OBITUARY

JOHN CHARLES BURKILL

John Charles Burkill, born on 1 February 1900, was the only child of Hugh
Roberson Burkill (1867-1951) and Bertha (née Bourne, 1866—1937). His father came
from a family which had farmed in Lincolnshire for generations, whereas his mother
came from a background of prosperous farming and building. On neither side was
there a strong academic tradition, but Charles was soon to show evidence of
intellectual distinction by winning a scholarship to St Paul’s school at the age of 14.
There he profited fully from the excellent teaching that the school offered and which
was reflected not only by his mathematical prowess, which led to a scholarship to
Trinity College, Cambridge, in 1918, but also in his ability in classical studies in which
he maintained a lifelong interest. He was also a formidable chess player, and had a
mischievous sense of humour which he retained, albeit in a more restrained mode, in
later life. A striking example of his grasp of the essence of a practical joke is recorded
in the story of how, as a boy on a visit to a house-proud aunt, he saw the comic
potential of a trail of corn from the chicken run through the front door and upstairs
to the bedrooms.

On leaving school in 1918, he joined the Royal Enginecers (RE), but was
demobilized soon after being commissioned as second lieutenant. However, this early
military training was of service in 1939 when he joined the Cambridge University
OTC as a second lieutenant and came to command the RE unit with the rank of
major. He went up to Trinity in 1919, and stayed on successively as scholar, research
student and Smith’s Prizeman and fellow until 1924, when he was appointed at an
unusually early age to the chair of pure mathematics at Liverpool.

Burkill returned to Cambridge in 1929 to take up a university lectureship and a
fellowship, not at his old college but at Peterhouse; and there he stayed for the rest
of his life, giving an example of loyalty and devotion to an institution and its people
that would be difficult to match. His value and potential as a member of the governing
body of the college were soon recognized by his early appointment as a tutor, an office
which he held for a large part of his time at Peterhouse, including the war years when,
in the absence on leave of the Master, he and a very small group of fellows ensured
that the college not only survived but remained a centre of intellectual distinction and
sound teaching.

College life was not easy in the years immediately after the war, and Burkill did
not retire from the tutorship until 1948, and even served again in 1952 as acting Senior
Tutor. His research had inevitably been hampered by a heavy administrative and
teaching load, but his release from some of these responsibilities gave him more time,
and this is reflected by his substantial output of papers at the time. He was awarded
an Adams Prize in 1949, elected a Fellow of the Royal Society in 1953, and served on
its Council from 1959 to 1961. He was made Emeritus Reader in Mathematical
Analysis on his retirement.
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86 JOHN CHARLES BURKILL

In 1968 it was greatly to the advantage of the college that an amendment to its
statutes made it possible for him to be elected Master beyond the normal age of
retirement, and he served the college in this capacity until 1973. It was at the time of
his election that active student dissatisfaction became a significant element in
university affairs, and one of Burkill’s many services to the college was to handle this
in such a way that there was neither lasting dissension nor the imposition of statutory
and bureaucratic involvement of students in all aspects of college government.
Another distinctive feature of his mastership was his positive support for the
development of graduate studies and research by increasing the number of fellows
and graduate students, and this was achieved without weakening the high standards
of teaching and pastoral care which he had fostered as tutor. His term as Master was
followed by his appointment as editor of the Mathematical Proceedings of the
Cambridge Philosophical Society, and the journal’s high standing when he left it was
a tribute to his achievement in an exacting task, which few scholars of his age were
willing to contemplate. This work was indeed a sign of his sense of duty and integrity
in everything he did, including his fastidious concern for accuracy and economy in the
use of words. In respect of the spoken word, this economy became something of a
legend. Taciturn is not a sufficiently friendly word to describe his conversational style,
because it contained no hint of malice or lack of concern but only an unerring
judgement about what was important, and the clearest way of saying it. What is even
more important is that his distaste for excessive display of feeling concealed, at first,
a truly generous and hospitable nature. He was a kindly man, and shared with his wife
Greta a rare perception of the problems and needs of others, and any account of his
life would be incomplete without reference to the remarkable qualities which she
brought to their partnership.

Greta was the daughter of Adolf Braun, a distinguished journalist in pre-1914
Germany. Her mother was Russian and brought her to England, where she completed
her education at school and at Newnham. Although she was herself neither Jewish
nor a refugee, her early life had given her a deep and sympathetic understanding of
people persecuted for their race, politics or religion, and she became a leading figure
in the organization set up to rescue refugees from Hitler. She and Charles together,
with their combined experience of international affairs and academic life, were
particularly effective in helping many gifted scholars to escape and to contribute to
the intellectual life of this country. They did this not only by good organization, but
also by the example they set in taking young scholars into their own home and
virtually adopting them.

Many of the refugees who came to Britain through the efforts of the Burkills were
either mature scholars or research students whose work had been disrupted, and this
must have been a major factor in stimulating, and extending beyond the college
precincts, their interest in the welfare of graduate students in general. Cambridge was
not a comfortable place for scholars without a firm college connection, and the
provision of basic amenities for them was a pressing need. The founding of the
Graduate Centre and the Cambridge Graduate Society was largely due to their joint
efforts, for they made a powerful team, he with his grasp of practicalities and
procedures and she with her formidable crusading zeal. In superficial ways, few
couples could have seemed more different, but there was a real harmony in their
partnership to enable them to do so much good.
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OBITUARY 87

1. Integration and differentiation

Burkill’s work is all in the theory of functions of a real variable, with its main
emphasis on theories of differentiation and integration. This was a particularly active
area of research in the early decades of this century, after the pioneering work of
Lebesgue, Borel and their contemporaries in establishing the concepts of measure and
the Lebesgue integral associated with it. These continue to play a central role in
modern mathematical analysis, and provide a reference by which further develop-
ments can be compared and understood, and it may be useful to give a very brief
account of some of the concepts associated with them.

Broad ideas about differentiation and integration go back to Newton and
Leibniz, as do requirements about the formal relationship between them. The natural
starting point is the definition of the derivative F’(x) of a point function F(x) as the
limit in some sense of A '[F(x + h) — F(x)] as &7 — 0. Then integration, regarded as the
inverse of differentiation, is any operation on a function f{x) which produces a
primitive or integral F(x) with the property that F’(x) = f(x); and we then write
F(x) = [ flu)du. This descriptive concept of integration is incomplete until we specify
the precise definition of a derivative and the interpretation of the equality sign. It is also
deficient in a more practical way in that it provides no method, other than organized
guesswork, for actually finding the primitive of a given function.

The traditional alternative approach which remedies this is first to develop and
make precise the concept of the area of a set of points in the plane (or volume in three
or more dimensions) and to define [ f(x)dx constructively to be the area of the set of
points S bounded by the x-axis, the lines x = a, x = b, and the graph y = f(x). The
conclusion that these two definitions of an integral are, under appropriate conditions,
equivalent is the fundamental theorem of the calculus, and is central to any theory of
differentiation and integration. Since there is no preordained logical structure to any
such theory, it is essential to make clear what is being defined and what is deduced.

The best known examples of the constructive approach are due to Riemann and
Lebesgue; in spite of apparent similarities in their definition, they are quite distinct
in their properties and in their potential for generalization. In each case the definition
of area is based on the limit as # — 0 of the sums of approximations to the areas of
parts of S obtained by slicing S into sections of width / either vertically (Riemann)
or horizontally (Lebesgue). Riemann requires only approximations by rectangles,
while Lebesgue depends on the notion of the measure of the more complex set of
points x for which f{x) > y. Important distinctions arise directly from the differences
in the geometry of the constructions. For example, the existence and properties of the
Riemann integral are bound up with the metric topology of the real line and the
continuity of the integrand, whereas the Lebesgue integral requires only the existence
of a measure, and measures can be defined in a great variety of spaces without
reference to the nature, or even the existence, of their topological properties.
However, the classical definition of a derivative is a topological concept, and we
expect to find a fully satisfactory calculus only in cases in which measure and
topology are properly related.

A comparison between the two integrals illustrates the important idea of the scope
of a method of integration as the set of functions which can be integrated. Thus
Lebesgue has greater scope than Riemann, but this is not an unconditional advantage
since Lebesgue integrability is the weaker constraint and this may necessitate the
strengthening of some other condition when it is part of the hypothesis of a theorem.
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88 JOHN CHARLES BURKILL

In the following summary of Burkill’s publications, papers have been grouped to
reflect his main areas of interest, and numbers refer to the list at the end of this
memoir. It is convenient on occasion to retain his notation, using symbols +, —, -
for set operations, and speaking of functions g(/), F(I), f(x), G(x) (as a reminder that
the variable may be an interval or a point) despite the normal convention that such
symbols should be used only for values of the functions g, F, f, G.

2. Functions of intervals and the Burkill integral [1-3]

An open n-dimensional interval [ is defined as the set of points (x,, x,, ..., X,
which satisfy a, < x;, < b, (i=1,2,...,n). The same numbers also define closed or
partly closed intervals, and the distinction is generally immaterial, but 7 is taken to
be open unless the contrary is indicated. An interval function g(I) is defined over a
system of intervals if a real number g(/) is assigned as its value for each I of the
system. The main aim of [1] is to give a systematic account of the basic properties of
interval functions which are not necessarily additive. This means that it is not assumed
that g(I) = g(1,) + g({,) when I is the union of abutting but non-overlapping intervals
I,, I, (including the interior points of their common boundary). The importance of
this becomes clear when we note the many cases of nonlinear interval functions such
as the elements in Riemann—-Darboux sums or the ratio # [ f(x+h)—f(x)] for the
interval (x, x+ h).

The elementary properties of interval functions can now be established. For
example, an interval function is bounded in an open or closed interval R if its values
g(I) are bounded for all intervals 7 in R. If w(d, x) is the upper bound of |g(])| for
every I in the square with centre x and side J, then w decreases with ¢ and w(x) =
lim w(d, x) as 0 — 0 exists and is called the oscillation of g(I) at x. We say that g(/)
is continuous at x if w(x) = 0, and is continuous in R if continuous at every point of R.
If R is closed, continuity implies uniform continuity, in the sense that, given ¢ > 0, we
can define d(e) > 0 so that |g()| < ¢ for every I in R with diameter n(I) < 6. A division
of an interval R (two dimensions being typical) by lines parallel to one or other axis
into a finite number of subintervals I, is called a mesh {I;}. We say that g(/) has an
integral /if, given & > 0, we can define d(e) > 0 so that |} ¢(/,)—!| < & for all meshes
{1;; with maxn(l;) < d(¢). Such a number / is unique if it exists, and is then written
[rg(D) (or [g if the context is clear) and is called (but not by himself) the Burkill
integral. Whether the integral exists or not, the upper and lower Burkill integrals |,
| always exist as the upper and lower limits of )’ g(/;) as maxn(/;) - 0. Two familiar
examples of the integral are:

(1) [g(I) is the total variation of f{(x) in one dimension if g(/;) = [f(x;) —f(x; ,)|;

(2) [.x8(I) is the Lebesgue integral [} f{x)dx if I, is the interval (y, ,,y;) and
g(l;) is the measure of the set in which y, | < f(x) <y, and H, K are bounds of f{x).

The main properties of the Burkill integral are as follows.

(i) If g(I) is finitely additive, [,g(I) = g(R).

(i1) (General principle of convergence.) The function g(/) is integrable if and only
if, given ¢ > 0, we can define d(e) > 0 so that |) g(/)—) g(I,)| <e for any two
meshes with max [n([)), n({,)] < 6.

(iii) If [g exists, so does [cg for any constant ¢, and [¢g = c|[g.

(iv) If g(I) = 0, then [g > 0.

(v) (Mean value theorem.) If HmlI > g(I) = Kml for I in R, then HmR > [g >
KmR.
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OBITUARY 89

(vi) If g = g, +g, and any two of [ g,, [ g,, [ g exist, then so does the third, and

[g=]g+]g
(vil) Schwartz’s inequality:

_ R . _
{fglgz} < Jgf jgé; {Jplpz} < jpi fpi if p, =20, p,>0.

(viii) The condition of integrability can be strengthened (with a decrease in scope
of the integral) by allowing meshes in which the dividing lines need not extend right
across R, and the integral so defined is called the extended Burkill integral and written
E|. Then if R = R+ R,, it is not generally true that integrability over R, and R,
implies integrability over R, and vice versa. But it is true that if g is integrable over

R], R2 and R, then
J;i J‘R J; 9
1 ?y

Also, if g is integrable E over R, it is integrable £ over any subinterval of R.

While these properties are analogues of theorems in the traditional integral
calculus, it is important to observe that the Burkill integral has an interval function
as its integrand and is quite distinct in concept from the integrals (Riemann,
Lebesgue, Perron, etc.) in which the integrand is a point function.

Some further properties of interval functions are needed to develop the integral.
An interval function g(I) is absolutely continuous (a.c.) in R if ) g(I)—0 as
Y. mI,—0 and the I, (finite or enumerable) are non-overlapping. The Lipschitz
condition |g(/)| < KmlI obviously implies absolute continuity. These properties
follow.

(i) If g, g,, g, are a.c., then so are |g| and g, + g,.
(i1) If g, is a.c. and g, is bounded, then g,g, is a.c.

(iii) Ifp =Ylgl+gl,n = Ylgl—gl,sothatg = p—n, |gl =p+n,p = 0,n > 0, and if
g is a.c., then so are p and n.

(iv) If g is a.c. in R, then its extended upper and lower integrals are finite.

(v) If gisa.c. in Rand G(I) = [, g exists for every I in R, then G(I) is a.c. in R.

If X is a measurable set in R so that, for a sequence ¢, decreasing to 0, we can
decompose X as X = J +e,—e/, where J. is the union of a finite set of intervals and
me, < ¢,, me, < ¢, it is proved that G(J,) tends to a limit which is independent of the
particular sequence ¢, or the particular decomposition of X for any r. This limit is
written G(X) = [, g({) and is called the (Burkill) integral of g over X.

(vi) G(X) is a completely additive function of measurable sets in R, so that
G(). X;) = Y. G(X)) for any enumerable disjoint sets X, in R.

(vii) Ifgisa.c.and g(7) < g(I,)+g(l,) when I = I, +I,, then g is integrable. In one
dimension, the weaker condition that g is continuous may replace absolute continuity,
although its integral may then be infinite.

3. Derivatives of interval functions (4, 6, 7]

Burkill’s calculus is completed by defining the derivative of an interval function
and relating it to the integral G(X). If 0 < p < 1, we define u(p, x) as the upper limit
of g(I)/ml as mI — 0 and mI/mS = p, where S is the smallest square with centre x
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90 JOHN CHARLES BURKILL

containing /. The lower limit /(p, x) is defined similarly, and since both limits are
monotonic in p, we can define u(x), /(x), their limits as p — 0, as the upper and
lower derivatives of g(I) at x. If u(x) =1I(x), we say that g(I) is differentiable
at x and g’(x) = u(x) = l(x) is called its derivative.

The basic properties of derivatives are then as follows.

(i) The necessary and sufficient condition that g’(x) exists is u(p, x) = I(p, x) for
every pin 0 < p < 1.

(i) If g =g, +g,, then [,(x)+1,(x) < U(x) < L)+ uy(x) < u(x) < uuy(x) +1y(x),
and if g7(x), g5(x) exist, then so does g’(x), and g'(x) = g7(x) + g5(x).

(iii)) For any g(1), u(x), /(x), g’(x) are measurable.

(iv) Inonedimension, if g(I) = flx;)—f(x,_,) when Iis (x,_,, x;) and if ir(x), I(x) are
upper and lower derivatives of f{x), either on the right or on the left, then u(x) > #(x),
I(x) < I(x). The existence of either f’(x) or g’(x) implies the existence of the other, and
the two are equal.

(v) If 0*f/0x0y exists near (x,,y,) and has upper and lower limits M(x,,y,),
m(x,, y) a8 X = Xy, ¥ = ¥y, then M(x,, yy) = u(x,, y) = (X, ¥,) = m(x,,y,). In par-
ticular, g'(x,,y,) = 0*f/0x0dy at (x,,y,) if 0*f/0xdy is continuous at (x,, y,)-

These properties are sufficient to establish analogues of the fundamental theorems
of calculus.

(1) If p(/) = 0and E [, p(1) is finite, then u(x) and I(x) are finite almost everywhere
(a.e.) in R. In particular, if g(/) is a.c. in R, then u(x) and /(x) are finite a.c. in R. In
one dimension with p(I)) = f(x;)—f(x,; ,), we have the familiar result that u(x), /(x)
are finite a.e. if f(x) has bounded variation.

(i) If g(1) is a.c. in R, then (Lebesgue integrals for I(x), u(x))

Efg(]) < Ju(x) dx < Ejg(l).

In particular, if E [ g(I) exists, so does g'(x) a.e., and

Efgu) < fgf(x) dx and G(X) =f g

for any measurable set X.
(iii) If g({) is a.c. in R and /(x) > 0 a.e. in R, then

fg([) = 0.

@iv) If g(Z) is a.c. in R and G(I) exists for every 7 in R, and if /[(x) >0 in a
measurable set X, then G(X) = 0.
(v) If g(Z) is a.c. in R and G(J) exists for every I in R, then

J I(x)dx < G(X) < f u(x) dx

for any measurable set X. In particular, if g’(x) exists a.e. in X, then

GX) = J g'(x)dx.

A 'T '866T '02T269YT

10//:5dny woy

25UBDI SUOWILLIOD BAIERID 3|col|dde 8Ly A peuAo 812 S3p11e WO 88N JO S3IN. J0} A1 1T BUIIUO 481 UO (SUORIPUOD-PUE-SLLBILIOD /B] M Atiq 1 oU 1 |UO//SCIU) SUORIPUOD U SWB L 843 885 *[5Z0Z/0T/0€] U0 AXeiq1 8UIIUO AB]IM ‘83UB|[BOXT 812D PUE L3ESH J0j 8Iisu| euolieN ‘3DIN Ad 29/€00.6€6097200S/2TTT OT/10p/wiod Ao | ImARIq 1 eullL



OBITUARY 91

(vi) If R is one-dimensional and g(/) is a.c., then

Jg(l ) = fu(X) dx, fg(l ) = JI(X) dx,

and, in particular, the existence of either [ g(1) or [ g’(x) dx implies the existence of the
other, and the two are equal.

(vii) If [, g(I) < oo, then the set of points at which u(x) = oo and /(3, x) > — oo has
measure zero.

(viil) If [, g (I) exists, then the set of points at which u(x) and /(x) are finite and
unequal has measure zero.

4. The expression of area as an integral

An important application of the Burkill integral is to simplify and extend the work
of W. H. Young and others on the definition of the area of a curved surface. The
starting point is an observation on the conditions needed by Young for [[Jdudv to
give a satisfactory expression for the area of the plane set of points bounded by the
curve x = x(u,v), y = y(u,v) when (u, v) traces out the boundary of a rectangle R and
J is the Jacobian of (x,y) with respect to (u,v). Burkill points out that Young’s
conditions involve the partial derivatives of x and y, and the separation of x from y
and u from v, whereas the natural relationship is between points (x, y) and (u,v). This
suggests that J is not the most natural tool, and that a modification of it might be used
to better effect. The modification which he introduces depends on the notion of the
two-dimensional increment A(x, y) of (x, y) over the rectangle 7 in the («, v) plane which
is defined by

A(X, ) = 3lX, Yy — X ¥y F X, Vg = Xy ¥y + Xy Yy — X, Vg + X, 9 — X, 4],

where the suffices denote corners of / in anti-clockwise direction, and x, is the value
of x at point 1. In fact, A(x, y) is simply the area of the quadrilateral with vertices
(X1, 11)s (X9, V5)s (X35 3), (X4, 1,). It is a function of intervals but is not additive, and
this is the point at which Burkill’s theory becomes relevant.

The upper and lower modified Jacobians L*(x,y), L.(x,y) are defined as the
upper and lower derivatives of A(/) at (u,v), and if they are equal we say that the
modified Jacobian L(x,y) exists and takes their common value. Its basic properties
are:

(1) L(x,c) = L(¢,y) = 0 for any constant c;
(i) L(x,y) =—L(y,x);
(iil) L(ex,y) = cL(x,y), L(x+y,z) = L(x,2)+ L(y,z);
(iv) if x = x(u) is independent of v and y = y(v) independent of u, then

dxdy
L=—2=2:
dudv’

(v) L*, L,, and L if it exists, are measurable;
(vi) if the partial derivatives of x and y with respect to # and v are continuous at
(uy,vy), then L(u,,v,) exists and has value J(u,, v,).
These results can be used to define the area bounded by the closed plane curve
x=x(u), y=yu), a<u<b, x(a) = x(b), y(a) = y(b). The range (a,b) is divided
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92 JOHN CHARLES BURKILL

into meshes by points a =u, <u, <...<u, =b, and the corresponding points
A, P,...,P, ,, A form an inscribed polygon. The interval function g(/) is defined by
g() = 3x(u;_y) y(u;) — x(u;) y(u;_,)] when I'is (u;_,,u;), and the area inside the curve is

defined to be
f g(I)
(@,

when this exists. A sufficient, but not necessary, condition for this is that the curve is
semi-rectifiable in the sense that x(u), y(u) are both continuous and at least one has
bounded variation. If g(/) is a.c. and the curve has an area A4, then

b
[z =a
and conversely, if [?g’(¢) dr exists and has value 4, then the curve has area A. There
is an equally satisfactory result when the curve is defined alternatively by x = x(u,v),
y = y(u,v) for points (u,v) on the perimeter of R. It is that if every curve in (x,y)
which is the image of a parallel subrectangle of R has a definite area, and A(Z, x, y) is
a.c. in R and L(x,y) exists a.e. in R, then 4 = [[ Ldudv over R.

A similar appeal to the theory of interval functions can be used to define the area
of a curved surface S consisting of points (x, y, z), where x = x(u,v), y = y(u,v), z =
z(u,v) are continuous in the rectangle R (¢ < u < b, ¢ < v < d). For this, we define
interval functions

&) =A.y.2), &) =Azx), g)=Alxy)

G1(1) = fgp Gz(l) = nga Gs(l) = fg?,a

over /[, and suppose that G,, G,, G, exist and are finite for every parallel subrectangle
in R. This means that the projections on any coordinate plane of the curve on S which
is the image of the perimeter of any subrectangle has a definite finite area. Under these
conditions, the area of S is defined as the upper integral over R of

g) ={Gi(D) + G (D) + G (D},

and the following conclusions are deduced.
(i) The area S'is finite if and only if the upper integrals of |G,|, |G,l, |G| are finite.
(i) If S'is absolutely continuous and L(y,z), L(z, x), L(x, y) exist a.e. in R, then
the area of S'is

JJ{H(}/, 2)+ L*(z, x) + L*(x, y)}*'* du dv.

5. Approximate differentiation and extensions of the Perron integral
[3, 9, 10, 14, 15, 17]

A major field of study after the establishment of the Lebesgue integral lay in the
search for integrals with greater scope in the range of integrands on which they could
operate and greater facility in applications such as the integration of derivatives.
These integrands, unlike those in the Burkill integral described above, were point
functions and the integrals, including the more familiar ones associated with the
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OBITUARY 93

names of Denjoy and Perron, were defined descriptively as primitives F(x) satisfying
the basic condition F’(x) = f{x) in some sense.

The starting point for Burkill was the extension of the concept of differentiation
to that of approximate differentiation, and paper [9], written with Haslam-Jones,
extends and simplifies some earlier work of Besicovitch.

The upper right A-derivative AD*(f, x, /) is defined as the lower bound of numbers
a such that the set of points & > x for which f{&)—f(x) = a(&—x) has upper right
density at x less than or equal to 4. Since AD*(f, x, /) increases as 4 decreases to 0,
its limit exists and is called the upper right approximate derivative, written AD* f(x).
The other three right or left approximate derivatives, and the upper and lower (two-
sided) approximate derivatives AD* fand AD, f, are defined similarly. The common
value of AD"f and AD.f, when they are equal, is called the right approximate
derivative, and ADf is the approximate derivative when all four are equal.

It is plain that ordinary differentiability implies approximate differentiability, but
the stronger result that D*f= ADf'= D_fa.e. in a set X in which D*fis finite is also
valid. Similar extensions can be made to other limit processes, and particularly to
approximate continuity. These ideas are used in [3] to give a particularly direct proof
of the fundamental theorem of the calculus for the Denjoy integral which, in its
restricted form, is known to be equivalent to Perron’s.

The study of the possible disposition of derivatives of measurable functions can
be extended [13] to cases of non-measurable functions by the introduction of the
concept of relative measurability, whereby a set X is measurable in relation to X, if
there is a measurable set M such that X X = X,M. In the same general field, but not
directly related to it, is a paper [12] on the differentiability of functions of two
variables. This completes the theory of Rademacher and Stepanoff by filling in some
gaps in the latter’s analysis, and goes on to consider monotonic functions in the plane.
In complex notation, f{z) is monotonic increasing if f(z') = f(z) when z’ > zin the sense
that x” > x, y’ > y. It is then shown that lim sup |47 f(z +h) — f(2)] is finite a.e. when
f(z) is monotonic, and that a similar result holds for a function which, in a certain
sense, has bounded variation.

Burkill’s important contribution to the problem of extending the scope of the
Perron integral was to suggest that approximate rather than ordinary continuity
might be a more natural property of the indefinite integral to aim for, and to
demonstrate this. He uses the usual formulation of the Perron integral, but extends
the concepts of major and minor functions by defining a major function M(x) by the
conditions that it is approximately continuous, M(a) =0 and AD,M(x) > — o0,
AD, M(x) = f(x) a.e. in (a,b). Minor functions m(x) are defined similarly, and we
define K, k respectively as the lower bound of M(b) and the upper bound of m(b) for
all major and minor functions. Then K > k and, if they are equal, we say that f{x) has
an approximately continuous Perron integral (AP) [f(x)dx equal to their common
value. The AP integral is then consistent with the ordinary Perron integral and, a
fortiori, with Riemann and Lebesgue. Other properties of the AP integral, including
the approximate continuity of the integral, are established.

This generalization of the Perron integral depends on the replacement of
continuity by approximate continuity, but Burkill introduces in a series of papers [11,
14, 15, 17] a generalization in a different direction which leads to what he calls the
Cesaro—Perron (CP) integral. The essential idea is to replace Q(x + /) in the increment
O(x+h)—QO(x) of a function Q by the arithmetic (Cesaro) mean C(Q, x, x+ /) in the
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94 JOHN CHARLES BURKILL

interval (x, x+ /), and Q is called C-continuous at x if C(Q, x, x+h) —» Q(x) as h — 0.
If O(x) is finite and C-continuous at every point of an interval, it follows that Q(x)
is at every point the derivative of its indefinite integral. Since an everywhere finite
derivative can be integrated by the restricted Denjoy process, it is appropriate that
this, or rather the equivalent ordinary Perron process, should give the sense in which
the integral for mean values is understood. The (two-sided) upper C-derivative
CD*Q(x) can now be defined as the upper limit as 7 — 0 of 227 [C(Q, x, x + h) — O(x)].
The lower C-derivative CD,Q(x) is defined similarly and, when CD*Q = CD,.Q, Q
has C-derivative CDQ equal to their common value. The definition of the CP integral
can now be completed by the use of major and minor functions as in the case of the
ordinary Perron integral. If f{x) is measurable and finite in [a, b], we call M(x) a major
function if it is C-continuous, M(a) =0 and, for a < x<b, CD M(x) > — o0,
CD,M(x) = f(x). A minor function m(x) is defined similarly, and the Cesaro—Perron
integral CP [ f(x) dx exists and has value K if K and k are defined as before and K =
k. Burkill goes on to establish the basic properties of the CP integral, including its
consistency with the ordinary Perron integral.

Two papers [14, 17] are devoted to a further generalization of the Perron integral
to a scale of C P integrals in which r can be any positive real number. This depends
on the replacement of the arithmetic mean C(Q, x, x+ /), corresponding to the case
r =1, by the Cesaro mean of order r defined by

+h

C(0,x,x+h) = rhlJ (x+h—0)"10(0) dt.
In a further paper [15], Burkill shows how the Cesaro summability of the Fourier
series of a periodic function f{x) is related to the C, P integrability of f(x). If f(x) is C,P
integrable and f(x+¢)—f(x—1t) — 2s5(C,j) as t - 0, then the Fourier series of f{x) is
summable (C,k) at xtosif k>j>=r+1.

The CP integral also provides [16] a powerful and elegant approach to the
problem which was known to be insoluble in terms of the ordinary Perron integral.
This is to express as a Fourier series of a function f{x) any trigonometric series which
converges everywhere or, more generally, has finite upper and lower sums. These
results are generalized in later papers [19] and [20] by extending the scope of the CP
integral by introducing the symmetric CP integral, in which the continuity condition

x+h
hlJ F()dt » F(x) as h—0

x

is replaced by the weaker symmetrical condition

'r+h T
ht {J F(@) dt—j F(2) dt} -0 ash—0.
x x—h
The results on Fourier series can be extended to Fourier integrals.
Burkill returns later [23] to the idea of a scale of integrals Do with 0 < oo < 1 which
spans the gap between the Lebesgue integral (¢« = 1) and the restricted Denjoy
integral (o = 0).
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6. Other topics

In addition to the work already described, Burkill also produced papers on a wide
variety of interesting special topics and problems which are not as strongly related to
one another as those in the preceding sections, although they depend for the most part
on similar analytical techniques.

(a) Inversion formulae [5, 6]. The first paper shows how pairs of formulae of the
type

Fx) = jH(x, 1) dd(r), D(1) = fK(z, u) dF(u)

arise through a discontinuity integral

JH(x, 1) % K(t,u)

with values 0 or 1 according as u < x or u > x.
The formulae include Fourier and Hankel transforms, and similar ideas can be
applied to the Mellin transform.

(b) Differential properties of Young—Stieltjes integrals [18]. L. C. Young has
shown that it is possible to define a Stieltjes integral F = [ fd¢ in cases where ¢ is not
(as is usual) of bounded variation, provided that a suitable additional constraint is
put on the variation of f. The paper establishes the formal differential relationship

d
o =1
in the precise sense that

Fx+h)—F(x) = fix){¢p(x+h)—Pp(x)+ he(h)}, e(h)—0 as h— 0.

(¢) Strong and weak convergence [7]. The new results in this paper extend the
studies by W. H. Young on the concept of super summability defined by the condition
[ O{lf(x)|} dx < oo when Q(u) = [ q(u) dt and g(u) is positive and Lebesgue integrable
over every finite interval. The cases g(u) = u?' with p > 1 give the familiar Lp classes
(with p =1 indicating ordinary L integrability) and it is shown that well-known
results on strong and weak convergence in Lp can be extended to general Q.

(d) Hobson’s convergence theorem for Denjoy integrals [8]. This extends the study
by Hobson of the behaviour as n — oo of integrals of the type [ f(£)®(, x, u) dt in which
f(¢) is integrable only in the Denjoy sense. This makes it possible to prove, among
other things, that the Fourier series of a D integrable function f'is summable a.e. to
f(x) by Riesz means of any order greater than one.

(e) The differentiability of multiple integrals [21]. The integral of an L integrable
function f(P) is strongly differentiable at P, if

(ml)™! ff (P)dp
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96 JOHN CHARLES BURKILL

tends to a limit as the diameter of the interval / (containing £;) tends to 0. The main
result is a general theorem on measure from which it is possible to deduce the theorem
of Jessen, Marcinkiewicz and Zygmund that the integral of f{P) in k dimensions is
strongly differentiable a.e. if | f|[log™ | f]]*~* is L integrable.

(f) Rearrangements of functions [22]. The functions f, f* are rearrangements of
one another if the measures of sets in which f{x) > y and f*(x) > y are equal, and the
main result is an extension from one to two dimensions of a powerful and interesting
inequality of Hardy and Littlewood. The function 6(f, x, y) is defined in a rectangle
R as the upper bound for 0 < x" <x,0< )y <y of

(ml)™! fj Sx, y) dx dy

for a rectangle 7 in R with (x,y) and (x’, ") as its north east and south west corners.
The main theorem is that

fjﬂ(f » X, y)dx dy

is maximum for all rearrangements f of a given function when f decreases from the
south west with contours of the form log(ax ) log(by™) =k, 0 < k < o0.

(g) An integral for distributions [24, 26]. The theory of distribution systematized
by L. Schwartz has important applications in mathematics and physics, and different
approaches to it are possible. Schwartz himself appeals to the general theory of linear
functionals, but this can be avoided [24] by using more traditional techniques based
on Stieltjes integrals extended in an appropriate way. The same analysis is used
effectively in dealing with theorems on Fourier and Mellin transforms.

(h) Polynomial approximation [25]. The paper deals with the following conjecture
of H. Burkill. There is a number K,, depending only on n, such that, given a

continuous function f{x), there is a polynomial p,_,(x) of degree at most n—1 for
which, for all x in a finite interval I,

1) =P, () < K, sup A, (f)]

when A, (f) is the nth difference (in a sense to be defined) of f{x) with respect to n+ 1
points Ay, hy, ..., h, of I, and the supremum is taken over all such sets of points.

The theorem was proved by Whitney with A, being the usual nth difference with
equally spaced 5,. The theorem is proved here with the much better constant K, =
27" provided that the /, are not required to be equally spread and A, is defined
appropriately.

(i) Concavity of discrepancies in inequalities [27]. In the inequality G < A4 between
geometric and arithmetic means of a set of n numbers, there is a discrepancy A =
n(A—G), and it is known that A is not only non-negative but also super additive in
the sense that it is not decreased by the insertion of additional terms in 4 and G. The
paper notes similar results for other inequalities (including Holder, Minkowski and
Tchebichoff), and goes on to prove analogues, motivated by discrepancies, of the
Hlawka inequality |x+y+z|—|y+z|—|z+x|—|x+y| = 0 for vectors.
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which still rank as standard texts. These all display, as we might expect, not only his mastery of the field
but a lucidity and elegance that encourage his readers to appreciate the profound aesthetic quality of
good mathematics. The Lectures on approximation by polynomials were given during a visit to the Tata
Institute, Bombay, in 1959, but have not, unfortunately, found wider circulation.
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