Tate and G. E.
Wall for their valuable help.

Contents 1. Representations of continuous groups

2. Simple algebras and splitting fields

3. Modular representations

4. Number Theory

5. Simple groups

1. Representations of continuous groups

In his thesis [1], Brauer calculated the characters of the irreducible representations
of the groups D = SO(n) and D' = O(ri) (D' is the group of all real orthogonal
transformations of n variables; D the subgroup of those whose determinant is 1). By
a " representation " of a linear group F, such as D or D', is meant a continuous
homomorphism H : F -> GL(N, C), whereby each element s of F is represented by a
non-singular complex matrix or linear transformation H(s) of some finite degree N.

Schur had shown (1924 I, II, III) that his own classical treatment (1905) of the
character theory of a finite group F can be extended to a continuous linear group F
on which a finite invariant integral can be defined. Hurwitz (1897) had introduced
invariant integrals as a method of calculating polynomial invariants, and had
determined such an integral for D. Schur (1924 II) used Hurwitz's integral to give
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326 RICHARD DAGOBERT BRAUER

explicit formulae for the irreducible characters of D'. He suggested to Brauer that it
might be possible to recover these formulae by purely algebraic methods.

Any character x of D is given by the function which expresses x(s) (s an arbitrary
element of D) as polynomial in the eigenvalues of s. The terms in this polynomial can
be ordered in a " lexical " ordering. Brauer showed that the irreducible characters x
are uniquely specified by their leading terms; he proved then that these irreducible
characters y(ku...,kv) can be parameterized by integers klt...,kv satisfying
kx ^ ... ^ kv ^ 0 (in case n = 2v+l is odd), or k^ ^ ... ^ kv_x ^ \kv\ (in case
n = 2v is even).

The problem now was to find explicit expressions for the y(kl} ...,kv). Brauer
first recovered Schur's formulae for the characters of £>', which are easily expressed in
terms of the y(ku ..., kv), using an ingenious induction on n, and also a theorem of
E. Study (1897) which gives the polynomial invariants of D. Then Brauer found
analogous formulae for the y{ku ...,kv) (which had eluded Schur) by another induc-
tive argument which turns on a beautiful formula for the product of characters of D.

Brauer's inductive arguments required extensive manipulation of delicate deter-
minantal identities, which meant that the price paid, in order to avoid the analytic
element in Schur's integral method, was quite heavy. While Brauer was writing his
thesis, Hermann Weyl was working on his famous papers on the representations of
semisimple groups (Weyl 1925,1926), and he too found the formulae for the characters
for D = SO(n) (Weyl, Selecta, pp. 322, 323)—Brauer and Weyl arrived at these
formulae independently, although of course both had Schur's papers as common
starting point.

Weyl's work was a triumph for the analytic method. For any connected complex-
analytic group F, whose Lie algebra g is semisimple, he constructed via g a compact
real-analytic (i.e. Lie) subgroup Fu of F; the representation theory of r u coincides with
the analytic representation theory of F. Weyl constructed an invariant integral for
the simply-connected covering group Fu° of Fu5 and was able to use Schur's methods,
combined with E. Cartan's classification (1913) of the representations of g, to give
his famous formula (Selecta, p. 358) for the irreducible characters of Fu°. The
irreducible characters of FH can be identified with a subset of those of Fu°, since Tu

can be regarded as the factor group of Fu° by a suitable central subgroup Z.
Brauer's work on the representations of semisimple groups, like all other research

in this field since 1926, has to be seen against the background of Weyl's massive
achievement. Brauer's contribution was that he continued to press the case for purely
algebraic methods, a case to which Weyl himself was very sympathetic.

The classic joint paper [19] by Brauer and Weyl on spinors gives a beautifully
explicit algebraic realization of the " two-valued " representation A of D = SO(n)
of dimension 2V (n = 2v or 2v + l, as before), whose existence had been proved by
£. Cartan (1913). In accordance with Weyl's theory, A can also be regarded as a
genuine representation of the simply-connected covering group D° ( = Spin(n)) of
D = D°/Z, whose kernel does not contain Z (Z has order 2 for n ^ 3). The construc-
tion starts by realizing O(n) as a group of automorphisms of a certain 2"-dimensional
complex linear algebra which had first been studied by W. K. Clifford (1878), and
then uses a matrix representation of this algebra invented by Dirac in his paper (1927)
on the spin of an electron.

£. Cartan (1929) showed that the Betti number Bp(p ^ 0) of a compact semisimple
Lie group G (considered as a manifold) is equal to the dimension vp of the space of
invariant differential forms a> of order p on G. These co are determined by their
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RICHARD DAGOBERT BRAUER 327

behaviour at the identity element of G, and correspond to those elements of the pth.
exterior (alternating) power Ep = g* A ... A g* (g is the Lie algebra of G) which are
invariant under the action of G on Ep which derives from the adjoint action of G on g.
Thus the problem of finding the vp—that is of calculating the Poincare" polynomial
1+ vx t + v212 + . . . of G—reduces to a problem of algebraic invariant theory. Brauer
solved this problem for the classical groups (unitary, symplectic, orthogonal); an
outline of the proof appears in [21], and the complete proof for the unitary group is
given by Weyl in his book (1946, pp. 232-238). These Poincare* polynomials had also
been calculated by direct topological methods by Pontrjagin (1935). The other
compact groups G, corresponding to the " exceptional" simple Lie algebras, were
treated by Chevalley (1950).

[25] was Brauer's last substantial paper on continuous groups, and gives a
glimpse of a general representation theory of continuous groups, based on invariant
theory, and of a strictly " algebraic " nature. Unfortunately a promised sequel
([25, p. 858]) never appeared. Many of the ideas in [25] appeared, with generous
acknowledgment, in Weyl's book (1939).

2. Simple algebras and splitting fields

Brauer's researches on simple algebras had their origin in Schur's " arithmetic "
theory of irreducible groups of matrices. Let K be a fixed ground field, K an
algebraically closed extension of K, a n d / a positive integer. We write Rf for the ring
of all / x / matrices over a given ring or algebra R.

Let § be an irreducible subset of Kf which is also a semigroup, i.e. £) is multiplica-
tively closed and contains the identity matrix. § is said to be rationally representable
over a field L (K £ L £ K) if there exists some matrix R e GL(f, K) such that
R~i $R £ Lf. Then L certainly contains the character x of § , that is, x(H) — trace (/£)
lies in L, for all H in § . From now on we shall assume that the ground field K contains
X, and also that £j is rationally representable over some L of finite degree (L : K).
Such a field L is called a splitting field for § (or for x) over K, and the minimal degree
(L: K) of all these splitting fields is Schur's index m = mK(%>) = mK(x)- I n two papers
(1906, 1909) Schur proved the following theorems in the case K = C.

I. m divides/.

II. m divides the degree (L: K) of any splitting field L.

III. If §(m) is the semigroup of all m/-rowed matrices

(H ON

VO

then §(m) is rationally representable over K.

Schur's ideas are often expressed in terms of linear algebras. Our assumptions
imply that the iC-linear closure A = K§> of § is a finite-dimensional central simple
algebra over K (" central " or " normal " means that the centre of A contains only
the scalar multiples of the identity). A given field L (we assume always K £ L £ K
and (L : K) < oo) is a splitting field for § , if and only if it is one for A. Moreover
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328 RICHARD DAGOBERT BRAUER

Li?) is isomorphic to L ®KA, which is a simple algebra over L, and it follows easily
that L is a splitting field for A if and only if

L ®K A = Lf.

This condition depends only on the abstract structure of A as algebra over K;
accordingly L can be described as a splitting field for this abstract algebra.
Wedderburn's structure theorem (1907) says that A = Dt, where t ^ 1 is an integer,
and D is a central division algebra (algebras are now assumed to be over K), which is
determined up to isomorphism by A. The splitting fields for A are the same as those
for D, therefore these fields are characteristic of the algebra class [A] of A; two central
simple algebras A, B are put into the same class if they determine isomorphic division
algebras.

In the late 1920's Brauer and Emmy Noether, working independently and using
quite different methods, showed that Schur's theorems hold in arbitrary charac-
teristic; moreover if A has Schur index m, then dimK D = m2, and the splitting fields
L of degree (L : K) = m coincide, up to isomorphism, with the maximal subfields of
D. After Brauer and Noether had become aware of each other's work, Brauer was able
to improve this last theorem to

IV. Every splitting field of degree mr (see II) is isomorphic to a maximal subfield
of Dr. Conversely, every maximal subfield L of Dr is a splitting field, and (L: K) = ms
for some divisor s of r.

Brauer proved IV under the assumption that K was perfect; Noether was later able
to remove this restriction. They announced this and other common discoveries in
[4, (1927)]. Noether's proofs used her new structure theory of algebras (1929, 1933),
and were based on the systematic use of representation modules. Brauer's proofs
appeared in three papers ([3, (1926)], [5, (1928)], [7, (1929)]). They were based on his
theory of factor-sets of separable field extensions.

Suppose L = K(6) is separable over K, and that {9a}a = 1> ...)P are the conjugates
of 9 over K. To each central simple algebra A which has L as splitting field, Brauer
associated a factor-set (caPy)a< fit y> =1> ...>r, whose values caPy are non-zero elements of
the normal closure of L over K. The caPy satisfy certain " cocycle " conditions (of
course, the cohomological language was not used until much later), and the set of all
such "cocycles", taken modulo suitable " coboundaries", forms a multiplicative
group which we will denote HL{K). The main theme in [3, 5, 7] is that the
correspondence A -> (ca/?y) induces an isomorphism BL(K) £ HL(K); here B{K) is
the " Brauer group ", whose elements are the classes [A] of all central simple algebras
A over K, multiplied by the rule [A] [B] = [A ®K B], and BL(K) is the subgroup
consisting of those [A] for which L is a splitting field. The unit element of B(K) is
[K], the class of all A which are isomorphic to some Kf(f ^ 1). The group B(K)
did not appear explicitly until [13], which was concerned with Noether's non-
commutative Galois theory (1933). But the results in the early papers [3, 5, 7] are
proved by using the interplay between an algebra A and its factor sets. We mention
here only one such theorem. The exponent I of A can be regarded as the order of [A]
as element of B(K). Schur's theorem III can be read as [A]m = 1, hence / divides m.
In [3], Brauer showed that every prime divisor of m also divides I, by an argument
which appeared later in the famous joint paper with Hasse and Noether [14] on
central division algebras over an algebraic number field.
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RICHARD DAGOBERT BRAUER 329

At the heart of Brauer's theory is a construction [5, 7] which shows how to make
a central simple algebra A, with L as splitting field and having a prescribed factor-set
(cafiy)- When L is a Galois (= normal and separable) extension of K, the algebra A
reduces to a crossed-product algebra (= verschranktes Produkt; this term is due to
Noether), and the factor-set (caPy) reduces to a Noether factor-set (rs> T) indexed by the
elements S, T of the Galois group G = Gal (L/K) ([15]; see also the excellent account
of the Noether and Brauer theories in van der Waerden (1937)). Each factor-set
(rs, T) determines a group-extension of G by the multiplicative group L* of L, and
HL(K) can be identified with the usual cohomology group H2(G, L*). But if it happens
that all the rs> T are roots of unity, then one can make a. finite group extension G^ of G
by the cyclic group generated by the rSt T. The study of these finite extensions led
Brauer to some of his deepest work on the structure of division algebras ([15], [50]).
Brauer's isomorphism H2(G,L*) ^ BL(K), together with Hilbert's "theorem 9 0 "
(whose cohomological formulation is Hl(G, L*) = 0), has formed the basis of Galois
cohomology, which has had a great influence in number theory—particularly through
Tate's work on class-field theory (Tate, see Cassels and Frohlich 1967)—and, more
recently, in the theory of commutative rings. Azuyama (1951) and Auslander and
Goldman (1960) defined a Brauer group B(R) for an arbitrary commutative ring R;
Auslander and Goldman gave a generalized version of the isomorphism
H2(G, L*) £ BL(K). A great deal of further generalization has followed—see
particularly Chase, Harrison and Rosenberg (1965), and for recent literature, see the
proceedings of a conference on Brauer groups held in 1975 at Evanston (Lecture Notes
in Mathematics no. 549, Springer, Berlin 1976).

Schur's original problem had been to calculate the Schur index mK(x), over a field
K of characteristic zero, of a given irreducible character % of a given finite group G. A
related problem was to find splitting fields for G, that is, fields K such that mK(x) = 1
for all irreducible characters x of G. In [47] Brauer verified a long-standing conjecture
by proving

V. Let e be a primitive |G|th root of unity, where \G\ is the order of G. Then
Q(e) is a splitting field for G.

The proof in [47] used modular characters. A quite different proof, and some
sharper versions of V, resulted in [53] from the application of Brauer's " induction
theorem "—we shall describe this below. Using the same ideas, Brauer gave in [60]
a profound reduction of Schur's index problem: he showed that all the Schur indices
for a given finite group G can be found, if the same can be done for all the " hyper-
elementary " subgroups if of G. A group H is hyper-elementary if, for some prime p,
there is a cyclic normal subgroup Ho of H such that H/Ho is a p-group.

Brauer first proved his induction theorem in his famous paper [51] on Artin's
L-series (see p. 331). In [62] he proved the " characterization of characters", and
showed that this was equivalent to the induction theorem. Roquette (1952) gave a
proof much simpler than those in [51] and [62], and this was further simplified by
Brauer and Tate [63] to give the elegant proof which is now standard. None of these
proofs uses modular methods, but they are all based on the idea of induction from
elementary subgroups of G, and this idea appeared in Brauer's earliest paper [18]
on modular representations. A finite group E is called elementary if E = A x B, where
A is cyclic, and B is a p-group for some prime p. We write R(G) for the set of all
"generalized characters" of G, i.e. integral combinations zxXi + •••Z

SXS °f t n e

irreducible characters xx, . . . , / s of G.
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330 RICHARD DAGOBERT BRAUER

Brauer's Induction Theorem. Every character ^ of G can be written as a linear
combination % = ^ c , - ^ * , where each ct is an integer and ifr* is the character of G
induced from a linear character t/̂  of some elementary subgroup Ev of G.

The Characterization of Characters. Let 6 be a complex-valued class-function
on G. Then 0 lies in R(G) if and only if the restriction Q\E lies in R(E) for every elemen-
tary subgroup E of C.

These must be the most widely-quoted of all Brauer's theorems. He applied them
himself to class-field theory, to the theory of Schur indices (as we have seen) and to
modular and ordinary character theory. Of the many generalizations and applications
made by others, we might mention particularly Swan's induction theorems for integral
representations (1960), and Atiyah's paper (1961) on the connection between R(G)
and the integral cohomology of G. Serre (1971) gives a very good discussion of the
induction theorem and of its application to character theory.

3. Modular representations

As early as 1902, L. E. Dickson showed that Frobenius's theory (1896) of characters
of a finite group G holds in an algebraically closed field k of prime characteristic p,
provided p does not divide the order \G\ of G. In later papers Dickson (1907a, b)
considered the case where p divides |G|. In this case the group-algebra A = kG is not
semisimple. A representation F : G -> GL(n, k) is in general not completely reducible,
and is very imperfectly described by its natural character XF(= trace F). Dickson
found some interesting facts about such " modular " representations, but they did
not amount to a general theory.

The subject lay dormant until the middle 1930's, when Brauer laid the foundations
of his modular representation theory in three fundamental papers [18], [27], [28];
the two last were written jointly with C. Nesbitt. [27], a short memoir published by
the University of Toronto Press, contains in 21 pages all the main ingredients of the
mature theory; the proofs are complete, except for some important theorems on the
regular representations of algebras which were announced in [28] and proved by
Nesbitt in his thesis (Nesbitt 1938). Nakayama (1938) gave alternative proofs for
some of the theorems in [27] and [28]. Subsequent accounts of modular theory
appeared in [34], [65] and [73].

Let Go denote the set of all p'-elements of G (i.e. elements whose order is prime to
p). A conjugacy class of G is called a p'-class (or p-regular class) if it lies in Go. The
" modular character " $ f of a representation F : G -*• GL(n, k) (since known as the
"Brauer character") is a complex-valued class-function on Go—it is a kind of
"complexified" version of the natural trace function %F. It was defined in [27]. If
Fu...,Ft is a full set of irreducible modular representations, their Brauer
characters 0 l 5 . . . , <f)l are linearly independent. For any modular representation F,
one has <f)F = £ n{(F) <£,-, where n^F) is the multiplicity with which Ft appears as a
composition factor in F. This was used in [27] to prove

I. The number / of irreducible modular representations Ft of G, is equal to the
number of jp'-classes of G.

Brauer had already proved this beautiful theorem in [18] in a different way. For
a third proof, see [65].

The most important and useful feature of modular theory is that it relates
" ordinary " (characteristic zero) representations to modular ones. Let K be a field
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RICHARD DAGOBERT BRAUER 331

of characteristic zero, which is a splitting field for G. Let R be a subring of K having K
as quotient; we assume that R is a principal ideal domain, and that it has a prime ideal
p containing p. Identify R = R/ip with a subfield of k. Any ordinary character x of
G can be realized by a representation X: g -*• X(g) by matrices X(g) all of whose
coefficients lie in R. Taking these mod p, we get a modular representation
X : g -> AXg) of G. The equivalence class of X is not uniquely determined by x, but
its Brauer character is, and in a very simple way: 0 y is just the restriction to Go of / .
Therefore there hold equations

xM = £ d.itfite) (ff = 1, - , « ; ^ G o ) (1)
« = i

with non-negative integer coefficients dai. The dai are the decomposition numbers for G
with respect to p.

{Fl,...,Fl} can be put into natural bijective correspondence with a full set
{Vu ...,(/,} of inequivalent indecomposable summands of the regular representation
of A = kG—this follows from one of the " new wave " of theorems on algebras
announced in [28]. If ^ is the Brauer character of Ui we have

6 = Z cu<l>j 0 = 1,...,/), (2)
.»• = i

where the c{i = «,(£/;) are the Cartan invariants for kG. Cartan invariants are
defined for any algebra A (Cartan 1898), but in case A = kG they are related to the
decomposition numbers by

cu= i.d9ld9j (i,j=l,...,l). (3)

Formula (3) was proved in [27] using a determinant of Frobenius. Nakayama (1938)
and Brauer [31] gave another proof, based on the fact that if K is a complete discrete
valuation ring and R its ring of valuation integers, then each Ui can be " lifted "
to a representation t?f over R. Ut has an ordinary character, rji say, whose restriction
to Go is £;. It can be proved that

m = i , d a i x a (i = l , . . . , / ) , (4)
(7 = 1

and then (3) follows by applying (1) and (2).
Modular character relations for the (/»,• and tji can be found by applying

Frobenius's ordinary character relations to these formulae (l)-(4). They have striking
consequences, for example that ^(1) = dim Ut is divisible by the order pa of a Sylow
^-subgroup of G, and n^g) = 0 for any g in G — Go. Another consequence is that the
Cartan matrix C = (c,7) is non-singular ([27], [34]). Brauer proved in [33] a much
deeper theorem, namely

II. det C is a power of p.

This theorem was important in later applications of modular theory. A relatively ele-
mentary proof, based on the characterization of characters (see p. 327) appeared in [62].

In [32] Brauer announced the first applications of modular theory to the structure
of finite groups. The main theorem was

III. Let G be a finite subgroup of GL(n, C) whose order is divisible by a prime p,
but not by p2. If n < \{jp— 1), then G has a normal Sylow p-subgroup.
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332 RICHARD DAGOBERT BRAUER

(Feit and Thompson (1961) removed the restriction/)2^ |G|; however their proof
still required III.) The proof of III was extremely original. It appeared in [40], at the
end of a series of papers [37], [38], [39] which set out some fundamental new theory
and techniques for group characters. In this work modular theory is used mainly to
give information about ordinary characters: the objective is usually to apply some
version of the elementary criterion of Frobenius, that an element g ( # 1) of a finite
group G lies in a proper normal subgroup of G, if Xff(l) = /CT(g) for some xA^ ^G)- Kg
is a p'-element, formulae (1) hold out some hope of calculating xAg) if the irreducible
modular characters (pi of G are known. Unfortunately it is usually much harder to
find the </>,- than to find the /„ , but Brauer changed the situation by extending formulae
(1), so that they applied to all elements g of G. Every g in G has a unique expression
g — nv = vn, where v is ap'-element, and n is ap-element of G (i.e. the order of n is a
power of p). Fix n, and let {0/n)} be the irreducible modular characters of the
centralizer CG(n) of n. It was shown in [37] that there hold equations

Z.faO = XdJ'WHv) (a = 1, ..., s; veCG(n)0). (5)
i

The generalized decomposition numbers daf
n) are certain algebraic integers, independent

of v. In case n = 1, daf
a) = dai and (5) reduce to (1). Formulae (5) give a chance of

calculating xa(s) when g = nv is " ^-singular ", for then n # 1 and CG(n) may be a
subgroup of G whose modular theory is accessible. Information about the da/

n) comes
from formulae which generalize (3). But to extract precise results from this method
Brauer had to use the theory of blocks.

Blocks were defined in [27], and their study occupies a large part of Brauer's works.
After he had used block theory to prove theorems such as III, Brauer continued for
the rest of his life to develop both theory and applications in numerous papers—we
might mention for example a series which appeared in the Journal of Algebra [85],
[86], [92], [112], [121]. Blocks are most easily defined by taking a decomposition
1 = e1 + ...+et of 1 into primitive idempotents ex of the centre Z(kG) of kG. This
can be "lifted", uniquely, to a similar decomposition 1 = ^ 1 + ... + ,̂ in Z(RG).
We say that an ordinary (or modular) irreducible character ^ of G belongs to the
p-block Bx ofG, if 2t (or ex) is not represented by zero in a representation corresponding
to if/. By this rule both the sets {/l5 ..., /s} and {4>x, ...,0,} are partitioned among the
/ ( p - ) blocks Blt ...,Bt of G.

With each block Bx is associated a conjugacy class of p-subgroups of G called the
defect groups of Bx ([48]). If pd is the order of a defect group, d is the defect of Bx.
The advantage of working within a given block Bx, is that the number sx of ordinary
irreducible characters in Bx is bounded, by a bound depending only on pd. Brauer
gave one such bound in [49], and later he and Feit [72] proved

IV. sx^ip2d + l.

A conjecture sx ^ jpd([49]) is still unresolved, except for small d.
Let D be a fixed p-subgroup of G, and H a subgroup of G such that

D.CG(D) < H < NG(D). For each block b of H can be defined a block B = bG of G
(this is rather like the construction of an induced character). The "first main
theorem " of block theory is as follows.

V. b -> bG defines a bijective map between the set of all blocks b of H = NG(D)
which have defect group D, and the set of all blocks B of G which have defect group D.

This was announced in [43], [48]; the proof appeared (10 years later) in [65]
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RICHARD DAGOBERT BRAUER 333

(see also Osima (1955)). The "second main theorem" (below) was announced in
[49]; the proof appeared (this time after 13 years!) in [73]. Later Nagao (1963) gave a
simpler proof.

VI. Suppose that xa belongs to a block B of G. Then the decomposition numbers
djn) in (5) are zero, except for those 0/n ) which belong to blocks b of H = CG{n) for
which bG = B.

Brauer was sometimes able to amass an astonishing amount of detailed facts
about the ordinary characters in a block B of G, given only very scanty information
about B, such as the structure of a defect group D, and perhaps also the structure of
NG(D), CG(D). The best case, not surprisingly, was where D had order p. This was
treated in the key paper [38] (in which the famous " Brauer tree" made its
appearance). Dade (1966) generalized this to the case of an arbitrary cyclic defect
group. [39] is a rich mine of techniques, based on the results of [38], for calculating
characters of a group G which has a Sylow subgroup of order p — these techniques
are much used in constructing character tables. Perhaps the most beautiful
application involving a non-cyclic defect group, is the proof in [86] of the theorem
below. This theorem was first announced by Brauer and Suzuki in [74]; Glauberman
subsequently (1974) gave a proof not using modular theory.

VII. Let G be a finite group with O2-(G) = 1, whose Sylow 2-subgroups are
quaternion groups. Then the centre of G has order 2.

4. Number Theory^

The most significant contribution of Brauer to number theory was his work on the
Artin L-functions and the consequences which followed. Heilbronn always held this
to be a magnificent monumental piece of work, which clearly demonstrated the need
of number theorists to be aware of the developments in modern algebra and to be
prepared to use them.

Papers [51], [52], [58], [59], [66], [119] are concerned with Artin L-functions,
Dirichlet L-functions, zeta-functions and related matters. Let K be a Galois
extension of an algebraic number field F. Let M be a complex matrix representation
of the Galois group G of K over F, and let x be the character of M. Let[(K/F)//i]
denote the Frobenius automorphism associated with an unramified prime /t of K, and
let p be the prime of F under ft. The Artin L-series is defined as follows

L(s, x, K/F) = U

(The product is over all primes p of F; the factors on the right require suitable
interpretation for ramified p.) Artin (1924, 1931) had proved the following facts.

I. If x is a linear combination ]T) cv<f>v of characters </>v with rational coefficients
cv, then L(s,x,K/F) = YlL(s,<f)v,K/Fyv. Moreover every character # of G is
expressible as a rational combination of characters <j)v which are induced by cyclic
subgroups of G (this latter fact is "Artin's induction theorem ").

II. Let Q be a subfield of K containing F, and let H be the subgroup of G fixing fi.

t This section is based on a manuscript by D. J. Lewis; I have also incorporated some
remarks by J. Tate.
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334 RICHARD DAGOBERT BRAUER

If i// is a character on H and \j/* the corresponding induced character of G, then

III. If JV is the kernel of the representation M which affords the character x,
and if O is the subfield of K fixed by N, then L(s, #, K/F) = L(s, %, Q>/F), where on
the right we view % as a character of G/N.

IV. If X is abelian over F and if x is an irreducible character, then L(s, x, K/F)
coincides with some Dirichlet L-series of K/F. It follows from results of Hecke that in
this case L(s,x,K/F) is a meromorphic function satisfying a certain functional
equation.

It followed immediately from I, II and IV that for any x> a n d whether the
extension K/F is abelian or not, L(s, x, K/F) can be continued analytically over the
whole complex plane and that a suitable integral power L(s, x, K/F)m is meromorphic.
Moreover L(s, x, K/F) again satisfies a functional equation, as in IV. But since m
could be greater than 1, this does not show that L(s,x,K/F) is single-valued.
Artin's conjecture that L(s,x, K/F) is in fact single-valued was proved by Brauer in
[51]. Brauer's proof was an immediate consequence of his induction theorem (see
p. 327).

Brauer's proof of this conjecture of Artin represented a decisive step forward in the
generalization of class-field theory to non-abelian fields—one of the most difficult
problems and certainly one of great importance in modern number theory. At the
Princeton Bicentennial Conference in 1946, after Brauer had given an exposition of his
result, Artin stated " My own belief is that we know already—though no one will
believe me—that whatever can be said about non-abelian class field theory follows
from what we know now, since it depends on the behaviour of the broad field over
the intermediate fields, and there are sufficiently many abelian cases. Our difficulty is
not in the proofs, but in learning what to prove." Despite this guarded optimism,
progress along these lines has not been great. Today most efforts relative to non-
abelian class field theory are via automorphic functions, as represented by the work
of Langlands, Shimura and Weil. Put simply, what they try to do is to show that
Artin (and other) L-functions are Mellin transforms of automorphic forms.

In [52] Brauer used his induction theorem, along with earlier techniques of Artin,
to give a new proof of the following theorem of Aramata (1933).

V. If K is a finite normal extension of an algebraic number field k, then
£(s, K)/£(s, k) is an entire function.

This enabled him to prove the following conjecture of Siegel:

VI. Consider all algebraic number fields of a fixed degree n. If k is such a field,
let d be its discriminant, h its class number, and R its regulator. Then

log (hR)~ log V(M) as \d\-*co. (*)
In [58], Brauer showed that (*) holds for every sequence of normal fields over Q
for which n/log \d\ -* oo. (Note, here n — (k : Q) is no longer fixed.) In 1949 Brauer
received the American Mathematical Society's Cole Prize for his work on Artin
L-functions, specifically for papers [51] and [52]. In [59] Brauer used the results
of [51] to get relations between the class number of an algebraic number field and the
class numbers of its subfields. In [66], in collaboration with N. C. Ankeny and
S. Chowla, he used the results of [51] to show that there exist infinitely many number

 14692120, 1978, 3, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s/10.3.317 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [30/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



RICHARD DAGOBERT BRAUER 335

fields K such that h{K) > \d{K)\*~\ Landau (1918) had shown that h(K) < c\d(K)\i+e

for all K, and Brauer's result shows this bound to be quite sharp.
There are five other papers which are number theoretic: [2], [17], [20], [45], and

[87]. [2] (with A. Brauer and H. Hopf) and [20] (with A. Brauer) deal with a
problem on irreducibility of polynomials suggested by Schur. Paper [17] concerns
the Klein form problem for a finite group of linear transformations or collineations.
Brauer related this to his theory of factor-sets for simple algebras. Paper [87] is
concerned with positive definite quadratic forms Q = £ ctj xt Xj with integral
coefficients c{i, particularly those where (c,7) is the Cartan matrix of a p-block B of a
finite group (see p. 329). Brauer showed that if B has defect d, then there is an
equivalent form Q* to Q, whose coefficients gtj satisfy |g,7| < (f)p2d~!p2d.

In [45] Brauer considers a system of homogeneous equations

/ , ( * ! , . . . , * • ) = <> ( Z = l , . . . , / * ) , ( 1 )

of degrees ru ..., rh, over a field K. Generally, such a system will not have a non-
trivial solution in X, but if « > /lit will have such a solution in some finite extension
L of K. One question is whether L can be a soluble extension of K of not too large a
degree. As Brauer indicated the answer is yes, if n exceeds some constant
depending on the /> The actual theorem proved in full detail in [45] is

VII. Assume that K has the property

(D) For every integer r > 0, there exists an integer \]/(r) such that for n ^ ij/(r) every
equation ax xt

r +... + an xn
r = 0 with coefficients at in K has a non-trivial solution in K.

Then there is a function Q(rx, ...,rh,m) such that if n ^ Cl(ru ...,rh,m) every
system (1) has an /^-dimensional linear manifold of solutions defined over K.

Since p-adic fields Kp have property (D), it follows that a projective algebraic variety
defined over Kp, lying in an ambient space of dimension n, has a Xp-rational point
provided n is sufficiently large compared to the degree of the variety.

Paper [45] motivated much work in the ensuing two decades by Birch, Davenport,
Lewis and their students on rational points on algebraic varieties in large ambient
spaces. Of particular importance in early work in this area was the diagonalization
process, although that was later subsumed in statements on geometric obstructions.
Perhaps the prettiest result along these lines was the paper by B. J. Birch (1957),
where he used the diagonalization technique to show that a system of forms of odd
degrees over Q in sufficiently many variables is also soluble in <Q>.

5. Simple Groups

In 1954, at the International Congress of Mathematicians in Amsterdam, Brauer
announced ([68]) some results which he had obtained with K. A. Fowler ([64]) on the
structure of finite groups of even order, and proposed a programme which has had a
great influence on the study of finite simple groups.

The underlying idea was surprisingly elementary. If G is a finite group of even
order \G\, and if Kx, ...,Kk are its conjugacy classes, then some of theses classes Kt

consist of involutions, i.e. elements of order 2. Let M be the union of these classes of
involutions. Let [5] denote the sum, in the complex group algebra CG, of the elements
of a given subset S of G; thus [XJ , . . . , [Kk] form a basis of the centre of CG. We have
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336 RICHARD DAGOBERT BRAUER

an equation

[M]2 = S ct[Kt], (1)
1 = 1

where the ct are non-negative integers—in fact, ct is the number of pairs (x, y) of
elements x, y of M, such that xy equals a given element gt of K(. Because the group
generated by two involutions x, y is very easily described (it is a dihedral group), it
is possible to give upper bounds for ct in terms of the centralizer CG(g,) of gt in G.
Applying these estimates to (1), Brauer and Fowler proved among other things the
theorem

I. Let G be a simple group of even order, and let x be an involution in G. Then
G has a proper subgroup of index <£«(« +1), where n = \CG(x)\. Hence

This implies that there is only a finite number of isomorphism types of simple
groups G which contain an involution x such that CG(x) is isomorphic to a given
abstract group H. This gives encouragement for Brauer's programme: given a group H
with an involution x in its centre, to find all groups G (particularly simple ones)
containing H as a subgroup, such that H = CG(x). The natural choice for H is to take
the centralizer of an involution in some known simple group. This programme, with
its variants, has been enormously successful. It has led to papers by dozens of authors
giving characterizations of known simple groups, and it has led to the discovery
of new simple groups. After Feit and Thompson (1963) had proved that every group
of odd order is soluble, it was known that Brauer's ideas were available for all
non-abelian simple groups. The tremendous progress in finite group theory in the
past 25 years, which has brought within sight the classification of all finite simple
groups, owes a great deal to the techniques which Brauer developed for the study of
groups through their involutions.

Many of these techniques were first published in a joint paper with Suzuki and
Wall [70], which contains the proof of the following theorem (first'announced in [68]).

II. Let G be a finite group of even order, with G = G', and satisfying the condition
(C) If A, B are two cyclic subgroups of G of even order, and if An B ^ {1}, then there
exists a cyclic subgroup Z of G which contains both A and B.

Then G ^ PSL(2, q) for some prime-power q ^ 4.

The proof starts by showing that the Sylow 2-subgroups of G must be either (A)
dihedral, or (B) elementary abelian; the same general methods apply in both cases,
but the details are easier in case (B). The next step is to assemble information about
the centralizer H of an involution in G, and about the conjugacy classes of G
which meet H. Suzuki's powerful method of " exceptional characters " gives the
values, at all elements of H except 1, of the irreducible characters Xi> •••>& of G; it
also gives congruences for the degrees fa = ^ (1 ) . The " class relation " (1) is now
used in several ways: first to calculate the/ff exactly; then, in conjuction with a classical
formula which expresses the coefficients c{ in terms of the xa, it gives the value of \G\.
A similar procedure also gives the orders of the centralizers of elements which are not
conjugate to elements of if. A study of these centralizers reveals that G has a subgroup
JV of index q +1 (q a prime power which is odd in case (A), and even in case (B)).
Finally a theorem of Zassenhaus (1936) is used to identify the action of G as
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RICHARD DAGOBERT BRA.UER 337

permutation group on the cosets of N, with the action of PSL(2,q) on the
projective line of q +1 elements. The proof in [70] makes no use of modular
methods, although in many other applications the involution techniques are combined
with block theory—a beautiful example is the proof in [86] of the Brauer-Suzuki
theorem which we have already mentioned in section 3 (VII), p 330.

It is worth saying something about the history of this important paper [70]|. In
his thesis M. Suzuki (1951) had characterized the groups PSL(2, p) (p prime) in
terms of their subgroup structure, using a method which he later developed into the
method of " exceptional characters ". Suzuki conjectured II., and gave a proof for
case (B); he sent his results to Brauer, asking for his comments. In his reply (dated
April 1951) Brauer, while warmly encouraging Suzuki to publish his work, said that
he already had a proof of II., and enclosed some notes. This proof was long, and
used the block theory of groups with dihedral Sylow 2-subgroups. Brauer also
explained that K. A. Fowler had a characterization of the groups PSL (2,2°) (i.e.
case (B)) which was intended for his Ph.D. thesis. As soon as Suzuki had read Brauer's
manuscript, he saw how to make his own (non-modular) methods work in the
general case, and he then had a proof of II. very close to that in [70].

At about the same time, and quite independently of both Brauer and Suzuki, G. E.
Wall found another characterization of the PSL (2, 2°), closely related to that given
by II. (case (B)). Wall started from a paper by Ridei (1950) which used the
"involution counting" method to characterize the alternating group A5. He
combined this method with his own arguments using characters, to produce a proof
very similar to that of case (B) in [70]. Wall submitted this for publication by the
London Mathematical Society in May 1952. By an unfortunate error of
judgment, the paper was rejected. Wall continued nevertheless to work on
generalizations of this theorem. He became aware of Brauer's interest in these
questions through a footnote in Suzuki's 1951 paper, and he sent Brauer (in 1953 or
1954) an account of a theorem, rather more general than II., which included a
characterization of the groups PGL (2, q) (q odd). Brauer acknowledged in his 1954
Congress lecture [68] the independent work of Suzuki and Wall. There followed a
long delay—probably due to nothing more significant than that Brauer was very
busy with other things—and [70] appeared finally in 1959.

We shall not attempt a survey of Brauer's long and productive " late period "
from 1960-1977. He produced many important results on simple groups during this
time, and introduced deep and subtle refinements to his modular methods. W. Feit
(1978) has given an account of some of these papers, and we would refer the reader to
his article.
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