

SYDNEY CHAPMAN

V. C. A. FERRARO

Sydney Chapman was born at Eccles in Lancashire on the 29th January 1888. His father, a cashier, had resolved that his son should get the best education he could afford to give him and he was sent to a good and "unusually scientific grade school" where his interest in scientific matters was first kindled. On the advice of an engineer whom his father had consulted, Chapman spent two years at a technical school. A kindly Scot, Dr. B. Prentice—one of the first Ph.D.s. in Britain—took a fatherly interest in Chapman and encouraged him to sit for a scholarship to Manchester University. He gained his scholarship and went up to read engineering: as he relates in his reminiscences there were 15 scholarships to be awarded: "I was fifteenth on the list, and I sometimes wonder what would have happened if I'd hit one place lower." He graduated in 1907 but soon after his interests turned to Mathematics; Horace Lamb, the professor of Mathematics, had told Chapman that there were good openings for applied mathematicians and that, in that case, he should go to Cambridge. Chapman sat for an open scholarship to Trinity College, which he gained, and went up in 1908. Two years later he became a wrangler and having sat for the Mathematical Tripos in his second year he had to stay at Cambridge for a third year to get his degree. It was during this time that he developed an ambition to do research in mathematics and, looking round for a subject, became interested in the theory of summable series. But he was uncertain whether to become a pure mathematician or an applied mathematician. As it was, fate intervened on the side of applied mathematics. For, returning one day to his room in Trinity College, during his third year, he was surprised to find the Astronomer Royal, Dr. Frank Dyson (later Sir Frank Dyson) waiting for him. He had come to offer Chapman a post of Chief Assistant at Greenwich Observatory—a post which he accepted and held from 1910 till 1914. It was undoubtedly during this period that he developed his interest in the study of the earth's magnetism, which he was later to rename "geomagnetism", an interest which was to last for the greater part of the remainder of his life. About this time also he approached Sir Joseph Larmor for advice on a topic for research. Larmor sent him some papers by Knudsen on the flow of gases of low density in capillary tubes; this led him to the study of the kinetic theory of gases in which he was to predict the important phenomenon of thermal diffusion—a prediction in which he took great pride. In 1914 Chapman returned to Cambridge as a lecturer in Mathematics; he was awarded the first Smith's prize in 1913 and in the same year he was elected to a fellowship at Trinity College which he held until 1919. However, the start of the First World War in 1914 depleted the student ranks at Cambridge and because the staff of the Greenwich Observatory was also depleted, Chapman was

asked to return to Greenwich in 1916 to help out; and he stayed there until the end of the war on leave of absence from Cambridge.

During his first stay at Greenwich, Chapman had in his spare time helped in the running of a boys' club. On his return to Greenwich in 1916 his pacifist views made him unwelcome at the boys' club and he took up children's work instead for the local Labour Party. This unpopularity affected him deeply and depressed him so much that after the War he returned to Cambridge. But his stay there was short for in 1919 he was asked to succeed Sir Horace Lamb, his former teacher at Manchester, as Professor of Mathematics. He overlapped with Lamb during the session 1919-20. He stayed five years before accepting an offer, in 1924, to succeed A. N. Whitehead as Chief Professor of Mathematics at Imperial College, London. Here he found a department of Mathematics quite different from what he had expected nor what the Rector of the College, Sir Thomas Holland, wished it to be. Chapman had the difficult and unenviable task of having to breathe new life into what was in effect a rather ill-equipped department of engineering mathematics.

It would be difficult to overestimate the influence which Chapman exerted in the Department in his quiet but firm way. Once he had convinced himself that a given course of action was right he would persevere with it whatever the obstacles that might be encountered on the way and so against some opposition from more staid members of the Department but aided by H. Levy he transformed the department along more modern lines.

Chapman stayed at Imperial College 22 years in all during which time he had attracted several distinguished mathematicians to the Department (G. Temple, W. H. McCrea, W. G. Penney); the emphasis, however, was still on the side of applied mathematics. In 1946 he followed A. E. H. Love as Sadleian Professor of Natural Philosophy at Oxford; he enjoyed the graceful living that he found there but sorely missed the secretarial assistance which was practically wanting at Oxford in those days. He retired from Oxford in 1953 to two posts in America where he had been a frequent visitor during the post-war years. One was as Advisory Scientific Director at the Geophysical Institute of Alaska and the other at the High Altitude Observatory, Boulder, Colorado. Here he set about developing the research school in geomagnetism, one of his most distinguished pupils being S.-I. Akasofu whom he was particularly proud to have "discovered". In Alaska his close cooperation with the then director of the Geophysical Institute, C. T. Elvey, was also instrumental in fostering polar atmosphere research.

Chapman married in 1922, Katherine Nora, daughter of A. E. Steinthal, who was a member of the University at Manchester. They had three sons and one daughter and one of the sons is a very distinguished architect. Chapman was happy in his family life and in this he was much helped by his kind and understanding wife who, in her later years, accompanied him religiously on all his travels. For Chapman was a tireless globe-trotter and especially in his younger days would travel almost anywhere by cycle. He rode from Montreal to Washington in 1939 to attend the meeting

of the International Union of Geodesy and Geophysics and in 1954 walked several miles from the centre of Rome to the E.U.R. where the meetings were held to give his presidential address to the same Union. His tastes were simple but he was well read in many fields and a keen lover of the arts. Above all he had a great liking for people and though in his youth he was shy and diffdent, in his later years and especially after his visit to America, he mellowed and his quiet charm and directness won over many American colleagues who respected and revered him.

It seems appropriate at this stage to mention Chapman's long association with the late Julius Bartels which began in 1925 when Bartels was spending a year in England. They became firm friends and delighted in each other's company. In 1929 Chapman was awarded the Adams Prize of the University of Cambridge for an essay on the interpretation of the variations of the earth's magnetic field; the award carried with it a condition that the essay should be published. Chapman hoped to extend it to a treatise on the earth's magnetism but the pressure of other work made this difficult and in that same year he asked Bartels to join him as co-author. Bartels agreed and made his own contribution to the book which appeared in 1940 under the title of *Geomagnetism*. Much new work has been done and many new discoveries made since this work was published—some vindicating Chapman's own theories—yet to this day the work remains a standard reference book on the subject.

Mention must also be made of his collaboration with T. G. Cowling, a pupil of E. A. Milne who himself had been a pupil and colleague of Chapman. Their association began soon after Cowling had demolished a theory which Chapman had put forward to explain the supposed radial limitation of the sun's magnetic field—later proved to be illusory. Chapman acknowledged the validity of Cowling's criticism and magnanimously offered the young mathematician a post on the mathematics staff of Imperial College. Later he asked Cowling to collaborate on the second major book projected by Chapman and this appeared in 1939 under the title of "The Mathematical Theory of Non-Uniform Gases".

It would be difficult to overestimate the debt which many young mathematicians owe to Sydney Chapman, many of whom he launched on their careers. He also exerted great influence on the scientific world at large and he was a prominent figure at all international gatherings where his counsel was sought, as it had been sought during World War II by the War Office. Chapman had modified his views on pacifism after he had realised that Hitler must be stopped. He undertook scientific work connected with incendiary problems and showed determination in opposing the generals when necessary. But he worked very hard and when he left the War Office in 1945 I over heard him mentioning to a friend that he "felt like a free man again".

Because of his wide experience and special gifts, it was inevitable that, at its inception, Chapman should have been elected President of the Special Commission for the International Geophysical Year. He was involved in the planning, shaping and conduct over long periods till the completion. Chapman, as always, would be

the first to insist that the work was the collective effort of many hands. Yet, it is doubtful whether the confidence needed for such a wide scientific venture would have been engendered without his own contribution and authority. He had always taken a leading part in the affairs of the International Union of Geodesy and Geophysics. He served as president of the filial Associations for Meteorology (1939–48), for Geomagnetism and Aeronomy (1948–51) and later as President of the Union itself (1951–54).

He was equally active and prominent in the affairs of the learned societies in this country. Our own Society honoured him by the award of the de Morgan medal and Larmor Prize in 1944 and as president from 1929–31. Although not truly an astronomer, he was a prominent figure at meetings of the Royal Astronomical Society and was one of those who helped to launch the Geophysical Supplement of that Society (now renamed the *Geophysical Journal*). He was, for many years the active chairman of the Sub-Committee for Terrestrial Magnetism of the National Committee for Geodesy and Geophysics. He was also president of the Royal Meteorological Society and medallist and also president of the Physical Society. In his stimulating presidential addresses, as well as in the named lectures he was invited to give by the learned Societies, Chapman could be relied upon to provide an excellent review of a topical subject; they were not only lucid and informative but contained the germ of many new ideas which could be turned to advantage by a young scientist with a keen eye.

Chapman reaped many honours and these he richly deserved: he was elected a Fellow of the Royal Society in 1919 at the early age of 31. He was gold medallist of the Royal, Royal Astronomical and Royal Meteorological Societies. He was the first recipient of the Chree medal of the Physical Society. In 1966 the Royal Society furthered honoured him by bestowing upon him their highest award—the Copley medal. A list of his honorary memberships of foreign learned Societies and honorary degrees is appended.

On the 14th June 1970, after feeling unwell the previous week, Chapman suffered a heart attack followed by a cerebral haemorrhage from which he did not recover consciousness. He died two days later. He had become a legend during his lifetime and left a monumental store of scientific papers. I have tried to give some account of his more important work in the following sections.

Mathematics

Chapman's researches in Mathematics relate principally to an extension of Cesaro summability to non-integral orders. Some of the results he obtained were not entirely novel for, unknown to him, he had been anticipated by Knopp and Riesz. Chapman's papers gave considerable insight into the nature of the convergence of series and some of the theorems he proved have found a permanent place in the literature. As a typical example, we may mention the theorem that "If $\sum u_n$ is summable (Cr), then $\lim_{n \rightarrow \infty} u_n/n^r = 0$ for $r > -1$."

He also proved certain theorems on the multiplication of series which are infinite in both directions and was able to apply some of his work on summability much later in his researches in geomagnetism!

The Kinetic Theory of Gases

The modern theory of gases was founded largely by Clausius, Maxwell and Boltzmann—especially the last two—during the latter half of the 19th century. Their methods differed greatly; Maxwell's approach was through his equation of transfer of molecular properties whilst Boltzmann sought a solution via his integro-differential equation for the velocity distribution function f . Maxwell was able to obtain expressions for some transport coefficients only for a molecular model in which the molecules of the gas repelled one another with a force varying inversely as the inverse fifth power of the distance (Maxwellian molecules). For this model, which Maxwell thought fitted the observations, the form of the velocity distribution function need not be known. However, just before his death, Maxwell realised that the molecules of a real gas did not conform to his model. In 1910 Chapman became aware of the need to obtain a general solution of Maxwell's equation of transfer and in a series of papers, written between 1912 and 1917 he obtained the general solution of these equations. In his first paper (1912), he had obtained a first approximation to the transport coefficients by assuming a form of the velocity distribution function which, however, is exact only for Maxwellian molecules. This paper was criticised by the referee, Sir James Jeans, and in consequence of this criticism in 1916 he generalised his work and obtained more accurate expressions for these coefficients. He also showed that the results obtained in his first paper were not greatly in error though this could not have been foreseen. He extended his work to gas mixtures and this extension which appeared in 1917 (preceded by a shorter version in 1916) included the predication of the phenomenon of thermal diffusion, that is, the diffusion of two constituents of a gas mixture due to the presence of a temperature gradient. As I mentioned earlier, Chapman felt great pride in this prediction, the correctness of which was demonstrated experimentally by F. W. Dootson in 1916. The reality of the phenomenon had been doubted by several authorities, J. H. Jeans, among others, who thought that the phenomenon would take place infinitely slowly. Unknown to Chapman, the phenomenon had been predicted independently by David Enskog who in 1911 had made a first essay on the problem of the solution of the Boltzmann equation at about the same time as Chapman attacked the equations of transfer. Enskog did not successfully attack the solution of the Boltzmann equation till 1917. It provided full vindication of their joint prediction of thermal diffusion. This was to find many important practical applications, notably in the separation of isotopes.

Soon after the end of World War I Chapman expressed his intention to fuse in a book on gases the methods of himself and Enskog; by the late twenties he had written about a third of the book—this might have remained in draft form had he not found, after two abortive attempts, an able collaborator in T. G. Cowling. The book was

published in 1939 under the title "The mathematical theory of non-uniform gases". Though Chapman's method of solution of the equations of transfer was fully effective, it was, as he says, "intuitive rather than systematic and deductive". The method of Enskog was mathematical and more elegant and Chapman and Cowling chose this approach in their joint book. The central problem is the solution of the Boltzmann equation for the velocity distribution function f , namely*,

$$\frac{\partial f}{\partial t} + (\mathbf{v} \cdot \nabla) f + (\mathbf{F} \cdot \nabla_{\mathbf{v}}) f = \frac{\partial_e f}{\partial t} \quad (1)$$

where \mathbf{v} is the molecular velocity, \mathbf{F} the acceleration on a molecule due to body forces and $\partial_e f / \partial t$ is the "collision integral" involving the unknown function f and represents the rate of change by collisions in the number of molecules of the class which have a small velocity range about \mathbf{v} . The form of $\partial_e f / \partial t$ need not concern us here. The solution of Boltzmann's equation for non-uniform gases is found by the method of successive approximations. In the steady state, and in the absence of body forces, the solution of (1) is given by Maxwell's velocity distribution function f_0 . The next approximation is obtained by writing $f = f_0(1 + \varepsilon)$, where ε is small compared with unity. This corrects the distribution function by terms proportional to the gradient of temperature (giving rise to the phenomenon of heat conduction), velocity (viscosity) and gradient of composition (diffusion). Further approximations yield an infinite series the convergence of which was not considered by Chapman or Enskog who were content to trust to Nature as far as this was concerned. The convergence of the series solution for the first approximation was demonstrated by Burnett in 1935, though the convergence of the series solution for f had been considered earlier by Lorentz for a special case.

Stimulated by certain stellar problems, Chapman in 1922 considered transport phenomena in ionized gases and showed that because the Coulomb forces between electrical charges are long range forces, certain difficulties of convergence arise. Chapman introduced the idea of a cut-off distance (the mean intermolecular distance) and obtained results essentially the same as those derived from more exact approaches. The last chapter of the book by Chapman and Cowling contained what was the first systematic account of the kinetic theory of plasmas, embodying many new results when a magnetic field is present due to Cowling.

Geomagnetism

Chapman's first researches in geomagnetism related to the small daily variations of the earth's magnetic field. In a celebrated article in the 11th edition of the *Encyclopaedia Britannica*, Balfour Stewart had suggested that these small variations were due to fluctuating electric currents induced in a conducting layer in the upper

* Here ∇ is the gradient operator in ordinary space and $\nabla_{\mathbf{v}}$ is the gradient operator in velocity space.

atmosphere by tidal motion across the earth's magnetic field. His chief reason was that neither the solid earth, nor the lower atmosphere is affected by the Sun in a way that could account for the changes in these variations from sunspot maximum to sunspot minimum. Schuster made the first attempt to put the theory (now generally referred to as the "dynamo theory") on a quantitative basis and showed that the greater part of the variation was of external origin. Chapman now took up the investigation and argued that if the theory were correct then insofar as such variations are due to tidal motion there should be a lunar component in the daily variations of the earth's magnetic field. In 1913 he determined its Fourier components at three stations and compared his results with the deductions from the dynamo theory. The fourth component suggested that the electrical conductivity of the upper atmosphere was higher over the sunlit hemisphere than over the dark hemisphere. This possibility had also been considered earlier by Schuster. In 1919 Chapman made a more extensive harmonic analysis in which he showed that the field responsible for the solar and lunar variations could be separated into a part originating above the earth's surface and a part within the earth's surface due to the induction of electric currents within the earth. He found that although the dynamo theory was able to explain many of the observed facts, there remained one difficulty, namely, that the semi-diurnal tidal convective motion deduced from theory is reversed in phase as compared with the barometric variations at the earth's surface.

Chapman's long series of papers on Magnetic Storms began in 1918 with an analysis of the morphology of storms. In this he extended the work of the Indian magician N. A. F. Moos at Bombay relating to the average characteristics of magnetic storms. Chapman considered the data of 40 moderate storms with sudden commencement at 12 observatories in middle and low latitudes. He showed that the variations of the geomagnetic field from the time of the sudden commencement of the storm could be divided into two distinct phases. In the first, and one of shorter duration (called the initial phase), the horizontal force is increased above the mean during the first few hours of the storm. This is followed some hours later by a larger and slower decrease lasting several days, called the main phase. There is also a slow recovery to the undisturbed mean which may last several days. In fact, the earth may be said to be for ever recovering from the effect of magnetic storms. He also showed that the form of the magnetic disturbance did not change much within wide range of intensity and that great storms were often of shorter duration than weak storms. In 1927 Chapman extended his analysis to the polar regions and showed that these were characteristic of large complex disturbances though there appears to be an overall decrease in the horizontal force as in lower latitudes. He also showed that the storm variations contain a component dependent on solar time, D_s , but not necessarily in the nature of a diurnal variation. He also briefly discussed the hypothetical current system which, if flowing in a spherical current sheet concentric with the centre of the earth, would reproduce the observed field at the earth's surface. In 1935 he gave a more complete analysis of this current system and showed that it was

especially intense in two narrow belts, one around each magnetic pole, and coinciding very nearly with the location of the auroral zones. This strongly suggested that part of the hypothetical current system might flow in the upper atmosphere.

In 1952 Chapman showed that the averaged D_s part of the magnetic disturbance field varied in amplitude with storm-time (that is, time reckoned from the sudden commencement of the storm) and also to some extent with the position of the sun relative to the station. In collaboration with Akasofu, he made several analyses of individual storms, bays and pulsations, thus following up the work he had begun with E. H. Vestine and E. Wakil in the early thirties. Chapman and Akasofu have also systematically catalogued in a series of papers, examples of a variety of magnetic storms which have greatly added to our knowledge of how individual storms depart from the average characteristics discussed in earlier papers.

It was characteristic of Chapman that nearly all such statistical analyses were followed by a theoretical discussion of the results. Thus to his long paper of 1918 Chapman added a dynamo theory of magnetic storms in which he attributed the source of the energy to the entry in the atmosphere of fast solar particles of one sign. It may seem surprising that he should have entertained this hypothesis in view of the destructive criticism which Schuster had earlier directed against one-sign theories of aurorae proposed by Birkeland and Stormer, namely, that a stream of such particles could not hold together during its passage from the sun to the earth because of the mutual electrostatic repulsion of its parts. Chapman abandoned his theory in consequence of a similar criticism by Lindemann (later Lord Cherwell) in 1919. Lindemann added to his criticism the suggestion that magnetic storms were due to the interaction of a neutral ionized stream emitted from the sun with the earth's magnetic field. This interaction posed a difficult novel problem which Lindemann did not attempt to solve in his paper. In 1923 Chapman made the first attempt to solve the problem of the interaction of a neutral ionized solar stream with the earth's magnetic field; he showed that the particles would move approximately together and would only be slightly deflected by the earth's magnetic field. However, Chapman's investigation, whilst correct in this respect, was defective partly because of the limitation he imposed on his solution at the outset by assuming that the stream enveloped the earth whereas the phenomena of importance are associated with the approach of the stream to the earth.

In 1927 the present writer became one of Chapman's first research students at Imperial College and he suggested that we should make a fresh attempt to develop a theory of magnetic storms. A re-examination of the conditions of passage from the Sun to the earth removed the hope that the stream might carry a small residual charge which would suffice to produce aurorae by bending the beam in the same manner as separate charge particles. The work confirmed Lindemann's conclusion that the only streams available for a corpuscular theory of storms must be electrically neutral to a high degree of approximation. After several false starts success was attained when it was realised that a neutral ionized gas is a good conductor of electricity so

that electric currents must be induced in the stream by its motion across the earth's magnetic field, and that this might account for the field of magnetic storms. It was found that the stream behaved as if it were a perfect conductor so that the induced currents flowed mainly in the surface of the stream. The surface currents shield the interior of the stream from the earth's magnetic field so that the particles in the stream are able to describe rectilinear paths up to the point where they enter the surface current layer. The action of the earth's magnetic field on the surface currents repels the surface of the stream, the retardation being greatest over the parts of the surface nearest the earth. A cavity is thereby formed in the surface of the stream which deepens continually until a steady state is reached. We then have equilibrium between the kinetic pressure of the stream $\frac{1}{2}\rho v^2$ and the magnetic pressure $B^2/8\pi$ on its surface (here ρ is the density, v is the undisturbed velocity of the stream and B the surface magnetic field), that is,

$$\frac{1}{2}\rho v^2 = \frac{B^2}{8\pi}.$$

This simple equation, first given by D. F. Martyn, enables the location of the surface of the cavity to be inferred from a knowledge of the particle flux and velocity, both of which are amenable to measurement by means of space probes. The dimensions of the cavity so calculated, of the order of a few earth radii, were found to be in excellent accord with the values obtained from direct measurements made by magnetometer-borne space probes of the location of the discontinuity of the magnetic field at the surface of the stream. These results also agreed with the quantitative discussion first given by Chapman and the writer.

Because the geomagnetic field is excluded from the main body of the stream, as the cavity deepens and diminishes in size, the magnetic field of the earth inside it is compressed by the cavity, the resulting increase in the horizontal force at the earth's surface being identified as the increase in the horizontal force during the first phase of a magnetic disturbance.

The main phase of the storm was ascribed to a westward ring current encircling the earth placed at a distance of a few earth radii away. Although correct as regards the scale of the phenomenon, the formulation of the theory was vague and generally unacceptable. The true nature of the ring current was not recognised until 1957 when S. F. Singer saw that it must consist of charged particles trapped in the earth's magnetic field describing small orbits, as had been described by Alfvén in his interesting, but faulty, theory of magnetic storms. The theory proposed by Chapman and the writer in 1930 was not well received at first but, gradually, and long before satellite measurement verified the prediction of the theory of the first phase, it was considered all over the world and generally accepted.

Although Singer's exposition was only partially correct, his suggestion for the formation of a ring current was vindicated with the discovery by van Allen of the radiation belts which encircle the earth. However, because Singer's development of

the theory was incomplete, with his Japanese pupil, S.-I. Akasofu, Chapman began to extend the theory of the radiation belts. With P. C. Kendall they calculated the equivalent current distribution in such belts and later they applied their work to the discussion of the formation of the ring current.

Chapman and Akasofu have, in recent years, done much to increase our knowledge of the polar and auroral substorms, and showed that during magnetic storms, there is often asymmetry in the variation of the horizontal force and ascribed it to the asymmetry of the ring current.

Schuster in 1889 in his study of the daily variations was led to the conclusion that a part of the variation was due to electric currents induced in the *earth* flowing in a uniform sphere whose radius was somewhat smaller than that of the earth. The first quantitative estimates of the radius and conductivity of this inner conducting sphere were made by Chapman in 1919. The value of the conductivity he deduced differs from estimates derived since from other variations. This investigation did not take into account the influence of the oceans and other conducting strata near the earth's surface. In 1923 Chapman and Whitehead examined this problem and found that if the existing oceans were spaced uniformly over the entire earth, the currents induced in them would have a magnetic field comparable with that observed.

In 1930, with A. T. Price, Chapman investigated the induced part of the storm-time variation (D_{st}) of magnetic storms. They expressed these storm-time changes for a group of storms using harmonic analysis and found that the first harmonic was by far the most important. They separated this component into parts of external and internal origin and found that the latter part could arise from currents induced in an earth-conductivity model which, however, differed appreciably from that found by Chapman for the daily (S_q) variation. They also showed that the calculated induced currents associated with the D_{st} variations penetrate to appreciably greater depths than those associated with the diurnal variations. This implied that the conductivity must increase with depth but their calculations were not such as would lead to precise estimates. Price, with Lahiri, was later able to show that the above discrepancies between the results derived from S_q and D_{st} data could be removed by using more elaborate earth models, one feature common to them being a rapid (and possibly sudden) increase of conductivity with depth. Price and others later showed that this fits in well with known effects of the increase of temperature with depth.

Atmospheric tides

The third major field of research to which Chapman has made important contributions is the theory of atmospheric tides. His earliest work in this field, in 1918, related to the determination of the lunar atmospheric tide which up till then had only been successfully determined in equatorial regions. The problem was extremely difficult owing to the smallness of the variation to be determined. But by using a simple direct method in which he selected barometrically quiet days to cut down errors, Chapman was able to isolate the semidiurnal component of the variation at Green-

wich and found its amplitude to be 0.0088 mm. The method used is remarkable for the fact that random variations may be eliminated or reduced by the theory of errors and thereby reveal the smaller variation sought. He improved his method in a joint work with J. C. P. Miller and since then the lunar tide has been determined at a large number of stations, much of the work connected with such a great undertaking being done by Chapman.

Chapman's other main contribution to atmospheric tides relates to the solar semi-diurnal variation. Laplace had recognised the importance of thermal effects on solar tides. In 1910 Lamb sought to improve Laplace's theory and during the course of this work reached the conclusion that the period of the free oscillation of the atmosphere cannot differ greatly from twelve hours required by the resonance theory, since abandoned. In 1924 Chapman extended the theory still further and without attempting the evaluation of the period of free oscillations was able to calculate the phase of the thermal component of the oscillation taking into account the progressive change of phase of the semi-diurnal fluctuation as one ascends in the atmosphere. He further showed that for the semi-diurnal tide of solar origin, the components of thermal and gravitational origin are approximately equal.

Shortly before his death, there appeared a book on "Atmospheric Tides" written jointly with R. S. Lindzen. Chapman's share relates principally to the evaluation of the solar and lunar atmospheric tides as revealed by meteorological data. The writing is concise and lucid—remarkable for a man of over eighty.

Ionospheric problems and aeronomy

Chapman's researches on the upper atmosphere include contributions to the theory of the formation of the ozone layer, the ionospheric layers and the aurora. Chapman considered the hypothesis that the ozone layer is formed by photo-dissociation of molecular oxygen, the liberated atoms uniting with the molecules to form ozone provided a third molecule takes up the excess energy and momentum.

He also suggested that volcanic and meteoric dust might be two possible sources of sodium in the atmosphere. To account for the existence of free atoms of such an active element in the atmosphere Chapman pointed out that the conditions in the upper atmosphere were wholly favourable to the sodium oxide formed being reduced by reacting with oxygen.

The daily and seasonal variations shown by the ionosphere, as well as its behaviour at times of solar eclipses, strongly suggest that the ionosphere is formed by the ionizing action of solar ultraviolet and X-ray radiation. In a fundamental paper in 1931 Chapman developed the general mathematical theory of the process. He showed that the maximum electron density varies with the sun's zenith distance in a manner which was in good agreement with the observed results for the two lowest layers of the ionosphere. The profile of the vertical distribution of the ionization which he found is now universally referred to as a "Chapman layer".

Chapman also discussed the theory of the formation of the aurora and the light

of the night sky. In 1931 he suggested that the latter might be formed when three oxygen atoms collide, two of them might associate to form an oxygen molecule releasing sufficient excess energy to excite a third oxygen atom to a metastable state which then radiates. This process is generally referred to as the Chapman process.

Later, in 1965, with P. C. Kendall, he gave a possible explanation of noctilucent clouds in terms of the diffusion of dust particles and water vapour near the sharp temperature minimum at the mesopause in the summer polar regions.

Miscellaneous

Finally, mention must be made of some contribution to the theory of crystals. With W. L. Bragg he calculated theoretically the rhombohedral angle of crystals of the calcite type and with J. Topping he considered the electrostatic potential energy and rhombohedral angles of carbonate and nitrate crystals of calcite.

In his early years at Greenwich, Chapman published several papers, some with P. J. Melotte, on the number and galactic distribution of stars. However, the results of one paper were vitiated by an error of arithmetical principle.

Membership of Foreign Societies and Honorary Degrees

Honorary Member New York Academy of Science.

Honorary Member Indian Academy of Science.

Member of the Norwegian and Swedish Academies, Swedish Royal Society, Academy of Finland, Meteorological Society, National Academy of Science, U.S.A., Accademia dei Lincei, Rome; Göttingen Academy of Science, Leopoldina Academie Halle.

Senior research fellow, NCAR.

Honorary Sc.D., University of Cambridge, 1958.

Honorary D.Sc., University of Alaska, 1958.

Honorary D.Sc., University of Michigan, 1960.

Honorary D.Sc., University of Colorado, 1962.

Honorary D.Sc., University of Paris, 1962.

Honorary D.Sc., University of Exeter, 1963.

Honorary D.Sc., University of Newcastle, 1965.

Honorary D.Sc., University of Sheffield, 1968.

Honorary D.Tech., University of Brunel, 1968.

BIBLIOGRAPHY

Books

1. *The Earth's Magnetism* (Methuen's monographs on physical subjects), 1931. Rev. ed., xi, 116 pp., 1951.
2. *The Mathematical Theory of Non-Uniform Gases* (with T. G. Cowling) 1939. Cambridge University Press, 2n ed. i-xxiii, 431 pp., 1952, 3rd ed., i-xxiv and 423 pp., 1970.
3. *Geomagnetism* (with J. Bartels) 1940, Vols. I and II, Clarendon Press, Oxford, 1095 pp. Reprinted 1951, 1049 pp.
4. *The IGY, Year of Discovery*, Univ. Michigan Press, 112 pp., 1959.
5. *Solar Plasma, Geomagnetism and Aurora*, Gordon and Breach, 141 pp., 1963.
6. *Atmospheric Tides* (with R. S. Lindzen), D. Reidel Publ. Co., i-ix, 200 pp., 1970.
7. *Solar-Terrestrial Physics* (with S. -I. Akasofu), Oxford (in the Press).

Papers

1910

1. "Non-integral order of summability of series and integrals", *Proc. London Math. Soc.* (2) 9, 369-409.

1911

2. "General view of the theory of summable series" (with G. H. Hardy), *Q. Jl. Math.*, 42, 181-216.
3. "A note on the theory of summable integrals", *Bull. Amer. Math. Soc.*, 2nd series, 18, 111-117.
4. "The kinetic theory of a gas constituted of spherically symmetrical molecules" (abstract of *Philos. Trans. Roy. Soc.*, 1912, No 5), *Proc. Roy. Soc. Ser. A*, 86, 411-412.

1912

5. "The kinetic theory of a gas constituted of spherically symmetrical molecules", *Philos. Trans. Roy. Soc.*, 211, 433-483.
6. "A note on the summability of series of Legendre's functions", *Math. Ann.*, 72, 211-227.
7. "On the general theory of summability with application to Fourier's and other series", *Q. Jl. Math.*, 43, 1-53.
8. "The effect of magnetism on the rates of chronometers and watches" (with T. Lewis), *Monthly Notices Roy. Astronom. Soc.*, 72, 583-608.
9. "The effect of magnetism on the rates of chronometers and watches" (with T. Lewis). More popular version of No. 8, with some extensions, *Horological J.*, 54, 183-189.

1913

10. "On the diurnal variations of the earth's magnetism produced by the moon and sun", *Philos. Trans. Roy. Soc.*, 213, 279-321.
11. "Photographic magnitudes of 262 stars within 25' of the North Pole" (with P. J. Melotte), *Monthly Notices Roy. Astronom. Soc.*, 74, 40-49.
12. "On the application of parallel wire diffraction gratings to photographic photometry" (with P. J. Melotte), *Monthly Notices Roy. Astronom. Soc.*, 74, 50-58.
13. "Some theorems on the multiplication of series which are infinite in both directions", *Q. Jl. Math.*, 44, 219-234.

1914

14. "The moon's influence on the earth's magnetism", *Terr. Magn. atmos. Elect.*, 19, 39-44.
15. "On the total light of the stars", *Monthly Notices Roy. Astronom. Soc.*, 74, 446-451, corrected in 1917, No. 31.
16. "On the lunar diurnal variation of the earth's magnetism at Pavlosk and Pola, 1897-1903", *Philos. Trans. Roy. Soc.*, 214, 295-317.
17. "The number of stars of each photographic magnitude down to 17^M.0, in different galactic latitudes", *Mem. Roy. Astronom. Soc.*, 60, 145-173, corrected in 1917, No. 31.
18. "The number of the stars", *J. Trans. Victoria Inst.* (corrected in 1931), 46, 103-115.

1915

19. "Lunar diurnal magnetic variation and its change with lunar distance", *Philos. Trans. Roy. Soc.*, 215, 161-176.
20. "On the law of distribution of molecular velocities and on the theory of viscosity and thermal conduction in a monatomic gas", *Philos. Trans. Roy. Soc.*, 216, 270-348.

1916

21. "Kinetic theory of simple and composite monatomic gases; viscosity, thermal conduction and diffusion", *Proc. Roy. Soc. Ser. A*, 93, 1-20.

22. "On the expansion of $(1 - 2r \cos \theta + r^2)^n$ in a series of Legendre's functions", *Q. Jl. Math.*, 47, 12-25.
23. "Note on a problem concerning Dirichlet integrals", *Q. Jl. Math.*, 185, 26-32.
24. "Lunar distance and magnetic declination at Zikawei", *Terr. Magn. atmos. Elect.*, 21, 151-153.

1917

25. "Thermal diffusion and the stars", *Monthly Notices Roy. Astronom. Soc.*, 77, 539-540.
26. "On the partial separation by thermal diffusion of gases of equal molecular weight", *Philos. Mag.*, 34, 146-151.
27. "On the kinetic theory of a gas", *Philos. Trans. Roy. Soc.*, 217, 115-197.
28. "On the uniformity of gaseous density according to the kinetic theory", *Proc. London Math. Soc.*, Ser. 2, 15, 322-335.
29. "Note on thermal diffusion" (with F. W. Dootson), *Philos. Mag.*, 33, 248-253.
30. "Convection and diffusion within giant stars", *Monthly Notices Roy. Astronom. Soc.*, 77, 540-548.
31. "The number and galactic distribution of the stars", *Monthly Notices Roy. Astronom. Soc.*, 78, 66-77.
32. "On the influence of lunar declination on the lunar-diurnal variation of magnetic declination at Zikawei", *Terr. Magn. atmos. Elect.*, 22, 121-124.
33. "Influence of solar activity on the lunar-diurnal magnetic declination", *Terr. Magn. atmos. Elect.*, 22, 87-91.

1918

34. "Diurnal changes of the earth's magnetism", *Observatory*, 41, 52-60.
35. "The influence of changes in lunar distance upon the lunar-diurnal magnetic variation", *Terr. Magn. atmos. Elect.*, 23, 25-28.
36. "On the times of sudden commencement of magnetic storms", *Proc. Phys. Soc.*, 30, 205-212.
37. "An example of the determination of a minute period variation as illustrative of the law of errors", *Monthly Notices Roy. Astronom. Soc.*, 78, 635-638.
38. "The lunar atmospheric tide at Greenwich", *Q. Jl. R. met. Soc.*, 44, 271-280.
39. "An outline of a theory of magnetic storms", *Proc. Roy. Soc. Ser. A*, 95, 61-83.
40. "The energy of magnetic storms", *Monthly Notices Roy. Astronom. Soc.*, 79, 70-83.
41. "Terrestrial magnetism", *Trans. Victoria Inst.*, 50, 121-133.

1919

42. "Note on Dr. Chrce's recent discussion of two magnetic storms", *Proc. Roy. Soc. A*, 96, 424-425.
43. "Theories of magnetic storms", *Observatory*, 42, 196-206.
44. "Methods of representing the distribution of magnetic force over the earth's surface", *Geographical J.*, 53, 166-172.
45. "Solar and lunar diurnal variations of terrestrial magnetism", *Philos. Trans. Roy. Soc.*, 218, 1-118.
46. "Terrestrial magnetic variations and their connection with solar emissions which are absorbed in the earth's outer atmosphere", *Trans. Cambridge Philos. Soc.*, 22, 341-359.
47. "The lunar tide in the earth's atmosphere", *Q. Jl. R. met. Soc.*, 45, 113-119.
48. "The possibility of separating isotopes", *Philos. Mag.*, 38, 182-186.
49. "The lunar tides in the atmosphere", *Nature*, 103, 185-187.

1920

50. "The influence of diffusion in the propagation of sound waves in the air" (with G. H. Livens), *Proc. London Math. Soc.* (2), 19, 341-349.
51. "A note on magnetic storms", *Philos. Mag.*, 40, 665-669.

52. "Electrical phenomena occurring at high levels in the atmosphere", *J. Inst. Elec. Eng.*, 57, 209-222.

53. "Molecular and cosmical magnetism" (hypothesis later withdrawn), *Nature*, 106, 407-408.

54. "The composition, ionisation and viscosity of the atmosphere at great heights", *Q. Jl. R. met. Soc.*, 46, 357-398.

1921

55. Appendix to paper by T. L. Ibbs, "Some experiments on thermal diffusion", *Proc. Roy. Soc. Ser. A*, 99, 396-397.

1922

56. "Diffusion and viscosity in giant stars", *Monthly Notices Roy. Astronom. Soc.*, 82, 292-297.

57. "Lunar atmospheric tide at Aberdeen 1869-191" (with E. Falshaw), *Q. Jl. R. met. Soc.*, 48, 246-250.

58. "On certain integrals occurring in the kinetic theory of gases", *Manchester Memoirs*, 66, 1, 1-8.

59. "Influence of electrically conducting material on phenomena of terrestrial magnetism" (with T. T. Whitehead), *Trans. Cambridge Philos. Soc.*, 22, 463-482.

60. "Theories of terrestrial and solar magnetism", in R. Glazebrook, *Dictionary of Applied Physics*, 2, 543-561.

1923

61. "A note on the fluctuation of water-level in a tidal-power reservoir", *Philos. Mag.*, 46, 101-108.

62. "The motion of a neutral ionized stream in the earth's magnetic field", *Proc. Cambridge Philos. Soc.*, 21, 577-594.

63. "On auroral observations", *Nature*, 112, 99.

64. "On the observations of earth potential gradients at Ebro" (with T. T. Whitehead), *Terr. Magn. atmos. Elect.*, 28, 125-128.

1924

65. "Some notes on the kinetic theory of viscosity, conduction and diffusion", (with W. Hainsworth) *Philos. Mag.*, 48, 593-607.

66. "Lunar atmospheric tide at Mauritius and Tiflis", *Q. Jl. R. met. Soc.*, 50, 99-112.

67. "Semi-diurnal oscillation of the atmosphere", *Q. Jl. R. met. Soc.*, 50, 165-195.

68. "The evidence of terrestrial magnetism for the existence of highly ionized regions in the upper atmosphere", *Proc. Phys. Soc.*, 37, 38D-45D (*Phys. Soc. and Met. Soc.* discussion).

69. "Some notes on the kinetic theory of viscosity, conduction and diffusion", *Philos. Mag.*, 48, 6, 593-607.

70. "A theoretical calculation of the rhombohedral angle of crystals of the calcite type", (with W. L. Bragg) *Proc. Roy. Soc. Ser. A*, 106, 369-377.

1925

71. "Lunar diurnal magnetic variation at Greenwich and other observatories", *Philos. Trans. Roy. Soc.*, 225, 49-91.

72. "On the changes of temperature in the lower atmosphere, by eddy conduction and otherwise", *Q. Jl. R. met. Soc.*, 51, 101-120.

73. "A note on the vibration of the CO_3 ion" (with A. E. Ludlam), *Philos. Mag.*, 50, 822-824.

1926

74. "Some recent advances in atmospheric physics (Symons Memorial Lecture)", *Roy. Met. Soc.*, March 17, *Nature*, 117, 537.

75. "Ionization in the upper atmosphere", *Q. Jl. R. met. Soc.*, 52, 225-236.

76. "Electrical state of the upper atmosphere (*Roy. Soc. discussion*)", *Proc. Roy. Soc. Ser. A*, 111, 3-5; *Nature*, 117, 454.

77. "On the electrostatic potential energy and rhombohedral angle of carbonate and nitrate crystals of the calcite type" (with J. Topping and J. Morrall), *Proc. Roy. Soc. Ser. A*, 111, 25-56.

1927

78. "Some problems of terrestrial magnetism", *J. London Math. Soc.*, 2, 131-144.

79. "On the form and energy of crystalline sodium nitrate" (with J. Topping), *Proc. Roy. Soc. Ser. A*, 113, 658-673.

80. "The sun, the earth's atmosphere and radio transmission", *Nature*, 119, 428-429.

81. "On certain average characteristics of world-wide magnetic disturbance", *Proc. Roy. Soc. Ser. A*, 115, 242-267.

82. "The daily terrestrial magnetic variations, and the sun's magnetic field", *Nature*, 122, 1928.

1928

83. "The molecular displacements in diffusing gas mixtures", *Proc. Roy. Soc. Ser. A*, 119, 55-60.

84. "On the Brownian displacements and thermal diffusion of grains suspended in a non-uniform fluid", *Proc. Roy. Soc. Ser. A*, 119, 34-54.

85. "On line-integrals of the diurnal magnetic variations" (with A. T. Price), *Proc. Roy. Soc. Ser. A*, 119, 182-196.

86. "The correlation of solar and terrestrial magnetic phenomena", *Nature*, 121, 989-991.

87. "The sun's general magnetic field and the chromosphere", *Monthly Notices Roy. Astronom. Soc.*, 89, 80-84.

88. "The electrical conductivity of stellar matter", *Monthly Notices Roy. Astronom. Soc.*, 89, 54-57.

89. "On the radial limitation of the sun's magnetic field", *Monthly Notices Roy. Astronom. Soc.*, 89, 57-79.

90. "On the origin of the aurora polaris", *Phys. Rev.*, 32, 993-995.

91. "Lunar atmospheric tide at Helwan, Madras and Mexico" (with M. Hardman), *Mem. Roy. Met. Soc.*, 2, 153-160.

92. "The influence of electromagnetic induction within the earth upon terrestrial magnetic storms" (with T. T. Whitehead), *Proc. Int. Math. Congr.*, Toronto 313-337.

93. "On approximate theories of diffusion phenomena", *Philos. Mag.*, 5, Series 7, 630-636.

1929

94. "On the diamagnetic field of the outer atmosphere", *Terr. Magn. atmos. Elect.*, 34, 1-16.

95. "Solar streams of corpuscles; their geometry, absorption of light and penetration", *Monthly Notices Roy. Astronom. Soc.*, 89, 456-470.

96. "The electrical state of solar streams of corpuscles" (with V. C. A. Ferraro), *Monthly Notices Roy. Astronom. Soc.*, 89, 470-479.

97. "Cosmical magnetic phenomena (Rouse Ball Lecture)", *Nature*, 124, 19-26.

98. "The variations in the earth's magnetic field in relation to electric phenomena in the upper atmosphere and on the earth" (Adams Prize for 1927-28); note of award: *Nature*, 122, 699.

99. "The ultraviolet light of the sun as the origin of aurorae and magnetic storms", *Nature*, 122,

100. "On the variations of ozone in the upper atmosphere", *Gerlands Beitr. Geophys.*, 24, 65-68.

101. "On the theory of the solar diurnal variation of the earth's magnetism", *Proc. Roy. Soc. Ser. A*, 122, 369-386.

102. "On the variability of the quiet day diurnal magnetic variation at Eskdalemuir and Greenwich" (with J. M. Stagg), *Proc. Roy. Soc. Ser. A*, 123, 27-53.

103. "Thermal diffusion of rare constituents in gas mixtures", *Philos. Mag.*, 7, 1-16.

1930

104. "The application of spherical harmonic functions to mathematical physics", *Math. Gaz.*, 15, 200-212.
105. "The theory of upper atmosphere ozone", *Mem. Roy. Met. Soc.*, 3, 103-125.
106. "A note on two apparent large temporary local magnetic disturbances possibly connected with earthquakes", *Terr. Magn. atmos. Elect.*, 35, 81-83.
107. "On solar ultra-violet radiation as the cause of aurorae and magnetic storms", *Monthly Notices Roy. Astronom. Soc., Geophys. Suppt.*, 2, 296-300.
108. "A note on the measurement of the specific heat of gases", *Proc. Roy. Soc. Ser. A*, 126, 675-682.
109. "On the determination of the lunar atmospheric tide", *Z. f. Geophys.*, 6, 396-420, Adolf Schmidt Festschrift.
110. "A new theory of magnetic storms", (with V. C. A. Ferraro) *Nature*, 126, 129-130.
111. "On the annual variation of upper atmospheric ozone", *Philos. Mag.*, 10, 345-352.
112. "On ozone and atomic oxygen in the upper atmosphere", *Philos. Mag.*, 10, 369-383.
113. "Wind mixing and diffusion in the upper atmosphere", *Phys. Rev.*, 36, 1014-1015.
114. "Electric and magnetic state of the interior of the earth as inferred from terrestrial magnetic variations" (with A. T. Price), *Philos. Trans. Roy. Soc.*, 229, 427-460.

1931

115. "World-wide oscillations of the atmosphere" (with S. K. Pramanik and J. Topping), *Gerlands Beitr. Geophys.*, 33, 246-260.
116. "The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth", *Proc. Phys. Soc.*, 43, 26-45.
117. "The audibility and lower-most altitude of the aurora polaris", *Nature*, 127, 341-342.
118. "On the variability of the quiet-day diurnal magnetic variation Part II" (with J. M. Stagg), *Proc. Roy. Soc. Ser. A*, 130, 668-697.
119. "Lunar atmospheric tide at Ocean Island" (with M. Hardman), *Q. Jl. R. met. Soc.*, 57, 163-167; *Nature*, 127, 577.
120. "Some phenomena of the upper atmosphere (Bakerian Lecture)", *Proc. Roy. Soc. Ser. A*, 132, 353-374.
121. "Contribution to Roy. Soc. discussion on ultra-penetrating rays", *Proc. Roy. Soc. Ser. A*, 132, 349-352.
122. "A new theory of magnetic storms, Part I, the initial phase" (with V. C. A. Ferraro), *Terr. Magn. atmos. Elect.*, 36, 77-97, 171-186.
123. "The absorption and dissociative or ionizing effect of monochromatic radiation in an atmosphere on a rotating earth, Part II, grazing incidence", *Proc. Phys. Soc.*, 43, 483-501.

1932

124. "Lunar atmospheric tide at Kimberley 1896-1915", *Mem. Roy. Met. Soc.*, 4, 29-33.
125. "The influence of a solar eclipse upon upper atmospheric ionization", *Monthly Notices Roy. Astronom. Soc.*, 92, 413-420.
126. "Clouds high in the stratosphere", *Nature*, 129, 497-499.
127. "Suggested wireless observations during the solar eclipse of August 31, 1932", (with E. V. Appleton) *Nature*, 129, 757-758.
128. "Polar lights" (Lecture to the annual general meeting of the British Science Guild, May 25), *Nature*, 129, 821-822.
129. "A new theory of magnetic storms, Part I, the initial phase (continued)", (with V. C. A. Ferraro) *Terr. Magn. atmos. Elect.*, 37, 147-156, 421-429.
130. "The lunar diurnal variation of atmospheric temperature at Batavia, 1866-1928", *Proc. Roy. Soc. Ser. A*, 137, 1-24.
131. "The field energy of magnetic storms", *Terr. Magn. atmos. Elect.*, 37, 269-272.
132. "Upper air ionisation (RAS Geophysical Discussion)", *Observatory*, 55, 79.

133. "Lunar atmospheric tide at Apia (Samoa)" (with A. Thompson), *Mem. Roy. Met. Soc.*, 4, 32, 21–25.

134. "Tides in the atmosphere", *J. London Math. Soc.*, 7, 68–80.

135. "On the theory of the lunar tidal variation of atmospheric temperature", *Mem. Roy. Met. Soc.*, 4, 35–40.

1933

136. "Atoms, molecules and the atmosphere (Presidential Address, Roy. Met. Soc.)", *Q. Jl. R. met. Soc.*, 59, 97–123.

137. Contribution to Roy. Soc. discussion on the ionosphere", *Proc. Roy. Soc. Ser. A*, 141, 703–706.

138. "A new theory of magnetic storms, Part II, the main phase" (with V. C. A. Ferraro), *Terr. Magn. atmos. Elect.*, 38, 79–96.

139. "The effect of a solar eclipse on the earth's magnetic field", *Terr. Magn. atmos. Elect.*, 38, 175–183.

140. "The sun's magnetism", *State Service*, 207–208.

141. "The ionized regions in the upper atmosphere", Sixth Pacific Science Congress, Univ. Toronto Press, 2181–2184.

1934

142. "The lunar atmospheric tide at Buenos Aires 1891–1910" (with M. Austin), *Q. Jl. R. met. Soc.*, 60, 23–28.

143. "Some ratios of infinite determinants occurring in the kinetic theory of gases", *J. London Math. Soc.*, 8, 266–272.

144. "The gases of the atmosphere (Presidential Address Roy. Met. Soc.)", *Q. Jl. R. met. Soc.*, 60, 127–142.

145. "A mechanical-optical method of reduction of pairs of auroral plates", *Terr. Magn. atmos. Elect.*, 39, 299–303.

146. "Radio exploration of the ionosphere", *Nature*, 133, 908.

1935

147. "The Götz inversion of intensity-ratio in zenith-scattered sunlight", *Philos. Trans. Roy. Soc.*, 234, 205–230.

148. "Lunar atmospheric tide at Honolulu, 1905–1924", *Q. Jl. R. met. Soc.*, 61, 189–194.

149. "Lunar tide in the earth's atmosphere", *Proc. Roy. Soc. Ser. A*, 151, 105–117.

150. "Lunar atmospheric tide over Canada, 1897–1932", *Q. Jl. R. met. Soc.*, 61, 359–366.

151. "The electric current systems of magnetic storms", *Terr. Magn. atmos. Elect.*, 40, 349–370.

152. "Report on ionization changes during a solar eclipse" (with E. V. Appleton), *Proc. Inst. Radio Eng.*, 23, 658–669.

1936

153. "The upper atmosphere" (with W. C. Price), Reports on Progress in Physics (Phys. Soc.), 3, 42–64.

154. "The lunar atmospheric tide in the Azores, 1894–1932", *Q. Jl. R. met. Soc.*, 62, 41–45.

155. "The lunar atmospheric tide at Glasgow", *Proc. Roy. Soc. Edin.*, A, 56, 1–5.

156. "The space gradients of the earth's magnetic field", *Terr. Magn. atmos. Elect.*, 41, 127–136.

157. "The lunar atmospheric tide at Melbourne, 1869–1892, 1900–1914" (with M. Hardman and J. C. P. Miller), *Q. Jl. R. met. Soc.*, 62, 540–551.

158. "Ozone and water vapour in the atmosphere", *Z. f. Geophys.*, 12, 377–382.

1937

159. "On Boltzmann's *H*-theorem", *Nature*, 139, 931.

160. "Cosmic rays and magnetic storms", *Nature*, 140, 423–424.

161. "The lunar atmospheric tide at five Japanese stations", *Q. Jl. R. met. Soc.*, 63, 457–469.

162. "The heating of the ionosphere by the electric currents associated with geomagnetic variations", *Terr. Magn. atmos. Elect.*, 42, 355-358.

163. "The heating of the earth and oceans by induced electric currents", *Terr. Magn. atmos. Elect.*, 42, 359-360.

164. "On the production of auroral and night sky light", *Philos. Mag.*, 23, 657-665.

165. "Tides in the atmosphere", *Observatory*, 60, 154-165.

1938

166. "The aurora", *J. Brit. Astron. Assoc.*, 48, 5; *Nature*, 141, 695.

167. "Atmospheric sodium", *Met. Mag.*, 73, 137-139.

168. "On theories of magnetic storms and aurrae", *Terr. Magn. atmos. Elect.*, 43, 77-79.

169. "The lunar atmospheric tide at Accra, Gold Coast", *Q. Jl. R. met. Soc.*, 64, 523-524.

170. "Geomagnetism or terrestrial magnetism", *Terr. Magn. atmos. Elect.*, 43, 321.

171. "The electric current system of geomagnetic disturbance", (with E. H. Vestine) *Terr. Magn. atmos. Elect.*, 43, 351-382.

172. "The auroral display of January 25-26, 1938", *Q. Jl. R. met. Soc.*, 64, 219-221.

1939

173. "The atmospheric height distribution of band-absorbed solar radiation", *Proc. Phys. Soc.*, 51, 93-109.

174. "The primary and secondary scattering of sunlight in a plane-stratified atmosphere of uniform composition", (with A. Hammad) *Philos. Mag.*, 28, 99-110.

175. "Spectroscopic and other evidence as to chemical composition and dissociation (the upper atmosphere: discussion)", *Q. Jl. R. met. Soc.*, 65, 310-13; *Nature*, 143, 1074.

176. "United States Geophysical Expedition to the Pacific Ocean", *Nature*, 144, 182.

177. "Notes on atmospheric sodium", *Astrophys. J.*, 90, 309-316.

178. "Solar influences on the earth's magnetism on the upper atmosphere": 5th Report of the Commission on solar-terrestrial relationships, Firenze, 111-115.

179. "Dependence of thermal diffusion on the concentration ratio", *Nature*, 146, 431.

180. "Tides in the air (Presidential Address to Meteorological Association 1940)", UGGI, General Assembly, Washington, *Nature*, 145, 257.

181. "The proof of the formula for the vector triple product" (with E. A. Milne), *Math. Gaz.*, 23, 35-38.

182. "Two new books on terrestrial magnetism and electricity; a review and a preview", *Terr. Magn atmos. Elect.*, 44, 383-388.

1940

183. "The statistical determination of lunar daily variations in geomagnetic and meteorological elements" (with J. C. P. Miller), *Monthly Notices Roy. Astronom. Soc.*, *Geophys. Suppl.*, 4, 649-669.

184. "The theory of the first phase of a geomagnetic storm" (with V. C. A. Ferraro), *Terr. Magn. atmos. Elect.*, 45, 245-268.

185. "Dependence of thermal diffusion on the concentration ratio", *Nature*, 146, 431.

186. "Molecular fields of force; retrospect and suggestions", *Nature*, 146, 607-609.

187. "Molecular fields of force", *Nature*, 146, 747.

188. "Characteristics of thermal diffusion", *Proc. Roy. Soc. Ser. A*, 177, 38-62.

1941

189. "Notes on isomagnetic charts, I—Their singular points and modal lines, II—The form and disposition of the nodal curves", *Terr. Magn. atmos. Elect.*, 45, 433-450.

190. "The geomagnetic ring current, I—Its radial stability", (with V. C. A. Ferraro) *Terr. Magn. atmos. Elect.*, 46, 1-6.

191. "Notes on isomagnetic charts, III—The isogonic and X-, Y-charts for the centred dipole field", *Terr. Magn. atmos. Elect.*, 46, 7–14.

192. "Notes on isomagnetic charts, IV—Geomagnetic dipoles, their nature and that of the isomagnetic lines in their neighbourhood", *Terr. Magn. atmos. Elect.*, 46, 15–26.

193. "Notes on isomagnetic charts, V—The occurrence of local dipoles", *Terr. Magn. atmos. Elect.*, 46, 163–172.

194. "The sun as a producer of energy (partial abstract of Kelvin lecture, May 8)", *Nature*, 147, 792–794.

195. "The sun and the ionosphere", *J. Inst. Elec. Eng.*, 88, 400–413.

196. "Edmund Halley as physical geographer and the story of his charts", *Occas. Notes RAS*, 1, 122–134.

197. "Illumination de l'atmosphère et du sol par la radiation solaire, étude générale" (with A. Hammad), *La Meteorologie*, 3rd Series, 172–182.

198. "Velocity of diffusion in a mixed gas, the second approximation" (with T. G. Cowling), *Proc. Roy. Soc. Ser. A*, 179, 159–169.

199. "Charles Chree and his work on geomagnetism", *Proc. Phys. Soc.*, 53, 6, 629–657 (Charles Chree address); *Nature*, 148, 153–157.

200. "Greenwich frequency-statistics of geomagnetic disturbance", *Terr. Magn. atmos. Elect.*, 46, 385–400.

1942

201. "Approximate formulae for functions expressed as definite integrals" (with A. Majid Mian), *Philos. Mag.*, Ser. 7, 33, 115–130.

202. "Notes on isomagnetic charts, VI—Earth-air electric currents, and the mutual consistency of the H and D isomagnetic charts", *Terr. Magn. atmos. Elect.*, 47, 1–13.

203. "The rate of ion-production at any height in the earth's atmosphere" (with A. Majid Mian), *Terr. Magn. atmos. Elect.*, 47, 31–44.

204. "Source of the sun's energy (President's Address, RAS)", *Monthly Notices Roy. Astronom. Soc.*, 102, 110–130.

205. "Notes on isomagnetic charts, VII—Mathematical notes on isoporic charts and their singular points", *Terr. Magn. atmos. Elect.*, 47, 115–138.

206. "Notes on isomagnetic charts VIII—The mutual consistency of the declination and horizontal-intensity isoporic charts", *Terr. Magn. atmos. Elect.*, 47, 139–146.

207. "Blaise Pascal (1623–1662), tercentenary of the calculating machine", *Nature*, 150, 508–509.

208. "Notes on the lunar geomagnetic tide, I—Its mathematical and graphical representations, and their significance", *Terr. Magn. atmos. Elect.*, 47, 279–294.

1943

209. "Atmospheric physics and chemistry", *Reports on Progress in Physics*, 9, 1–4.

210. "Photo-chemistry of atmospheric oxygen", *Reports on Progress in Physics*, 9, 92–100.

211. "Archaeologica geomagnetica", *Terr. Magn. atmos. Elect.*, 48, 1–2.

212. "Archaeologica geomagnetica, II", *Terr. Magn. atmos. Elect.*, 48, 77–78.

213. "Magnetism in the sun's atmosphere (President's Address, RAS)", *Monthly Notices Roy. Astronom. Soc.*, 103, 117–130.

214. "Edmund Halley and geomagnetism (Halley Lecture)", *Nature*, 152, 231–237; *Terr. Magn. atmos. Elect.*, 48, 131–144, 251.

215. "Stick patterns of incendiary bombs", *Min. Home Sec., R.E.N.*, 206.

1944

216. "A theoretical note on the magnetic field of a circular sunspot", *Terr. Magn. atmos. Elect.*, 49, 37–42.

217. "Up and down and round about: a film scenario", *Discovery*, 5, 267-272.
 218. "William Gilbert and the science of his time", *Nature*, 154, 132-136.

1945

219. "The earth's magnetism", *Discovery*, 6, 316-320, 334-338.
 220. "A plea for the abolition of meteorology", *Weather*, 1, 146.

1946

221. "Some thoughts on nomenclature", *Nature*, 157, 405.
 222. "The university training of mathematicians", *Math. Gaz.*, 30, 61-70.

1947

223. "Atmospheric oscillations (RAS discussion)", *Nature*, 159, 357-360.
 224. "The radiations from the earth's atmosphere" (with D. R. Bates), *Nature*, 160, 250-251.
 225. "Des meteores et l'atmosphere", *L'Astronomie*, 61, 225-243.
 226. "Les Marées atmosphériques", *Revue Scientifique*, 85, 847-859.
 227. "Magnetic field of moon?", *Nature*, 160, 395.
 228. "Les orages magnétiques", *Revue Scientifique*, 85, 387-400.

1948

229. "Theories of aurorae (Gassiot Committee report, the emission spectra of the night sky and aurorae)", *Phys. Soc.*, 120-132.
 230. "The emission spectra of the night sky and aurorae (Gassiot Committee report)", *Phys. Soc.*, 1-3.
 231. "Solar influences on the earth's magnetism and on the upper atmosphere, ICSU, relations between solar and terrestrial phenomena", Report 6, 65-68.
 232. "Variation of geomagnetic intensity with depth", *Nature*, 161, 52.
 233. "The stratosphere", *Weather*, 3, 2-9.
 234. "The earth's surface magnetic field and its secular change", *Nature*, 161, 160-161.
 235. "The main geomagnetic field (Report of RAS Geophysical Discussion)", *Nature*, 161, 426-464.
 236. "Solar magnetism and the suggested fundamental magnetization by rotation", *Monthly Notices*, 108, 236-251; *Nature*, 163, 165.
 237. "The dipole moment of the supposed fundamental magnetic field due to rotation", *Proc. Phys. Soc.*, 61, 95.
 238. "The supposed fundamental geomagnetic field", *Ann. de Geophys.*, 4, 109-123.
 239. "The abnormal daily variation of horizontal force at Huancayo and in Uganda", *Terr. Magn. atmos. Elect.*, 53, 247-250.
 240. "Some meteorological advances since 1939 (Presidential Address, Assn. of Meteorology, VIIIth Assembly IUGG, Oslo)", *Proces-Verbaux des Séances de l'Association de Meteorologie*, 2-25, 4 pp. diagrams.
 241. "The radial variation of the earth's magnetic field" (with S. K. Runcorn), *Proc. Phys. Soc.*, 61, 373-382.
 242. "The lunar atmospheric tide at twenty-seven stations widely distributed over the globe" (with K. K. Tschu), *Proc. Roy. Soc. Ser. A*, 195, 310-323.

1949

243. "The spectroscopic observation of solar corpuscular emissions that produce magnetic storms", *Revue d'optique théorique et instrumentale* colloques de Lyon, 143-155.
 244. "Optical and radio frequency absorption by solar corpuscular bursts" (with A. Unsold), *Observatory*, 69, 219-221.
 245. "Cosmic ray expedition", *Nature*, 164.

1950

246-248. "Upper atmospheric nomenclature", *J. atmos. terr. Phys.*, 1, 121-124, 201; *J. Geophys. Res.*, 55, 395-399; *Bull. Amer. Met. Soc.*, 31, 288-290.

249. "Solar physics and the aurora polaris (at an exhibition of British scientific instruments, March 31)", *Nature*, 165, 784.

250. "Corpuscular influences upon the upper atmosphere", *J. Geophys. Res.*, 55, 361-372.

1951

251. "Photo-chemical processes in the upper atmosphere and resultant composition", *Compendium of Meteorology*, Boston, 262-274.

252. "Atmospheric tides and oscillations", *Compendium of Meteorology*, Boston, 510-530.

253. "Note on a supposed determination of the lunar diurnal tide in the ionosphere", *J. Met.*, 8, 133-134.

254. "Notes on aurorae and magnetic storms, I—Considerations as to a model experiment", *J. atmos. terr. Phys.*, 1, 189-199.

255. "The normality of geomagnetic disturbances at Huancayo", *Geofis. Pura Appl.*, 19, 151-158.

256. "The theory of magnetic storms and aurorae", *Nature*, 168, 86.

257. "Some phenomena of the upper atmosphere", *Proc. Phys. Soc.*, B, 64, 833-844; *Nature*, 167, 588.

258. "The equatorial electrojet as detected from the abnormal electric current distribution above Huancayo, Peru, and elsewhere", *Arch. für Met. Geophys. u. Bioklim.*, 4, 368-390.

259. "Lunare Schwankungen im Luftdruck $L(p)$ ", *Phys. Chem. Techn. Zahlenwerte*, 3, 673-688.

1952

260. "The calculation of the probable error of determination of the lunar daily harmonic component variations in geophysical data: a correction", *Australian J. Sci. Res.*, A, 5, 218-222.

261. "Theories of the aurora polaris", *Ann. de Geophys.*, 8, 205-225. This paper was originally given at the conference on auroral physics at the University of Western Ontario, London, Ontario, organized by the University and AFCRC. It was published by the latter in 1954 as Geophysical Research Paper 30, pp. 367-389, with a short report of the discussion following the paper.

262. "The geometry of radio echoes from the aurora", *J. atmos. terr. Phys.*, 3, 1-29.

263. "The morphology of geomagnetic storms: an extension of the analysis of D_s , the disturbance local-time inequality", *Ann. di Geofisica*, 5, 481-499.

1953

264. "Polar and tropical aurorae and the isoauroral diagram", *Proc. Indian Acad. Sci.*, A, 37, 175-188.

265. "Meteors and meteorites (21st Joseph Henry lecture)", *J. Washington Acad. Sci.*, 42, 273-282.

266. "Note on the grazing incidence integral $Ch(x, \chi)$ for monochromatic absorption in an exponential atmosphere", *Proc. Phys. Soc.*, B, 66, 8, 710-712.

267. "The International Geophysical Year 1957-58", *Nature*, 172, 327-329.

268. "Notes on auroral geometry and optics, I—To locate an elevated point viewed from two ground stations in the same diametral plane", *J. Geophys. Res.*, 58, 347-352.

1954

269. "The International Geophysical Year and some American aspects of it", *Proc. Nat. Acad. Sci.*, 40, 924-926.

270. "Rockets and the magnetic exploration of the ionosphere", in *Rocket Exploration of the Upper Atmosphere*, Pergamon Press, 292-305.

271. "Tides in the atmosphere", *Sci. Am.*, 190, 36-39.

272. "Winds in the ionosphere", *Physics Today*, 7, 8-12.

273. "The viscosity and thermal conductivity of a completely ionized gas", *Astrophys. J.*, 120, 151-155.

274. "A monochromatically ionized layer in a non-uniformly recombinant atmosphere with application to the D and E ionospheric regions", *Proc. Phys. Soc., B*, 67, 717-727.

275. "Notes on the theory of magnetic storms", *Indian J. Meteorol. and Geophys.*, 5 (special geophysical number), 33-40.

1955

276. "The molecular diffusive rate of change of composition in the atmosphere", *J. Meteorol.*, 12, 111-116.

277. Presidential address to the Xth General Assembly of the IUGG (Rome, September 14), *IUGG Newsletter*, 4, 10, 270-277.

1956

278. "A comparison of the annual mean solar and lunar atmospheric tides in barometric pressure as regards their world-wide distribution of amplitude and phase", *J. atmos. terr. Phys.*, 8, 1-23.

279. "Geomagnetic eclipse phenomena, solar eclipses and the ionosphere", *Spec. Suppl.* 6 to *J. atmos. terr. Phys.*, 221-227; *Nature*, 176, 947-948.

280. "The electrical conductivity of the ionosphere", a review, *Il Nuovo Cimento, Series X*, 4, Suppt. 4, 1385-1412.

281. "A study on the morphology of geomagnetic storms geomagnetic time", *Geophys. Inst. Alaska Sci. Rep.*

282. "The morphology of geomagnetic storms and bays, a general review", *Vistas in Astronomy*, 2, Pergamon Press, 912-928.

283. "Achievements and prospects in auroral and airglow research", *The Airglow and the Aurora*, Pergamon Press, 1-8.

284. "Note on persistent meteor trails", *The Airglow and the Aurora*, Pergamon Press, 204-205.

285. "Arc lengths along the lines of force of a magnetic dipole", (with M. Sugiura) *J. Geophys. Res.*, 61, 485-488.

286. "Aurora and airglow" (Notes for a lecture given at the IGY Arctic Conference, Stockholm, May), *IGY Ann.*, IIB, 497-499.

1957

287. "The aurora in middle and low latitudes", *IGY Annals*, 4, 25-40; *Nature*, 179, 7-11.

288. "The nondeviative absorption of high-frequency radio waves in auroral latitudes" (with C. G. Little), *J. atmos. terr. Phys.*, 10, 20-31.

289. "The lunar and solar daily variations of the horizontal geomagnetic vector at Greenwich, 1848-1913, with an appendix on the lunar daily variation of magnetic declination at Pavlovsk and Sitka", *Abhand. Akad. Wiss. Göttingen, Math. Physik. Kl. Sonderh.*, 3, 1-48.

290. "Notes on the solar corona and the terrestrial ionosphere (with Suppt. note by H. Zirin)", *Smithsonian Contributions to Astrophysics*, 2, 1-14.

291. "Speculations on the atomic hydrogen and the thermal economy of the upper atmosphere", *The Threshold of Space*, Pergamon Press, 65-72.

292. "The International Geophysical Year", in *The Planet Earth*, Ed. D. R. Bates, Pergamon Press, 1-11.

293. "Auroral observations in India and Pakistan", *Bull. Nat. Inst. Sci. India*, 9, 180-192.

294. "A simple elevometer for auroral observation" (with J. Bartels), *IGY Ann.*, IV, 62-64.

295. "Visual auroral observation", *IGY Ann.* IV, Part II, 41-103.

296. "Auroral photography by all-sky camera" (with C. T. Elvey, W. Stoffregen, A. Belon, N. Herlofson), *IGY Ann.*, V, Part II, 121-151.

1958

297. "Thermal diffusion in gaseous nebulae" (with L. H. Aller), *Astrophys. J.*, 127, 797-798.

298. "Atmospheric chemistry and chemical aeronomy (with a reply from B. C. V. Oddie)", *Met. Mag.*, 87, 275-277.

299. "Thermal diffusion in gases", *Transport Properties in Gases*, Northwestern University Press, 143-150.

300. "On the approximate daytime constancy of the absorption of radio waves in the lower ionosphere", (with K. Davies) *J. atmos. terr. Phys.*, 13, 86-89.

301. "Thermal diffusion in ionized gases", *Proc. Phys. Soc.*, 72, 353-362.

302. "Eine Einundzwanzig-jährige reihe erdmagnetischer Störungsdaten, dargestellt in Hinblick auf das Auftreten von Polarlicht in niederen Breiten" (with J. Bartels), *Abhand. Akad. Wiss., Göttingen, BIJG*, 1, English translation.

303. "The terrestrial implications of thermal conduction in the solar corona (abstract of paper presented at Washington AGU)", *Trans., AGU*, 39, 510.

1959

304. "On the aurora of 19 August 1950, photographed from Greece" (with W. N. Abbott), *J. atmos. terr. Phys.*, 14, 111-120.

305. "Cosmic examples of heat conduction in very rare rotating and expanding gases", *Ann. de Geophys.*, 15, 434-444.

306. "Mechanics of energy transport from sun to earth", *Discovery*, XX, 1-16.

307. "The extended solar corona", *Proc. Symp. Physical Processes in the Sun-Earth Environment* (DRTE pub. 1025), Ottawa, 1-10.

308. "Interplanetary space and the earth's outermost atmosphere", *Proc. Roy. Soc. Ser. A*, 253 462-481.

309. "The earth in the sun's atmosphere", *Sci. Am.*, 201, 64-71.

310. "Introduction to the history of the first International Polar Year", *IGY Ann.*, Vol. 1, 3-5.

311. "The earth and its environment", *Proc. Inst. Radio Eng.*, 47, 137-141.

312. "Disturbances in the lower auroral ionosphere", *J. atmos. terr. Phys.*, 15, 29-37.

313. "The outermost ionosphere", *J. atmos. terr. Phys.*, 15, 43-47.

314. "The extended solar corona", *Proc. Symp. Phys. Processes in the Sun-Earth environment*, DRTE pub., 1025, Ottawa, 1-10.

1960

315. "The average morphology of geomagnetic storms with sudden commencement", (with M. Sugiura) *Abhand. Akad. Wiss. Göttingen, Math. Physik Kl. Sonderh.*, 4.

316. "The thermosphere—the earth's outermost atmosphere", *Physics of the Upper Atmosphere*, J. A. Ratcliffe, ed., Acad. Press, New York and London, 1-16.

317. "Contributions to discussion in chapter 5" in *Plasma Dynamics*, F. H. Clauser, ed., Addison-Wesley Publishing Company.

318. "Foreword, in International Geophysical Year and Cooperation in Czechoslovakia" (Czechoslovak National IGY/IGC report), Prague 5-7.

319. "From polar years to geophysical year", *Studia Geoph. et Geodet.*, Czechoslovakia, 4, 313-324.

320. "Geomagnetic storms and the space around the earth", *Nature*, 187, 824-827.

321. *Geomagnetic storm; geomagnetic variations; geomagnetism*, McGraw-Hill Encyclopedia 143-150.

322. "Diffusion in the sun" (with L. H. Aller), *Astrophys. J.*, 132, 461-472.

323. "Idealized problems of plasma dynamics relating to geomagnetic storms", *Rev. Mod. Phys.*, 32, 919-933 (also in *Magneto-Fluid Dynamics*, F. N. Frenkiel and W. R. Sears, eds., Nat. Res. Council).

324. "The sudden commencement of geomagnetic storms" (with S.-I. Akasofu), *Urania* (Spain), 250, 1-35.

325. "The aurora polaris", *Pears Cyclopaedia*, London, 70, Science Section, Part IV, F49-52.

1961

326. "Scale times and scale lengths of variables, with geomagnetic and ionospheric illustrations", *Proc. Phys. Soc.*, 77, 424-432.

327. "Ionization above the F2 peak, as affected by the interplanetary gas (the upper atmosphere above F2 maximum)", *AGARDograph*, 42, 11-18.

328. "The earth's atmosphere and beyond", *Encyclopedia Year Book*, Grolier, 220-222.

329. "A neutral line discharge theory of the aurora polaris" (with S.-I. Akasofu), *Philos. Trans. Roy. Soc.*, 253, 359-406.

330. "The magnetic storms of July 1959 and tentative interpretations" (with S.-I. Akasofu), *IUGG Monographs*, 7, 93-108.

331. "Regular motions in the ionosphere: electric and magnetic relations", *Bull. Amer. Met. Soc.*, 42, 85-100.

332. "Geomagnetic storms: their physical analysis and classification", *Studia Geoph. et Deodet. Czechoslovakia*, 5, 30-50.

333. "The ring current, geomagnetic disturbance and the Van Allen radiation belts" (with S.-I. Akasofu), *J. Geophys. Res.*, 66, 1321-1350.

334. "An idealized problem of plasma dynamics that bears on geomagnetic storm theory, oblique projection" (with P. C. Kendall), *J. atmos. terr. Phys.*, 22, 142-156.

335. "Sun storms and the earth: the aurora polaris and the space around the earth", *American Scientist*, 49, 249-284.

336. "Dynamical and other aspects of cosmic gases of low density", *Advances in Applied Mechanics*, 6, Suppt. 1, in *Rarefied Gas Dynamics*, L. Talbot, ed., Academic Press, 669-690.

337. "World magnetic survey", *New Scientist*, 242, 32-34.

338. "The solar corona and the interplanetary gas", in *Space Astrophysics*, W. S. Liller, ed., McGraw-Hill, 133-149.

339. "New theory of the aurora polaris" (with S.-I. Akasofu), *Amer. Rocket Soc. J.*, 31, 775-783.

340. "The magnetic field of a model radiation belt, numerically computed" (with S.-I. Akasofu and J. C. Cain), *J. Geophys. Res.*, 66, 4013-4026.

341. "Some recent advances in gas transport theory; thermal diffusion in dusty and in ionized gases, and thermal conduction in plasmas in magnetic fields", in *Progress in International Research on Thermodynamic and Transport Properties*, American Society of Mechanical Engineers, Academic Press, 257-265.

1962

342. "Earth storms, retrospect and prospect", *J. Phys. Soc. Japan*, 17, Suppt. A-1, 6-16.

343. "Motion of small suspended particles in non-uniform gases", (with E. A. Mason) *J. Chem. Phys.*, 36, 627-632.

344. "The ring current and a neutral line discharge theory of the aurora polaris" (with S.-I. Akasofu), *J. Phys. Soc. Japan*, 17, Suppt. A-1, 169-173.

345. "Electric current in the ionosphere and the aurora", *J. Phys. Soc. Japan*, 17, Suppt. A-1, 325-328.

346. "Magnetic variation, lunar", *Ency. Dict. of Phys.*, IV, Pergamon Press.

347. "Magnetic variations, solar daily", *Ency. Dict. of Phys.*, IV, Pergamon Press, 945-949.

348. "Large scale auroral motions and polar magnetic disturbances, III—The aurora and magnetic storm of 11 February 1958" (with S.-I. Akasofu), *J. atmos. terr. Phys.*, 24, 785-796.

349. "A large change in the distribution of the auroras during the 11 February 1958 magnetic storm" (with S.-I. Akasofu), *J. atmos. terr. Phys.*, 24, 740-742.

350. "The extended solar corona", *Proc. IAU Symposium* 16, J. W. Evans, ed., Academic Press.

351. "The magnetic field of the quiet-time proton belt" (with S.-I. Akasofu and J. C. Cain), *J. Geophys. Res.*, 67, 2645-2647.

352. "Lunar atmospheric tides and winds", in 50th Anniversary Commemorative Volume of San Miguel Observatory, 137-142.

353. "The International Geophysical Year, the earth and its atmosphere", chapter 1 in *The Planet Earth*, D. R. Bates, ed., Pergamon Press, Rev. ed. 1962, Suppt., 551-555.

354. "Geomagnetism and the ring current", Suppt. to McGraw-Hill Ency.

355. "The motion of charged particles in a model discontinuous magnetic field" (with P. C. Kendall), *Bull. Inst. Politeh. Jassy*, 12, 81-92.

1963

356. "The enhancement of the equatorial electrojet during polar magnetic substorms" (with S.-I. Akasofu), *J. Geophys. Res.*, 68, 2375-2382.

357. "The development of the main phase of magnetic storms" (with S.-I. Akasofu), *J. Geophys. Res.*, 68, 125-129.

358. "Geomagnetic nomenclature", *J. Geophys. Res.*, 68, 1174.

359. "The main phase of great magnetic storms" (with S.-I. Akasofu and D. Venkatesan), *J. Geophys. Res.*, 68, 3345-3350.

360. "Magnetic storms: the simultaneous development of the main phase (DR) and of polar magnetic substorms (DP)" (with S.-I. Akasofu), *J. Geophys. Res.*, 68, 3155-3158.

361. "Liquid instability and energy transformation near a magnetic neutral line: a soluble non-linear hydromagnetic problem" (with P. C. Kendall), *Proc. Roy. Soc. Ser. A*, 271, 435-448.

362. "The lower limit of latitude (U.S. sector) of northern quiet auroral arcs and its relation to Dst (H)" (with S.-I. Akasofu), *J. atmos. terr. Phys.*, 25, 9-12.

363. "The solar and lunar daily variations of atmospheric pressure at Kimberley, 1932-1960" (with W. L. Hofmeyr), *NOTOS*, 12, 3-18.

1964

364. "The energy of magnetic storms", *Geophys. J. R. astr. Soc.*, 8, 514-536.

365. "Non-adiabatic motion of charged particles traversing a weak magnetic field: pitch angle scattering" (with P. C. Kendall), *Pure Appl. Geophys.*, 59, 100-122.

366. "On the asymmetric development of storm magnetic fields in low and middle latitudes" (with S.-I. Akasofu), *Planet Space Sci.*, 12, 607-626.

367. "The aurora", Chapter 15 in Research in Geophys, Vol. I, "Sun, upper atmosphere and space", H. Odishaw, ed., 367-400.

368. "Aurora and geomagnetic storms", Chapter 7 in Space Physics, LeGalley and Rosen, eds., Wiley, 226-269.

1965

369. "Meteor geomagnetic effects" (with A. A. Ashour), Smithsonian Contributions to *Astrophysics*, 8, 181-197.

370. "Noctilucent clouds and thermospheric dust; their diffusion and height distribution" (with P. C. Kendall), *Q. Jl. R. met. Soc.*, 91, 115-131.

371. "Noctilucent clouds" (with B. Fogle), *Geofisica International*, 5, 15-30.

372. "Introduction to new edition of L. F. Richardson's book *Weather Prediction by Numerical Process*", Dover Publications, v-x.

373. "The magnetic field of electric currents in an unbounded plane sheet, uniform except for a circular area of different uniform conductivity" (with A. A. Ashour), *Geophys. J.*, 10, 31-44.

374. "The H and Z variations along and near the equatorial electrojet in India, Africa and the Pacific" (with K. S. Raja Rao), *J. atmos. terr. Phys.*, 27, 559-581.

375. "A note on the magnetic variations near the equatorial electrojet (correction to H and Z variations paper 1965, No. 374)", *J. atmos. terr. Phys.*, 27, 1095.

376. "The ring current, geomagnetic storms and the aurora", Proc. Plasma Space Sci. Symposium, C. C. Chang and S. S. Huang, eds., 263-279.

377. "The polar electrojet" (with S.-I. Akasofu and C.-I. Meng), *J. atmos. terr. Phys.*, 27, 1275-1305.

378. "Magnetic and ionospheric storms", review paper on magnetic storms discussed at Equatorial Aeronomy Sao Jose dos Campos, Peru, Nov., 1965, in Report on Equatorial Aeronomy, F. de Mendonca, ed., 449-454.

1966

379. "The computation of the magnetic field of any axisymmetric current distribution with magnetospheric applications" (with P. C. Kendall, S.-I. Akasofu and P. Swartztrauber), *Geophys. J.*, 11, 349-364.

380. "Comment on some exact solutions of magnetohydrodynamics" (with P. C. Kendall), *Phys. Fluids*, 9, 2306-2307.

381. "The aurora" (with S.-I. Akasofu and A. B. Meinel), *Handb. der Physik*, Springer Bd. 49, 1-158.

382. "Maree e Correnti nell' Atmosfera", SAPERE, April, 194-197.

383. "Foreward to Proc. of Jet Prob. Lab. Solar Wind Conference", R. J. Mackin, Jr., ed., Pergamon Press, xv-xxviii.

384. "Tables and figures related to the geomagnetic dipole field" (with M. Sugiura), Goddard Space Flight Center (NASA), Reprint No. X-612-66-546, 1966.

1967

385. "The magnetic field of the earth", *Reader's Digest Almanac*, 143.

386. "The normality of the SD variation at Huancayo and the asymmetry of the main phase of geomagnetic storms" (with S.-I. Akasofu), *Planet. Space Sci.*, 15, 205.

387. "The lunar air tide" (with B. Haurwitz), *Nature*, 213, 9-13.

388. "Corrections to papers concerning magnetic effects of model ring currents" (with S.-I. Akasofu), *J. Geophys. Res.*, 72, 445-446.

389. "Solar emissions and magnetic auroral storms on earth", in *Magnetism and the Cosmos*, Oliver and Boyd, 3-28.

390. "The systematic shift of the DS axis" (with S.-I. Akasofu), *Planet. Space Sci.*, 15, 937-938.

391. "History of the aurora and airglow", Proc. NATO Advanced Study Institute, U. of Keele, Staffordshire, England, August 1966.

392. "The kinetic theory of gases fifty years ago", in Lectures in Theoretical Physics, 90, 1-13.

393. "The systematic shift of the DS Axis" (with S.-I. Akasofu), *Planet. Space. Sci.*, 15, 937-938.

394. "History of the aurora and airglow", Proc. NATO Adv. Study Inst., University of Keele, Staffordshire, August 1966. Reprinted from *Aurora and Airglow*, Reinhold Publ. Co., N.Y., 15-28.

395. "The significance of the multiple structure of the auroral arc" (with S.-I. Akasofu and P. C. Kendall), Proc. NATO Adv. Study Inst., University of Keele, Staffordshire, August 1966. Reprinted from *Aurora and Airglow*, Reinhold, 281-286.

396. "The correction for non-cyclic variation in harmonic analysis", *J. atmos. terr. Phys.*, 29, 1625-1627.

397. "Perspective in physics of geomagnetic phenomena" (Matsushita and Campbell), Acad. Press, 1, 3-28.

398. "Some statistics concerning the daily geomagnetic character figure C_p " (with J. C. Gupta), *Pure and Applied Geophys.*, 68, 103-112.

1968

399. "Magnetic field and energy of an axisymmetric van Allen belt" (with P. C. Kendall, P. Swartztrauber and D. W. Windle), *Geophys. J. R. astr. Soc.*, 15, 317-329.

400. "Geomagnetic storms and aurorae" (with S.-I. Akasofu), in *Physics of Geomagnetic Phenomena*, 2, 1113-1151.

401. "Historical introduction to aurora and magnetic storms" (Comm. Birkeland Symposium, 1967), *Ann. Geophys.*, 24, 497-505.

402. "Solar and lunar daily geomagnetic variations at San Fernando and Greenwich in relation to the associated electric current systems" (with B. T. Fogle), *Abhand Lingen der Akademie Wissenschaften in Göttingen*, Nr6, 1-67.

403. "Lunar daily harmonic geomagnetic variation as indicated by spectral analysis" (with J. C. Gupta), *J. atmos. terr. Phys.*, 31, 233-252.

404. "Tropical auroras: True reports and doubtful, unauthenticated or incomplete reports", *Progress of Mathematics*, No. 1, 1-10.

405. "Catching a baseball", *Amer. J. Phys.*, 36, 868-870.

1969

406. "A model midnight meridian magnetospheric field" (with P. C. Kendall, D. W. Windle and S.-I. Akasofu), *Geophys. J. R. astr. Soc.*, 17, 185-194.

407. "The lunar and solar semi-diurnal variations of barometric pressure at Copenhagen, 1884-1949 (66 years)", *Quart. J. Roy. Met. Soc.*, 95, 381-394.

408. "Notes on the computation of the solar and lunar daily magnetic variations of X and Y from hourly and bihourly values of H and declination" (with J. C. Gupta and R. C. Malin), *Gerlands Berichte zur Geophys.*, 78, 103-114.

409. "Early theoretical work on atmospheric ozone", Symposium sur l'ozone atmosphérique; Monaco, 1968, Ed. A. Vassy (Centre National de la Recherche Scientifique), 35-36.

410. "Auroral science, 1600 to 1965: Towards its golden age?" in *Atmospheric Emissions* (Proc. NATO Adv. Study Inst., As, Norway, 1968), Ed. McCormac and Ohmholz, 11-25.

411. "Physics of the earth in space; a program of research, 1968-75", Nat. Res. Council, Washington, D. C., 11, 2429.

412. "Atmospheric tides" (with R. S. Lindzen), *Space Sci. Reviews*, 10, 1-188.

413. "Kepler's laws: demonstration and derivation without calculus", *Amer. J. Phys.*, 37, 1134-1144.

1970

414. "Lunar tidal components O₁ and N₂ in the atmospheric pressure", *Pure and App. Geophys.*, 80, 209-218.

415. "Aeronomy", article in the *Encyclopaedia Britannica*, 215-216.

416. "Aurora" (with J. W. Chamberlain), article in the *Encyclopaedia Britannica*, 767-769.

417. "The determination of lunar daily geophysical variations by the Chapman-Miller method" (with R. S. Malin), *Geophys. J. R. astr. Soc.*, 19, 15-35.

418. "Auroral physics", Annual review of Astronomy and Astrophysics, 8, 61-86.

419. "Sea tidal generation of electric currents and magnetic fields; applications to five stations within the British Isles", *Plan. Space Sci.*, 8, 1597-1605.

420. "Model calculations of sea-tidal generation of electric currents and magnetic fields" (with P. C. Kendall), *Quart. J. Mech. App. Math.*, 23, 535-547.

421. "On the computation of the solar and lunar geomagnetic variations II" (with J. C. Gupta and R. S. Malin), *Gerlands Berichte Geophys.*, 79, 5-10.

Reviews

1. The aurora borealis as observed from Norway (Review of book by C. Störmer), *Nature*, 118, 797–799, 1926.
2. The gyro compass on the Hudson Bay route, *Nature*, 139, 1937.
3. Review of Physik der Atmosphäre, V. Conrad, ed., 3, *Gerlands Beitr. Suppt. Band 4 Physik der Hydro-und Lithosphäre*, 1938.
4. An Introduction to Vector Analysis by Dr. B. Hague, *Nature*, Suppt. to 143, 417, 1939.
5. Review of Magnetic observations of sunspots by G. E. Hale and S. B. Nicholson, *Nature*, 144, 266–267, 1939.
6. International Union of Geodesy and Geophysics, Report of 7th Washington General Assembly *Nature*, 144, 717–718, 1939.
7. Terrestrial magnetism and electricity (ed. J. A. Flemming), *Nature*, 145, 47–48, 1940.
8. Arthur Edwin Kennelly, *Monthly Notices Roy. Astronom. Soc.*, 100, 251–252, 1940.
9. Theory of electrodynamics (review of Electrodynamics by Leigh Page and Norman Ilsley Adams, Jr.), *Nature*, 147, 398–399, 1941.
10. Review: What are cosmic rays? by Pierre Auger (American edition, trans. M. M. Shapiro), *Nature*, 157, 4, 1946.
11. Stanislaw Kalinowski and the Swider Geophysical Observatory, *Nature*, 159, 1947.
12. Review of Methods of Mathematical Physics, by Harold and Bertha Swirles Jeffreys, *Nature*, 160, 1947.
13. Roger Bacon, *Discovery*, 9, 340–346, 1948.
14. The Journal of Geophysical Research, *Nature*, 163, 1949.
15. The aurorae by Dr. L. Harang, *Nature*, 169, 942, 1952.
16. The Potsdam Geodetic Institute, *Nature*, 170, 188, 1952.
17. Milne on Jeans (review of Sir James Jeans, a biography by the late E. A. Milne; with a memoir by S. C. Roberts), *Nature*, 172, 421, 1953.
18. The International Geophysical Year, *Nature*, 175, 55–56, 1955.
19. Scientific programme of the International Geophysical Year, 1957–58, *Nature*, 175, 402–406, 1955.
20. The International Geophysical Year, *The Advancement of Science*, 13, 259–268, 1957.
21. Edmund Halley, F.R.S., Notes and Records, *Roy. Soc.*, 12, 168–174, 1957.
22. All ready to start, *The New Scientist* (special IGY section), June 27, 1957.
23. The International Geophysical Year, *Radio Times*, June 28, 1957.
24. General foreword to the annals of the IGY, *IGY Ann.*, I, 1–2, 1957.
25. Closing remarks to the IGY rockets and satellites conference, Washington, October 1957, *IGY Ann.*, II B, 656–659, 1957.
26. The changing earth, *The Times* (London), June 28, 1957.
27. The International Geophysical Year, *ICSU Review*, 1, 16–26, 1959.
28. Alexander von Humboldt and geomagnetic science, *Ciel et Terre*, 75, 1–16, 1959.
29. International cooperation and the IGY, *Bull. Atomic Scientists*, 16, 172–178, 1960.
30. The International Geophysical Year world magnetic survey, *ICSU Review*, 3, 77–80, 1961.
31. Review, Handbook of Geophysics, *Bull. Amer. Met. Soc.*, 42, 304, 310, 1961.
32. Review, the earth and beyond: IGY discoveries, and what more may be done, *Science*, 134, 41–43, 1961.
33. Alexander von Humboldt and geomagnetic science, *Archive for History of Exact Sciences* 2, 41–51, 1962.
34. Review of Physics of the Aurora and Airglow by J. W. Chamberlain, *Bull. Met.*, 44, 38, 1962.
35. Review of Keoeeit—the Story of the Aurora Borealis, by W. Petrie (Macmillan), *Bull. Amer. Met. Soc.*, 45, 660, 1964.
36. Fisica dell'aurora polare, *SAPERE*, No. 660 (Dec.), 704–709, 1964.

37. Julius Bartels—Geomagnetism and International Geophysics (with W. Dieminger and W. Kertz),
Nach. Akad. Wiss., Göttingen, II Math., Physik. Kl. 22, 281–285, 1964.
38. Harry Wexler, 1911–1962, excellent and devoted student of our wonderful atmosphere, *Bull. Amer. Met. Soc.*, 46, 226–240, 1965.
39. Le nubi nottilucenti (with B. Fogle), *SAPERE*, XLI, 326–330, 1965.

Obituaries

1. Charles Chree, *Terr. Magn. atmos. Elect.*, 33, 185–187, 1928.
2. Arthur Schuster, 1851–1934, *Terr. Magn. atmos. Elect.*, 39, 341–345, 1940.
3. Vito Volterra, For. Mem. Roy. Soc., *Nature*, 147, 350, 1941.
4. Professor A. R. Forsyth, F.R.S., *Nature*, 150, 49–50, 1942.
5. Professor D. LaCour, *Nature*, 150, 115–116, 1942.
6. Professor David Enskog, *Nature*, 161, 193–194, 1948.
7. Professor A. Lo Surdo, *Nature*, 164, 1949.
8. Professor Carl Störmer, For. Mem. Roy. Soc., *Nature*, 180, 633–634, 1957.
9. Frederik Carly Mülertz Störmer, 1874–1957, *Biographical Memoirs of the Roy. Soc.*, 4 257–279, 1958.
10. James Hopwood Jeans, *Colliers Ency.*, 1960.
11. Julius Bartels, *Quart. J. Roy. Astron. Soc.*, 6, 235–245, 1966.