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Gustave Choquet, 1915–2006
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1. Life [131, 137, 155], 〈12, 29, 38, 49, 50, 53, 54, 60, 61〉
Gustave Choquet, who was the Hardy Lecturer of the London Mathematical Society in 1969
and who was elected an Honorary Member of the Society in 1988, died on 14 November 2006,
aged 91. He will be remembered not only for his fundamental contributions to mathematics,
but also as a truly inspiring teacher. His outstanding talents were allied to great kindness and
deep humanity, and he won the respect and the warm affection of his many pupils and of
scientific colleagues worldwide.

His work in functional analysis and potential theory profoundly marked the development of
mathematical analysis in the second half of the twentieth century. In particular he created the
theory of capacities, as well as that of integral representations in convex sets. He was a person
of great mathematical learning, and his research and books brought him international fame.
In addition, he was passionately concerned to promote good mathematical teaching, and was
for many years president of an international commission for its improvement.

Gustave Alfred Arthur Choquet was born on 1 March 1915 in Solesmes, near Valenciennes in
the Nord département of France. His parents and grandparents were all from the Valenciennes
region. He was the second of three children, and the only son, of Gustave Choquet and Marie
Choquet (née Fosse).

His father had distinguished himself at primary school when taking his Certificat d’Études
by winning the top prize of the département, but had then chosen to leave school in order
to work. Since July 1914, however, he had been at the front, and so his wife was obliged to
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look after the young Gustave and his sister during the hardships of the war. They were in
due course evacuated with great difficulty, via Switzerland and Paris, to the Vendée. Details of
the family’s peaceful life in a tiny hamlet there remained among the son’s earliest memories.
After the war the family were briefly at Valenciennes, and then moved a short distance to the
village of Saultain, where his father became Chief Accountant of a firm making coarse textile
products.

His father had a sense of duty and seriousness about work which made a lasting impression
on his son, but he also took great joy in playing the clarinet in the local band. Encouraged by
his father, the young Gustave learned to play the flute, and was able to join in concerts and
festivals in the local villages. Another occupation shared with his father was the cultivation of
the family garden, from which he derived a lifelong love of gardening. His mother contributed
great human warmth to the life of the family. She had a taste for music, flowers, and poetry,
and herself wrote short poems.

At Saultain, there were all the normal pastimes of a country boy, but at his primary school
he encountered a remarkable master, M. Flamant, who knew how to communicate by example
his own curiosity and enthusiasm for all kinds of scientific experiments. M. Flamant also taught
his pupils to find simple geometrical interpretations of problems in arithmetic, and the search
for geometrical approaches to mathematical problems was to become an enduring predilection
for Choquet.

Secondary education followed, at the lycée of Valenciennes. He had a number of excellent
teachers, among them his mathematics master, M. Mas, whose mathematical style he found
very congenial and who again encouraged the habit of looking for geometrical approaches to
mathematical problems. Choquet derived particular satisfaction at school from solving difficult
problems in geometry. Another source of great fascination was an elementary calculus book
lent by a classmate, which he studied avidly. Looking back, he thought it could well have been
at this time that he decided to make mathematics, if possible, a lifelong pursuit.

In 1933 Choquet took part in the national school mathematics contest (the concours général)
and won the first prize. He then left Valenciennes for Paris to prepare at the lycée Saint-
Louis for entry to the grandes écoles. There he immediately joined the preparatory class (the
‘taupe’), having been excused the initial stage (the ‘hypotaupe’) because of his performance
in the concours général. At the entrance examination for the École Normale Supérieure (ENS)
there were approximately 400 candidates for twenty science places. Choquet was admitted.
He studied there during 1934 to 1938, and was ranked first in the mathematical sciences
agrégation in 1937. His year was particularly brilliant, and included three future members of
the Académie des Sciences (in addition to Choquet, Laurent Schwartz and Blanclapierre) and
one future corresponding member (Félici).

His time at the ENS afforded all that he could have wished for in opportunities for learning.
His interest in differential geometry was deepened by the elegant lectures of Garnier and,
especially, those of Darmois, and by reading E. Cartan’s book on Riemannian geometry. He
had earlier acquired a taste for differential geometry when reading Darboux on the theory
of surfaces. However, what finally diverted him from any thought of a career in differential
geometry was the discovery in the ENS library of Baire’s Leçons sur les fonctions discontinues
and the French translation of Cantor’s Beiträge zur Begründung der transfiniten Mengenlehre.
In 1933 he had already studied Borel’s Leçons sur la théorie des fonctions, but these two works
were a revelation to him and helped set him in the path he was to follow. He gave an account of
some of this reading in a seminar for fellow-students organized jointly by himself and Laurent
Schwartz.

After the agrégation, he took the advice of Darmois to study Hobson’s Theory of functions
of a real variable and Carathéodory’s Vorlesungen über reelle Funktionen and then to approach
Denjoy. He found in Denjoy the ideal mentor, whose mathematical interests and outlook
accorded well with his own, and with whom he could fruitfully discuss both his own current
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OBITUARY 343

research as well as that of Denjoy. He never dreamt of asking for a research topic, nor did
Denjoy ever seek to impose one, but by 1938 he had enough original material for three notes,
which were published as [1–3].

He spent the year 1938–39 at Princeton, where new mathematical perspectives opened to
him. He profited particularly from the courses of Church, and from the work of Gödel , Turing,
and Kleene. A Jane Eliza Proctor bursary entitled him to stay for two years; but in 1939 the
outbreak of war obliged him to give up the intended second year. Instead, he was called up
and sent, in the company of a hundred or so former pupils of the grandes écoles, to a camp at
Biscarosse for anti-aircraft instruction. His critical attitude to the proposed means of defence
earned him an early posting to a horse artillery unit, the 7e R.A.D., and in 1940 he took part
in the Battle of France, first in Lorraine, then from the banks of the Aisne to the banks of
the Creuse. In August 1940 he was demobilized at Limoges and shortly afterwards returned to
Paris with his fiancée. They were married in January 1941.

During the war the couple lived frugally in a little two-room apartment in Paris, where
their two sons were born. In the years 1941–46 his research was supported by a C.N.R.S.
stipend. The amount was modest, but he was allowed complete freedom to pursue his research
as he saw fit, and this proved to be an extremely productive time for him. By 1945 he had
published 30 or so articles, but had never presented himself for a doctorate. Nevertheless, in
that year he learnt of a one- to two-year teaching position at the French Institute in Cracow,
for which a doctorate was a necessary condition. He had for some time read extensively in
Fundamenta Mathematicae, and had come to look upon Poland as a veritable mathematical
paradise. He therefore set to work on a doctoral thesis, which he completed in three months.
He duly obtained the Docteur ès Sciences Mathématiques degree as well as the appointment to
the teaching post in Cracow. He and his family accordingly moved to Poland in 1946. Although
some famous mathematicians had died, he found Polish mathematical life flourishing, despite
the political situation, and much to his taste. He visited the principal universities and made
many valuable contacts, notably with Sierpiński, Kuratowski, Steinhaus, and Nikodým. In 1947
he left Poland, with some regret, to become mâıtre de conférences at Grenoble, where he spent
the next two years. Here commenced his collaboration with Marcel Brelot, and here, in 1948, a
daughter was added to the family. After Grenoble he returned to Paris as mâıtre de conférences
in the university, becoming professor in 1952.

Although Bourbaki volumes had been coming out since 1939 and van der Waerden’s Moderne
Algebra had appeared in 1930, such developments had at that epoch made little or no
impression on the great majority of French university mathematics courses, which were overdue
for modernization. A case in point was the Paris deuxième cycle course in differential and
integral calculus, which for decades had been given in the spirit of the elementary parts of
Goursat’s Traité d’analyse. At that time the course was given by Valiron, but it became
necessary to find a replacement because of Valiron’s failing health. Henri Cartan, who had given
pioneering modern courses of analysis as early as 1939 in Strasbourg, and 1940 in Clermont-
Ferrand, on this occasion could not help directly because he was at the ENS; but on his
suggestion Choquet was chosen. He duly took charge in 1954, and at once carried out a root-
and-branch reform of the entire course. It now started with set theory, followed by the algebra
of groups, rings, and fields, the construction of the real and complex numbers, linear algebra,
then topological spaces, normed vector spaces, and Hilbert space. Finally, there was a resolutely
new account of differential equations that made free use of the foregoing fundamental notions
of functional analysis. (See § 2.11 and [97, 173] for more particulars.) When the extent of the
changes became apparent, there was widespread consternation. The dismay of the students
who were being required to take the course a second time was especially acute. Nevertheless,
Choquet soon had new colleagues to support him: in 1955 the university appointed Chevalley,
Dixmier, Ehresmann, Godement, Pisot, and Zamansky. The provincial universities were quick
to follow the lead given by Paris, and within three years all had renovated their courses
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344 GUSTAVE CHOQUET 1915–2006

in the spirit of the Paris reforms. Choquet’s revolution was thus the origin of a renewal of
undergraduate mathematical teaching throughout France (see 〈50〉 for a fuller account).

The year 1955–56 saw another chapter in the collaboration, begun in 1944, between Choquet
and Deny. They had been independently invited to the Institute for Advanced Study in
Princeton, where they found themselves sharing the study vacated at his recent death by
Einstein. They discovered that they had arrived at similar ideas about future research in
potential theory, which they now proceeded to develop in a series of joint articles.

Choquet was a co-founder in 1957 of the Séminaire Brelot–Choquet: Théorie du potentiel,
which met once a week and published its proceedings; the following year it became the
Séminaire Brelot–Choquet–Deny. In the early 1960s Choquet founded the Séminaire Choquet:
Initiation à l’analyse which also met weekly and published its proceedings. These two
seminars became an important and internationally recognized focus for research and advanced
exposition. The circle of researchers around Choquet acquired official status as the Équipe
d’analyse in 1972. The Équipe (recently renamed Équipe d’analyse fonctionnelle) and the
Séminaire Choquet are still going concerns today.

From 1960 Choquet held, in addition to his university post, first a mâıtrise de conférences
at the École Polytechnique, and then, during 1965–69, a professorship there. After the events
of 1968, the University of Paris was divided into thirteen units and it was also decided that
posts at the École and the University could no longer be held jointly. Choquet chose to stay
at the University, where he remained, now in Paris VI, until he moved to a post in Orsay
a few years before his retirement in 1984. Over the years he made many extended visits to
foreign universities, in particular to Kansas, Cornell, Seattle, Berkeley, Maryland, Utah, and
Princeton, and to the Institute for Advanced Study. He also paid many shorter visits to other
countries, including England, Australia, Japan, Korea, and China. In retirement he became
emeritus professor in the Universities of Paris VI and XI.

Choquet’s research spanned more than half a century and continued well into his retirement.
His work manifested his desire for ‘une vision directe et géométrique des problèmes’, and
often achieved great elegance. His preference was for problems that could be reformulated
in a broadened setting and whose solution would give rise to new concepts of very wide
application. His solution of the capacitability problem, to mention just one example, is a
fine illustration of this. He found in potential theory an inexhaustible source of ideas, and
in this connection he counted as a piece of exceptional good fortune the opportunity of
collaborating with Brelot and Deny. He also made original contributions to many other
areas of mathematics: general topology, real analysis, measure theory, functional analysis
(especially integral representation theory), topological dynamics, and the axiomatization of
geometry. Mathematical entities named after him include Choquet capacities, Choquet theory,
the Choquet integral, the Choquet expected utility, the Choquet boundary, and Choquet
simplexes. He was an outstanding supervisor of research, and many of his students have gone
on to distinguished academic careers. Two of his most brilliant students (Brézis and Talagrand)
are now members of the Académie des Sciences.

Choquet was not only the creator of a very large and important body of mathematical work,
but also a truly exceptional teacher at all levels, whose courses inspired the enthusiasm of
many. His engaging personality and extraordinary talent won him the respect and affection of
generations of students. (Several former students have written lengthy tributes to his teaching
— see, for instance, 〈29, 30, 49, 50, 60, 61〉.) The fundamental innovations of his 1954–55
undergraduate course and their influence have been noted above. His presidency 1950–58 of the
International Commission for the Study and Improvement of the Teaching of Mathematics (the
Gattegno Commission) and the illuminating expository style of his books [97, 98, 111–113,
117, 173] both testify to his enduring concern for excellence in teaching.

His concerns about teaching and the mentoring of research students coloured his view of
the Bourbaki project. Although he was never a member of the Bourbaki group, he was, like
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OBITUARY 345

most mathematicians of his generation, profoundly influenced by their work. Nevertheless, he
had serious reservations about Bourbaki as a resource for young mathematicians. He noted
that many of the most valuable things in Bourbaki were to be found in the exercises, where
they could easily be overlooked. He observed, moreover, that the very polished but unmotivated
exposition in the main text of the Bourbaki volumes conveyed little idea of the creative processes
of mathematical research.

During his career Choquet received many honours. The Académie des Sciences awarded him
four prizes: the Houllevigne (1945), the Dickson (1951), the Carrière (1956), and the Grand
Prix des sciences mathématiques (1968); he was elected a member of the Académie in 1976.
In 1966 he was made Chevalier of the Légion d’Honneur, later becoming Officier. He was a
corresponding member of the Bavarian Academy, and in 2002 was made Honorary Doctor of
Science by the Charles University of Prague. His honorary membership of the LMS has already
been noted above.

His leisure pursuits included gardening, mountain walking, and swimming, and he was
devoted to his children. His first marriage was dissolved, and in 1961 he married a fellow
mathematician, Madame Yvonne Bruhat, with whom he was to enjoy a happy partnership for
the rest of his life. (Madame Choquet-Bruhat has herself had a very distinguished career, and
is the first woman to have been elected a member of the Académie des Sciences). He is also
survived by the five children from his two marriages.

2. Mathematical work

2.1. Early work and Thesis [1–5, 10–14, 17, 22, 23, 26, 30, 31, 33, 167]

Most of Choquet’s earliest work was published in the form of short Notes, usually without
proofs, in the Comptes Rendus. The number and variety of his early publications do not allow
them all to be summarized here, but a few indications can be given.

In [2] Choquet rediscovered Bor̊uvka’s (1926) algorithm for constructing a minimum
spanning tree in a connected graph having edge-weights that are all different. Later, in 1951,
it was rediscovered again by five other mathematicians. In [26] it is shown that if a graph is
isomorphic to its complement, then the cardinality of its vertex set is either infinite or of the
form 4n or 4n+ 1.

In [1, 3, 4] various questions about homeomorphisms between plane sets of points are studied.
For example, there is a characterization of the compact subsets H of R2 for which every
homeomorphism of H onto another compact subset of R2 can be extended to the whole of
R2. In [1] a point P of a closed subset F of R2 is said to be accessible if there exists a
simple Jordan arc γ such that γ ∩ F = {P}. This notion is applied in [1] to the study of
homeomorphisms between curves that divide the plane into two regions, and in [10] to the
study of homeomorphisms between plane domains. The topology of plane sets of various kinds
is further studied in [11, 12], together with that of certain conformal transformations. In [23]
it is proved that, if φ is a homeomorphism of a Jordan curve γ onto a closed convex curve Γ,
then φ has a harmonic extension that is a homeomorphism of the bounded domains determined
by γ and Γ. The note [5] is a study of the fixed points of certain classes of transformations of
a plane continuum into itself.

The long article [17] contains many results about the finite subsets of metric spaces, of which
only a few simple specimens can be given here. For example, if a compact metric space E is
not homeomorphic to a closed subset of [0,1] and 0 < θ � π/3, then E contains infinitely many
isosceles triplets of the vertex angle θ. The curvature of a triplet in a metric space E is defined
as the sum of the two smaller angles in the associated triangle. At a cluster point P , the space
E is said to be flat if the curvatures of the triplets approach zero as their points approach
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P , and we say simply that E is flat if this is so at every cluster point. Flat metric spaces are
investigated, and it is shown, for instance, that every compact connected flat metric space is a
simple closed curve or is homeomorphic to a compact interval of R. In the same spirit a notion
of semiflat metric space is also defined and investigated.

A well-known theorem states that if S is a C2 surface all of whose points are umbilics, then
S is part of a sphere or of a plane. Analysing this result from the standpoint of Bouligand’s
direct infinitesimal geometry 〈13〉, Choquet [13] is able to reach the same conclusion under
considerably weakened hypotheses.

Choquet’s thesis [30] (summarized in [33]) is a study of the differentiability properties of
subsets of Euclidean spaces, and is a pioneering contribution to non-smooth analysis which
reveals profound relations between certain differentiable and topological structures. The best
known result of this work is his solution to a famous problem of Lebesgue, namely that of
finding a characterization of functions that are derivatives. Recall that if a real function f on
[0, 1] is a derivative, then (i) f is of the first Baire class and (ii) f has the Darboux property,
that is to say, it maps each subinterval of [0, 1] onto an interval. The converse is trivially
false, but Choquet shows that if f is a real function on [0, 1] that has the properties (i) and
(ii), then, for some increasing homeomorphism α of [0, 1], the function f ◦ α is a derivative.
Another problem of Lebesgue concerned the derivative g = df/dα, where f and α are given
real continuous functions on [0, 1]. The problem is to determine f , given α and g, and is
solved in [14, 30] by an extension of Denjoy’s totalization. A further topic studied in [30] (see
also [22]) is that of the differentiable parametrization of curves and varieties. For example,
Choquet solved the problem, proposed by Fréchet, of characterizing in Euclidean space those
parametrized curves [0, 1] � t �→ f(t) that admit an equivalent parametrization t �→ f(α(t))
(where α is a homeomorphism of [0, 1]) that has a non-null derivative at every point.

The high point of the thesis is the contingent–paratingent theorem, which contains many
earlier results. The general statement is quite abstract, and an initial idea of the theorem can
perhaps best be obtained by looking at an important special case. Let X be a real separable
Banach space, let E and F be subsets of X, and let x ∈ X. Then the paratingent cone PE,F (x)
of E at x relative to F is defined by Choquet as follows:

PE,F (x) = lim sup
(y,h)→(x,0+)

y∈F

h−1(E − y)

=
⋂
δ>0
η>0

⋃
{h−1(E − y) : h ∈ (0, δ), y ∈ B(x, η) ∩ F, y 
= x }.

If F = {x}, then this definition produces the Bouligand contingent cone TE(x) of E at X. That
is, we have TE(x) = PE,{x}(x). The Bouligand paratingent cone PE(x) of E at x is given by
PE(x) = PE,E(x).

A proposition p(x) defined for each point x of a subspace S of X is said to be generically true
in S if the set {x ∈ S : ¬p(x)} is of the first Baire category in S. The fundamental ‘contingent–
paratingent’ theorem of Choquet states that, for every pair E,F of subsets of X, the equation
TE(x) = PE,F (x), where x ∈ F , is generically true in F . (This formulation is to be found in
Shi 〈55〉, though it is also a corollary of a more abstract version given earlier by Choquet
in [31].)

The contingent–paratingent theorem has many applications. For example, one corollary
states that, for a continuous real function f defined on an open subset of X, the following
assertions are generically equivalent: (i) f is subdifferentially regular, (ii) f is strictly differ-
entiable, (iii) f is regularly Gâteaux differentiable, and (iv) f is regularly Dini differentiable
(see 〈55〉 and [167]). Another application noted in [167] is a direct proof of the following
proposition. Suppose that F is a closed subset of a C1 manifold M and that there exists a
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OBITUARY 347

group of C1 diffeomorphisms of M that leaves F invariant and acts transitively on F . Then F
is a C1 submanifold of M .

2.2. Theory of capacities [35, 37, 39–44, 63, 65, 67, 71, 131, 160]

Choquet’s interest in the theory of capacities arose from the capacitability problem for
Newtonian potential. In R3 the potential of a positive Radon measure μ at the point x is
Uμ(x) =

∫ ‖x− y‖−1 dμ(y), and the Newtonian or electrostatic capacity cap(K) of a compact
subset K of R3 is, by a formula of de la Vallée Poussin, the supremum of the total masses of
the positive Radon measures μ on K that satisfy Uμ(x) � 1 for all x ∈ R3. The inner capacity
cap∗(X) of an arbitrary subset X of R3 is defined to be the supremum of the capacities of the
compact sets contained in X; the outer capacity cap∗(X) of X is then defined as the infimum
of the inner capacities of the open sets in R3 that contain X. A subset X of R3 is said to be
capacitable if cap∗(X) = cap∗(X). For example, compact sets are capacitable. In the late 1940s
Brelot and H. Cartan remarked that it was still an important open question whether all Borel
sets in R3 are capacitable. This capacitability problem seized the imagination of Choquet. To
isolate the essential features of the problem he generalized it, replacing R3 by a Hausdorff
topological space E, and the function K �→ cap(K) by an isotone map γ : K(E) → R+, where
K(E) denotes the set of all compact subsets of E. He also assumes that γ is continuous on
the right in the following sense: for each K ∈ K(E) and a ∈ R such that γ(K) < a there exists
an open set U ⊇ K such that γ(L) < a for all L ∈ K(E) such that K ⊆ L ⊆ U . A function
γ : K(E) → R+ satisfying these conditions will be termed a precapacity. For each X ⊆ E he
now defines the inner γ-capacity γ∗(X) of X by

γ∗(X) = sup{ γ(K) : K ∈ K(E), K ⊆ X }
and the outer γ-capacity γ∗(X) by

γ∗(X) = inf{ γ∗(G) : G ∈ O(E), X ⊆ G },
where O(E) denotes the set of all open subsets of E. If γ is a precapacity, then γ∗ has the
properties Γ1 and Γ3 displayed below. After much experimentation Choquet found that if γ is
also strongly subadditive, in other words if

γ(K ∪ L) + γ(K ∩ L) � γ(K) + γ(L)

for all K,L ∈ K(E), then γ∗ satisfies property Γ2. The three properties of γ∗ to which we have
referred are:

Γ1. the map γ∗ : P(E) → [−∞,∞] is isotone;
Γ2. if (An) is an increasing sequence of subsets of E with union A, then γ∗(A) = sup γ∗(An);
Γ3. if (Kn) is a decreasing sequence in K(E) with intersection K, then γ∗(K) = inf γ∗(Kn).

A function γ∗ satisfying these conditions is known as a Choquet (outer) capacity.
Given a Choquet (outer) capacity γ∗, we say that a subset X of E is capacitable (with

respect to γ∗) if γ∗(X) = γ∗(X), where

γ∗(X) = sup{ γ∗(K) : K � K ⊆ X },
and K = K(E). Compact sets are capacitable, and it is easy to show that so are Kσ-sets.
Choquet defines the K-Borel sets as those belonging to the monotone class m(K) generated by
K. Mindful of his problem concerning Newtonian capacity, Choquet decided to investigate the
question whether all K-Borel sets are capacitable. An important step in this direction was his
proof that Kσδ-sets are capacitable. Seeking a more comprehensive result, Choquet was led to
generalize the notion of an analytic set by defining a K-analytic set in E to be any subset of E
that is a continuous image of a Kσδ subset of a compact Hausdorff space. He defines K-Souslin
sets in E as those produced by applying Souslin’s operation (A) to elements of K, and he
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348 GUSTAVE CHOQUET 1915–2006

proves that a subset of E is K-Souslin if and only if it is K-analytic and a subset of some Kσ

set. He also proves that all K-Borel sets are K-Souslin. Suppose then that X is a K-Souslin
subset of E. Choquet constructs an auxiliary Hausdorff space F , together with a continuous
surjection φ : F → E and a Kσδ subset Y of F such that φ(Y ) = X. Then g∗ = γ∗ ◦ φ is a
Choquet capacity on F and, consequently, the Kσδ set Y is g∗-capacitable. It follows that
X = φ(Y ) is γ∗-capacitable. This argument concludes the proof that all K-Souslin sets, and a
fortiori all K-Borel sets, are capacitable.

It follows that to prove that Borel sets in R3 are capacitable with respect to Newtonian
potential it is enough to show, when E = R3 and γ∗ = cap∗, that the axioms Γ1–Γ3 are satisfied.
The only serious difficulty concerns axiom Γ2, for which the strong subadditivity of cap : K →
R+ is a sufficient condition. The latter was not a known property of Newtonian potential, but
Choquet duly demonstrated it, and hence concluded his proof that all Borel sets in R3 are
capacitable. Thus, in the course of solving the capacitability problem for Newtonian potential,
he created a whole new theory of capacities of great generality. He remarked later that he owed
his success with the capacitability problem to the fact that, as a non-specialist in potential
theory, he was not encumbered with preconceptions. In addition to its direct applications in
potential theory and measure theory, the capacitability theorem has been used in probability
theory to establish the measurability and stopping-time property of certain hitting times for
a wide class of Markov processes (see 〈9〉). (The early evolution of the above theory was
reported in a series of notes [37, 39–43], which were followed by the magisterial article [44];
see also [131, 160]. For capacitability in logarithmic potential theory see [63].)

By suitably modifying the axioms Γ1–Γ3, Choquet [71] devised in 1959 a version of capacity
theory for spaces without topology. We suppose given a non-empty set E, together with a family
H of subsets of E that is stable with respect to finite unions and countable intersections, and
such that ∅ ∈ H. Then an outer H-capacity (nowadays often called simply a (Choquet) H-
capacity) is defined as an isotone map c : P(E) → [−∞,∞] satisfying the following conditions.

C1. For all K ∈ H we have c(H) <∞.
C2. If (An) is an increasing sequence of subsets of E with union A, then c(A) = sup c(An).
C3. If (Hn) is a decreasing sequence of elements of H with intersection H, then c(H) =

inf c(Hn).
A set A ⊆ E is now said to be (c,H)-capacitable if

c(A) = sup { c(H) : H ∈ H,H ⊆ A }.
The H-Souslin sets are defined as those produced by applying Souslin’s operation (A) to
elements of H, and Choquet proves that, under the above conditions C1–C3, every H-Souslin
set is (c,H)-capacitable. Dellacherie 〈19, p. 43〉 has pointed out that Davies 〈18〉, working
quite independently on a problem about Hausdorff measures, established in essence this non-
topological capacitability theorem in 1952 at the moment when Choquet’s theory of capacities
in topological spaces was just taking definitive shape (see the Notes [37, 40–43]). However,
the argument of Davies was exclusively directed to the solution of his problem about Hausdorff
measures and, as a result, its applicability in abstract capacity theory was for a long time
overlooked.

Choquet’s work in capacity theory led him to important discoveries in descriptive set
theory [35, 44], and also saw the start of his theory of integral representations in convex
sets [44]. In his early work on capacities Choquet, as noted above, discovered that, for a strongly
subadditive precapacity γ, all Kσδ-sets are capacitable. It followed at once that Kσδσ-sets are
capacitable, but he found himself unable to proceed to Kσδσδ-sets. His tentative conclusion was
that further progress could depend on going beyond strong subadditivity to new inequalities.
With this in mind he defines in [35], by transfinite induction, a class Kα of K-Borel sets for
each countable ordinal α as follows: (i) let K0 = K, (ii) for odd α let Kα consist of all sets that
are countable unions of sets extracted from

⋃
β<α Kβ , and (iii) for even α > 0 let Kα consist
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OBITUARY 349

of all sets that are countable intersections of sets extracted from
⋃

β<α Kβ . Then, for instance,
K1 = Kσ, K2 = Kσδ, K3 = Kσδσ, and so on. Moreover, he proves that m(K) =

⋃
α<ω1

Kα. His
hope was now to find, for each α < ω1, sufficient conditions for Kα-sets to be capacitable. In
order to formulate his putative new inequalities, he makes the following definitions, in which
X,A1, A2, . . . are arbitrary compact subsets of E:

Δ1(X;A1) = γ(X ∪A1) − γ(X),

and, for all n � 1,

Δn+1(X;A1, . . . , An+1) = Δn(X ∪An+1;A1, . . . , An) − Δn(X;A1, . . . , An).

The statement that γ is increasing and strongly subadditive can now be expressed as

Δ1 � 0 and Δ2 � 0.

Choquet conjectured that for Newtonian capacity (that is, for γ = cap) we have (−1)n+1Δn � 0
for all n. To his immense gratification, he succeeded in proving this [42, 44], confiding later
that this discovery was the occasion of the greatest emotion of his scientific career. However, the
hope that the new inequalities would lead to further progress with the capacitablility problem
was disappointed. Choquet showed, for instance, that classes in the hierarchy (Kα) having
infinite index, such as Kω and Kω+1, could never be reached by recurrence arguments based
on these inequalities, and hence that a fresh approach was called for. This we have already
described above. Fortunately, the new inequalities were to bear fruit in a quite unexpected
way. Choquet was reminded by them of the inequalities (−1)nf (n) � 0 that define the class
of completely monotone functions on (0,∞). Recalling Bernstein’s theorem that every such f
satisfying f(0+) = 1 has a unique representation of the form

f(x) =
∫∞

0

e−xt dμ(t),

where μ is a probability Radon measure on [0,∞), led Choquet to conjecture, and then to
prove, that an analogous representation exists for capacities γ that satisfy (−1)n+1Δn � 0 for
all n. Denote the set of such capacities, termed alternating capacities of infinite order, on E
by A∞. Suppose that the space E is compact Hausdorff, and let K = K(E) have the Vietoris
topology, noting that K is also then compact Hausdorff. Let B = { γ ∈ A∞ : γ(E) = 1 }, and
for each A ∈ K let γA : K → {0, 1} be defined by

γA(K) =

{
1 if K ∩A 
= ∅,
0 if K ∩A = ∅.

Then, for a certain topology, A∞ is a cone having B as compact convex base, and Choquet
proves, in the notation of § 2.3, that ∂eB = { γA : A ∈ K}. Invoking the Krein–Milman theorem,
he shows also that, if γ ∈ B, then there exists a μ ∈ M1

+(K) such that, in an appropriate sense,
we have

γ =
∫
A∈K

γA dμ(A).

(That μ is uniquely determined here was later proved by Revuz.) This result was accompanied
in [44] by similar representations for several other classes of set-functions, including monotone
set-functions of infinite order, namely, those γ : K → R such that Δn � 0 for all n. In these
results we see the first steps in Choquet’s great theory of integral representations in convex
sets; but certain results of this part of [44] are significant in other ways too. For example,
the above representation for an element γ of A∞ implies that γ(K) =

∫
A∈K γA(K) dμ(A) for

K ∈ K. In other words, we have

γ(K) = μ({A ∈ K : A ∩K 
= ∅ }).
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350 GUSTAVE CHOQUET 1915–2006

Thus in the probability space (K,B(K), μ), where B(K) is the σ-algebra of Borel subsets of K,
the quantity γ(K) is the probability of the event that the random element A meets K. Thus
we have here a statement about random sets, the study of which has subsequently developed
into a large subject in which Choquet’s work in capacity theory plays an indispensable role (see
〈39, 43〉). Another product of these investigations is the Choquet integral, defined as follows.
Let F be a family of subsets of a non-empty set X with ∅ ∈ F and suppose that μ : F → R+

is an isotone function such that μ(∅) = 0. Suppose given also a function f : X → R+ such that
{x : f(x) � t } ∈ F for all t > 0. Then the Choquet integral of f with respect to μ is defined by

∫
f dμ =

∫∞−

0+

μ({x : f(x) � t }) dt ∈ [0,∞],

where the integral on the right is an improper Riemann integral. In the special case where
(X,F , μ) is a finite measure space and f ∈ L1

+(μ), it is an instance of Cavalieri’s principle that
the Choquet integral agrees with the usual integral; but, in general, the scope of the Choquet
integral is far wider, since there is no additivity assumption concerning μ. Choquet [44], for
instance, uses it to integrate with respect to a capacity, and his integral has become a basic
tool in non-additive integration theory. In econometrics the Choquet expected utility is defined
by means of the Choquet integral.

For further information see, in addition to the writings of Choquet already cited, 〈6, 9, 14,
16, 19–21, 34, 36, 41, 51, 57, 58〉.

2.3. Integral representation theory [44, 49–51, 54, 74, 76, 78, 80–83, 85–88, 90, 93, 95,
105, 106, 112, 114, 116, 121, 130, 138, 154, 157–159]

In what follows we denote by E a locally convex Hausdorff topological real vector space, by
E′ its dual, and by X a non-empty compact convex subset of E. The set of extreme points
of X is known as the extreme boundary of X and is denoted by ∂eX. Given a subset Y
of E, we denote by conv Y and conv Y , respectively, the convex hull and the closed convex
hull of Y . The celebrated Krein–Milman theorem states that X = conv ∂eX. By a Hahn–
Banach argument this is equivalent to the statement that every functional f ∈ E′ attains the
value max{ f(x) : x ∈ X } at some point of ∂eX. The latter assertion has been sharpened by
Bauer 〈4, 5〉, who proves that every upper semicontinuous convex function g : X → [−∞,∞)
attains the value max{ g(x) : x ∈ X } at some point of ∂eX.

Now consider the set M1
+(X) of probability Radon measures on X. For each μ ∈ M1

+(X)
there exists a point bμ of X, the barycentre or resultant of μ, such that f(bμ) =

∫
X
f(x) dμ(x)

for all f ∈ E′, and as shorthand for the preceding equation we write bμ =
∫

X
x dμ(x). Given

a point x ∈ X and a measure μ ∈ M1
+(X), we call μ a representing measure for x if x =∫

X
y dμ(y), and we denote by Mx the set of all representing measures for x. Clearly εx ∈Mx,

and we have Mx = {εx} if and only if x ∈ ∂eX. By the Krein–Milman theorem conv ∂eX is
a dense subset of X, and hence every point of X can be approximated by points of X that
possess (discrete) representing measures μ such that μ(∂eX) = 1. A principal aim of Choquet
theory for X is to improve on this approximation property by showing that, for every x ∈ X,
there exists a representing measure μ which is in some appropriate sense carried by ∂eX.
If X is metrizable, the latter stipulation amounts to requiring that μ(∂eX) = 1. If X is not
metrizable, a satisfactory statement of our requirement that μ be carried by ∂eX is more
difficult to formulate, because ∂eX may fail to be μ-measurable.

One simple case can be dealt with at once. The set M1
+(X) is convex and is compact with

respect to the weak∗ topology σ(M1
+(X), C(X)), and the barycentre map M1

+(X) � μ �→ bμ
is affine and continuous. It follows that

{ bμ : μ ∈ M1
+(∂eX) } = X,
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OBITUARY 351

where we have identified M1
+(∂eX) with {μ ∈ M1

+(X) : suppμ ⊆ ∂eX }. This shows that, for
each x ∈ X, there exists a representing measure μ satisfying μ(∂eX) = 1. Thus, if ∂eX is a
closed subset of X, then this elementary result supplies the representing measures we are
looking for. With the aid of this result one can construct, for instance, a proof of the Herglotz
representation u(x) =

∫
∂U
Py(x) dμ(y) for a positive harmonic function u on the open unit ball

U of Rn satisfying u(0) = 1, where Py(x) is the Poisson kernel and μ a probability measure on
the boundary ∂U of U (see 〈46〉). Nevertheless, if ∂eX is not closed, a representing measure
on ∂eX is not in general helpful, because the latter set can be very big: we may even have
∂eX = X.

Next suppose for the moment that X is metrizable. Then Choquet’s integral representation
theorem [49–51] tells us that ∂eX is a Gδ set and that every point of X has a representing
measure μ such that μ(∂eX) = 1. In addition to this representation theorem, Choquet [50,
51] also obtained a uniqueness theorem. To state this we need the notion of a cone in E, by
which we shall understand a non-empty subset C of E such that λC ⊆ C for all λ � 0. By a
generator of C we shall mean any set of the form R+x, where 0 
= x ∈ C. A subset B of a cone
C is termed a base of C if 0 /∈ B and each generator of C meets B in exactly one point. We may
suppose that our compact convex set X is the base of a convex cone C in E. In the subspace
C − C of E the specific order is defined by declaring that x � y if and only if y − x ∈ C. We
say that X is a (Choquet) simplex if the subspace C − C of E is a vector lattice with respect
to its specific order. Choquet’s uniqueness theorem for a metrizable compact convex set X
states that in order that each point of X have exactly one representing measure μ satisfying
μ(∂eX) = 1 it is necessary and sufficient that X be a Choquet simplex.

After Choquet had obtained his existence and uniqueness theorems for metrizable X, the
subject underwent a succession of improvements. Hervé 〈32〉 and Bonsall 〈11〉 found extremely
simple proofs of the existence theorem. Bishop and de Leeuw 〈8〉 obtained an existence theorem
for non-metrizableX by studying the maximal measures with respect to a certain order relation
in M1

+(X). Bauer 〈4〉 studied boundaries for function spaces and threw light on the uniqueness
question. Mokobodzki 〈42〉 characterized maximal measures. Choquet and Meyer [78, 82, 93]
and 〈40〉 unified these developments, made further improvements, and extended the uniqueness
theorem to non-metrizable X. Their paper [93] is the definitive account of the existence and
uniqueness theorems for general compact convex X. These can be very briefly summarized as
follows.

Denote by S = S(X) the convex cone of real continuous convex functions on X. For each
f ∈ C(X) we denote by f̂ the concave upper semicontinuous function on X defined by

f̂ = inf{ g : f � g ∈ −S }.
The map f �→ f̂ is isotone and sublinear. For each f ∈ S we define the border set Bf by

Bf = {x ∈ X : f(x) = f̂(x) }.
Each border set is a Gδ, and moreover

∂eX =
⋂
f∈S

Bf .

Choquet [78], modifying a construction in 〈8〉, defines an order relation in M1
+(X) by writing

μ � ν whenever μ(f) � ν(f) for all f ∈ S. Then, for all x ∈ X, we have εx � μ if and only if
μ ∈Mx; and bμ = bν whenever μ � ν. The relation � is an inductive partial order, and hence
every μ ∈ M1

+(X) is majorized by a maximal element of M1
+(X). Applying this to each Dirac

measure εa, where a ∈ X, we obtain the integral representation theorem of Choquet, Bishop,
and de Leeuw for general compact convex X: every point a ∈ X has a representing measure
μ that is a maximal element of M1

+(X). Moreover, μ is maximal if and only if μ(Bf ) = 1
for all f ∈ S. The Choquet–Meyer uniqueness theorem states that in order that each point
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352 GUSTAVE CHOQUET 1915–2006

of X should have exactly one representing measure μ satisfying μ(Bf ) = 1 for all f ∈ S it is
necessary and sufficient that X should be a Choquet simplex.

A sufficient condition for a measure μ ∈ M1
+(X) to be maximal is that we have μ(G) = 1 for

each open set G that contains ∂eX. The converse statement is in general untrue. A necessary
condition for the maximality of μ is that we have μ(A) = 1 for each K-Souslin set A containing
∂eX; this condition is, however, not sufficient. In particular, if μ is maximal, then μ(B) = 1
for every Baire subset B of X that contains ∂eX. If X is metrizable and μ ∈ M1

+(X), then μ
is maximal if and only if μ(∂eX) = 1.

In 1959 a problem in potential theory, studied in collaboration with J. Deny (see the
discussion of [77] in § 2.4 below), drew Choquet’s attention to the importance of certain cones
without compact base and to the need to extend his integral representation theory to such
cones. This need was in due course satisfied by the generalizations of his theory to well-capped
cones and weakly complete cones, which we now describe. (For his comments on the history of
these developments, see the Postface in 〈6〉 and also 〈12〉.)

Let C be a convex cone in a Hausdorff locally convex space E. A cap of C is by definition a
non-empty compact convex subset K of C such that the set C \K is convex. A cap K for the
cone C is termed a universal cap if C =

⋃∞
λ=0 λK. The roof K1 of a cap K is the set of x ∈ K

such that, for all ρ > 1, we have ρx /∈ K; the roof is a convex Gδ set, not in general compact,
and ∂eK = ∂eK1 ∪ {0}. If C has a universal cap K, then K1 is a base for C. For a convex
cone with a universal cap K it is easy to extend the previous representation theorem to the
roof of K as follows: if x ∈ K1, then there exists in M1

+(K) a maximal representing measure
μ for x and we have μ(K1) = 1, and if K is metrizable we have μ(∂eK1) = 1. More generally,
the cone C is said to be well-capped (bien coiffé) if it is the union of its caps. If C is well-
capped and K is one of its caps, then CK =

⋃∞
λ=0 λK is a convex subcone of C having K as a

universal cap. Since each element of C belongs to such a subcone, we deduce from the theory of
universal caps a representation theorem for well-capped cones. If the specific order associated
with a well-capped cone C is a lattice order, then all the caps of C are Choquet simplexes
and hence, for x ∈ C, the Choquet–Meyer uniqueness theorem applies to each cap that
contains x.

Many classical representation theorems can be proved by the use of the above theory.
Examples include the Bochner–Weil representation of continuous positive-definite functions
on a locally compact abelian group, and the Bernstein representation of completely monotone
functions on (0,∞), to name only two.

By a weakly complete cone in E we shall mean a cone that is complete in the uniformity
defined by the pseudo-metrics (x, y) �→ |f(x) − f(y)| for E, where f ∈ E′. By a proper cone
we shall understand a cone C such that C ∩ (−C) = {0}. We denote by S the set of all weakly
complete proper convex cones in E. Denote by h(E) the vector sublattice of RE generated by
E′, and by s(E) the convex cone consisting of all functions on E of the form max(l1, l2, . . . , ln),
where n � 1 and lr ∈ E′ for r = 1, 2, . . . , n. Thus E′ ⊆ s(E) ⊆ h(E) and h(E) = s(E) − s(E).
Choquet defines a conical measure in E to be a positive linear map μ : h(E) → R, and denotes
by M+(E) the set of all conical measures on E. Given a closed cone C in E, one says that μ
is carried by C if μ(f) = 0 for all f ∈ h(E) such that f |C = 0. We denote by M+(C) the set
of elements of M+(E) that are carried by C. The resultant rμ of μ is the restriction μ|E′ of μ
to E′, and is an element of the algebraic dual (E′)∗ of E′. If μ is carried by a weakly complete
convex cone C, then rμ ∈ C. Moreover, if rμ ∈ K, where K is a cap of C, then there exists a
Radon measure θ ∈ M+(K) such that θ(K) � 1 and μ(f) = θ(f |K) for all f ∈ h(E), and we
say that μ is localized on K. A partial order is defined in M+(E) by writing μ � ν whenever
μ(f) � ν(f) for all f ∈ s(E), which, incidentally, implies that rμ = rν . For C ∈ S Choquet
shows that the order � is inductive on M+(C), and hence that each ρ in M+(C) is majorized
by some maximal element μ of M+(C). Hence we have the following representation theorem.
For each x ∈ C there exists a maximal measure μ of M+(C) such that rμ = x. Moreover, there
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OBITUARY 353

corresponds to each x ∈ C a unique maximal measure μ of M+(C) satisfying rμ = x if and
only if C − C is a vector lattice with respect to its specific order.

The foregoing theory has achieved canonical status in functional analysis and has found
applications in, for instance, ergodic theory, operator algebras, function algebras, stochastic
processes, random sets, potential theory, statistical mechanics, and harmonic analysis (see [44,
95, 114, 154], and also § 2.11 and 〈1, 2, 5, 6, 8, 10, 22, 26, 31, 33, 44, 46, 47, 52〉).

2.4. Potential theory [19, 38, 45, 47, 52, 55–59, 64, 66, 72, 73, 77, 79, 100, 109, 133,
142, 144]

In [19], Choquet and Deny investigate characterizations of harmonic functions in R2 in the
spirit of the Gauss characterization of them in terms of mean values on circles. We say that a
real continuous function f on a domain D ∈ R2 is associated with a signed Radon measure μ
on the unit disc B if, for each similarity transformation φ of the plane such that B ⊆ φ(D), we
have μ(f ◦ φ) = 0. The authors characterize the measures μ such that the f associated with μ
are precisely the harmonic functions. Further study of the condition μ(f ◦ φ) = 0 leads them
to a characterization of polyharmonic functions (solutions of Δnf = 0).

Let Pn be the space of real homogeneous polynomial functions of degree n on Rm. In the space
of all real polynomial functions on Rm define an inner product by writing (p, q) =

∫
pq dμ, where

μ is the rotation-invariant probability measure on the unit sphere Sm−1. Let r2 =
∑m

i=1 x
2
i .

Then Brelot and Choquet [45] show that, for n � 2, the set Hn of all homogeneous harmonic
polynomials of degree n is the orthogonal complement of r2Pn−2 in Pn. Among applications
of this is the theorem that a domain D in Rm is ellipsoidal if and only if, for each polynomial
p on Rm, there exists a harmonic polynomial on Rm that coincides with p on the boundary
of D.

In [38], Brelot and Choquet show how classical potential theory in open subsets of Rn

can be extended to the structures they call E-spaces. We define an E-manifold as a connected
Hausdorff space M equipped with an n-dimensional atlas of local charts, where n � 2, such that
the chart-change maps are isometries if n � 3, or conformal (directly or not) if n = 2. (The E-
spaces of [38] are more general than E-manifolds in that the authors allow the chart-parameter
space to be the Alexandroff compactification of Rn rather than Rn; for the sake of simplicity
we confine attention here to E-manifolds.) Such manifolds are metrizable, locally compact, and
σ-compact, and much of classical potential theory can be extended to them. For example, the
Dirichlet problem for relatively compact domains is treated here by the Perron–Wiener–Brelot
method. The authors are principally concerned with Green spaces, namely those E-spaces that
carry a Green function, and for such spaces they treat inter alia the Dirichlet problem for
domains that are not relatively compact. Assume that the E-manifold L has a Green function,
denoting it by Gx when the point x is taken as pole. Then a maximal trajectory orthogonal
to the level sets of Gx and issuing from x is called a Green line from x, it being assumed that
gradGx 
= 0 along the trajectory. A Green line from x is said to be regular if the infimum of Gx

along the line is zero. Each Green line from x is tangent at x to a half-line issuing from x and
vice versa, and the half-lines corresponding to non-regular Green lines form a set of solid-angle
measure zero. The Green measure gx(A) of a Borel subset A of the level set Gx = λ is defined,
for sufficiently large λ, as the normalized solid-angle measure of the set of initial directions of
the Green lines from x that meet the set A, and is equal to the harmonic measure of A relative
to the domain Gx > λ. If n > 2 and the volume of L is finite, then almost all Green lines are
of finite length.

Let E be a topological space. A function f : P(E) → [0,∞] is said to be stabilizable if it
is isotone and such that, for each X ⊆ E and each ε > 0, there exists a partition of X into
two sets X1 and X2 satisfying f(X1) � f(X) and f(X2) < ε. Choquet [72] investigates the
properties of such maps and shows in particular that, when E is a Green space, the exterior
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354 GUSTAVE CHOQUET 1915–2006

Green capacity cap∗ is stabilizable. He does this by proving that the set of points of E at which
X is thin is contained in an open set G such that cap∗(X ∩G) < ε. Another finding is that
there exists a partition of X into two sets, X1 and X2, such that cap∗(X1) = cap∗(X1) and
cap∗(X2) < ε. The results of [72] contributed to the understanding of the relation between fine
continuity and quasi-continuity in potential theory (see 〈15〉).

Suppose that A is a Gδ-set of zero capacity in Rm (m � 3). Then Deny 〈23〉 shows that there
exists a positive measure μ on Rm whose potential Uμ satisfies A = {x ∈ Rm : Uμ(x) = ∞}.
Choquet [73] sharpens this result by showing that one can impose on μ the condition that
μ(�A) = 0. After proving this for Newtonian potential, Choquet notes that the result also
holds for the potentials associated with certain other kernels.

Choquet devoted a considerable effort in a number of papers to the study of the potential
theory associated with a given kernel, with the aim of understanding how the regularity
properties (usually known as principles) of the kernel are interrelated and how they affect the
potential theory. This resulted in a large number of definitions, results, and examples, of which
we can only give a representative sample here. Suppose that E is a locally compact Hausdorff
space. By a kernel for E Choquet means a lower semicontinuous map G : E × E → [0,∞].
Let M+(E) denote the set of positive Radon measures on E. For μ ∈ M+(E) the potential
Gμ : E → [0,∞] of μ (relative to G) is defined by

Gμ(x) =
∫
E

G(x, y) dμ(y).

Given a kernel G, one defines the transpose kernel Ǧ via Ǧ(x, y) = G(y, x).
The simplest situation is that in which the space E contains only finitely many points. This

is studied in depth in [47, 55] by Choquet and Deny. Here, of course, μ can be identified with a
vector in Rn, where n is the number of points in E, and μ �→ Gμ with a linear endomorphism of
Rn. The authors hoped that the study of potential theory in this simple setting would clarify the
basic principles and their interrelations, and also lead to new principles as well as, especially,
to an improved understanding of the general case. Their work reveals hitherto unsuspected
links between familiar principles: domination, balayage, equilibrium, maximum, energy, lower
bound, as well as revealing new principles. Completely new is the notion of duality in potential
theory: the properties of G and Ǧ exhibit a duality. For example, the principles of balayage
and of domination constitute a dual pair; if G is symmetric, it follows that these two principles
are equivalent properties and they imply that G is of positive type (positive-definite). A special
study is made of degenerate kernels (those G such that detG = 0).

The kernel G is said to be regular if it satisfies the following continuity principle: whenever
μ ∈ M+(E) is compactly supported and such that the restriction of Gμ to suppμ is finite and
continuous, it follows that Gμ is finite and continuous on E. The dilated maximum principle on
compact sets states that, for each compact set K, there exists a constant λ = λ(K) � 1 such
that, for all μ ∈ M+(E) such that suppμ ⊆ K, we have supK Gμ � λ supLGμ, where L =
suppμ. In [52] it is shown that G is regular if the dilated maximum principle on compact sets
is satisfied, but that the converse is only true under certain conditions. This work is continued
in [58], where, for simplicity, it is assumed that the space E is compact (see also [59]). We
can also define the (outer) G-capacity of subsets of E by the same procedure as for Newtonian
capacity, the kernel G now taking the role formerly played by the Newtonian kernel. The kernel
G is said to be very regular if it is finite and continuous away from the diagonal Δ of E × E,
infinite on Δ, and such that G and Ǧ are both regular. If G is regular and also finite and
continuous away from Δ, then, for each ε > 0 and each μ ∈ M+(E), there exists an open set
O of Ǧ-capacity < ε such that the restriction of Gμ to �O is finite and continuous. Inequalities
relating G-capacity and Ǧ-capacity are obtained, and it is shown that if G is very regular, then
a set is of zero G-capacity if and only if it is of zero Ǧ-capacity.
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OBITUARY 355

Suppose now that the kernel G is symmetric. The mutual energy of μ, ν ∈ M+(E) is,
by definition, [μ, ν] =

∫
Gμdν; the energy of μ is [μ, μ]. The kernel G is said to satisfy the

domination principle if Gμ � Gν everywhere whenever μ and ν are compactly supported
elements of M+(E) such that [μ, μ] <∞ and Gμ � Gν on suppμ. Choquet [64] shows
that if G satisfies the domination principle, then G is of positive type (which means that
[μ, ν]2 � [μ, μ][ν, ν] for all μ, ν ∈ M+(E)). On the other hand, G is said to satisfy the k-
dilated maximum principle if Gμ � k for all compactly supported μ ∈ M+(E) such that
Gμ � 1 on suppμ. The latter condition is shown to imply that [μ, ν]2 � k2[μ, μ][ν, ν] for all
μ, ν ∈ M+(E).

Let (μi) be a family of positive Radon measures on Rn. Then a theorem of Cartan and Brelot
states that there exists a measure μ � 0 whose potential is equal, save on a set of zero exterior
capacity, to the infimum of the potentials of the μi. Taking as context a locally compact space
equipped with a kernel, Brelot and Choquet [57] obtain a much more general result. Their proof
makes use of a topological lemma of Choquet concerning lower semicontinuous functions.

In the first part of [66] Choquet studies conditions for a kernel under which the convergence
of a sequence of measures implies the convergence of the corresponding sequence of potentials.
Next, a kernel G is said to satisfy the equilibrium principle if, for each compact set K, there
exists a measure μ � 0 with suppμ ⊆ K such that Gμ � 1 everywhere, and Gμ = 1 on K, save
on a set of zero outer Ǧ-capacity. In the second part of this paper it is shown that if G and Ǧ
are regular and satisfy the equilibrium principle, then the (outer) capacities associated with G
and Ǧ are equal and satisfy the fundamental axioms Γ1–Γ3 of § 2.2.

Now let Cc = Cc(E) and Mc = Mc(E) denote the subspaces of C = C(E) and M = M(E),
respectively, consisting of their compactly supported elements. The bilinear form 〈f, μ〉 =

∫
f dμ

puts Cc in duality with M and C in duality with Mc. A positive linear map T : Mc → M that
is weakly continuous with respect to the above dualities is called by Choquet and Deny [56] a
diffusion kernel. Its transpose T ∗ is a weakly continuous positive linear map Cc → C. A diffusion
kernel T is said to satisfy the balayage principle if, for each relatively compact open subset
W of E and each μ ∈ M+

c , there exists μ′ ∈ M+
c such that suppμ′ ⊆W , Tμ′ � Tμ, with

Tμ′ = Tμ on Borel subsets of W . The transpose T ∗ satisfies the domination principle if, for all
f, g ∈ Cc such that T ∗f � T ∗g on supp f , we have T ∗f � T ∗g everywhere. It is proved in [56]
that T satisfies the balayage principle if and only if T ∗ satisfies the domination principle. In
particular, a positive measure κ on a locally compact abelian group defines a diffusion kernel
Tκ by the formula Tκμ = κ � μ and a transposed diffusion kernel T ′

κ by T ′
κf = κ � f . It follows

from the preceding theorem that Tκ satisfies the balayage principle if and only if T ′
κ satisfies

the domination principle.
Turning to the study of convolution operators on a locally compact abelian group G, Choquet

and Deny [79, 133] say that a positive measure κ on G satisfies the balayage principle on
relatively compact open sets if Tκ satisfies the balayage principle enunciated in the preceding
paragraph, and they denote the corresponding set of measures by B(G). The balayage principle
for open sets is defined in the same way, except that W now runs through all the open sets
and not merely the relatively compact ones; the corresponding set of measures is denoted by
B0(G). The main objective here is to characterize the elements of B0(G). A pseudo-period of a
measure N is an x ∈ G such that N � εx is proportional to N . A perfect kernel can be defined
as a measure of the form

∫∞
0
μt dt, where (μt)t�0 is a vaguely continuous convolution semigroup

of measures with μ0 = ε0. The set P of pseudo-periods of a measure N is a closed subgroup
of G and N can be written as fK, where f is an exponential (that is, f(x+ y) = f(x)f(y)
for all x, y ∈ G) and K is a measure admitting P as period group; the map G→ G/P conveys
K to a measure on G/P denoted by K/P . The authors prove that (i) if P is compact, then
N ∈ B0(G) if and only if K/P is perfect and (ii) if P is not compact, then N ∈ B0(G) if
and only if K/P = a

∑∞
n=0 σ

n in the vague topology, where a is a positive constant, σ a
measure possessing convolution powers σn of all orders, and σ0 = ε0. An important tool in this

 14692120, 2010, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s/bdq001 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [30/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



356 GUSTAVE CHOQUET 1915–2006

work is the inequality

N∗(X)N∗(Y ) � N∗(X − Y )N∗(X + Y )

for all N ∈ B(G) and X,Y ⊆ G, where N∗ denotes inner N -measure.
In [77] (see also 〈6, 24〉) Choquet and Deny study the convolution equation μ � σ = μ, where

μ and σ are Radon measures on a locally compact abelian group G. Here σ is a given positive
measure, and the object is to investigate the measures μ that solve the equation. A signed
measure μ is said to be bounded if, for each continuous real function φ on G, the convolution
μ � φ is a bounded function. If σ(G) 
= 1, then no non-zero bounded μ satisfies the equation;
but, if σ(G) = 1, it is proved that the bounded solutions are the periodic bounded measures
whose group of periods contains the support of σ.

To simplify the discussion we shall now suppose that the topology of G has a countable base
and that the subgroup of G generated by the support of σ is dense in G. The solutions μ � 0
form a convex cone H, termed the cone of σ-harmonic measures. If μ, ν ∈ H, we write ν � μ to
signify that μ− ν ∈ H. The relation � is a lattice order for H. The set ∂H of extreme elements
of H is defined as the set of non-zero μ ∈ H such that whenever H � ν � μ it follows that ν = cμ
for some c ∈ R+. A real exponential f on G is said to be σ-harmonic if the measure f(x)ω(dx)
belongs to H, where ω denotes Haar measure on G, and the σ-harmonic exponentials form a
locally compact space when given the topology of uniform convergence on compact subsets of
G . The elements of ∂H are shown to be precisely the measures of the form cf(x)ω(dx), where
c ∈ R+ and f is a σ-harmonic exponential. Using Choquet’s integral representation theory, the
authors show that each σ-harmonic μ has a density hμ with respect to Haar measure given by
the formula

hμ(x) =
∫
f(x)π(df),

where π is a positive Radon measure on the space of σ-harmonic exponentials. Moreover, this
representation is unique.

This work has found applications in probability theory (see, for example, 〈7, 25, 48, 59〉).
It has also been extended to certain other types of topological group and has been developed
in other ways (see, for instance, 〈17〉 and the bibliography therein).

Let Bn be the closed ball of radius n centred at 0 in Rτ . A measure μ � 0 on Rτ

is said to have superexponential growth if lim supn→∞ n−1 logμ(Bn) = ∞. Continuing the
study of convolution operators, Choquet [142] shows that if N belongs to B(Rτ ) and is of
superexponential growth, then suppN is contained in a closed half-space of Rτ . A function
called a growth indicator for a positive measure is defined in [144] and used to prove that if
λ ∈ B(Rτ ), then either λ is of superexponential growth or λ is the product of an exponential
function by a bounded element of B(Rτ ).

Getoor 〈27〉 has proved that, for every Radon measure μ � 0 on Rp (p � 3) that vanishes on
polar sets (that is, sets of zero Newtonian capacity), there exists a least finely closed set that
carries μ. Choquet [100] gives an elegant short and non-probabilistic proof of a more general
result that, in particular, allows Getoor’s theorem to be extended to the axiomatic potential
theories of Brelot and Bauer.

Keldych 〈35〉 proves that if Ω is a bounded domain in Rp (p � 3), then there exists a
countable set D of irregular boundary points for the Dirichlet problem for Ω such that, if
f ∈ C(∂Ω) and if the Perron–Wiener–Brelot function Hf is continuous at each point of D,
then Hf is continuous at every point of ∂Ω. Choquet [109] gives three proofs of this theorem,
of which two are valid in a very general topological setting. The third proof, more explicit
about D, involves the fine topology and establishes a connection between the behaviour of the
Green function and that of Hf for f ∈ C(∂Ω).
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2.5. Linear functional analysis [46, 61, 81, 94, 102, 104–106, 116, 119, 122, 125, 126,
130, 132, 135, 138]

In [46, 104] simple proofs are given for two versions of the minimax theorem of the theory of
games. We are given compact convex subsets X and Y , respectively, of two real topological
vector spaces L and M , say. In [46] the payoff function is the restriction to X × Y of a
continuous bilinear function on L×M . In [104] the spaces L and M are finite-dimensional
and the payoff function f(x, y) is defined and continuous on X × Y , convex in x, and concave
in y; for this case an extremely elementary proof is given, together with another that uses the
Brouwer fixed-point theorem.

Suppose that X is a Hausdorff space, that S is a family of pairs (x, σ), where x ∈ X and σ
is a compactly supported positive Radon measure on X that does not charge x, and that T is
a family of compactly supported positive Radon measures on X. Let E be the set of all real
continuous functions f on X such that

∫
f dσ � f(x) for all (x, σ) ∈ S and

∫
f dτ � 0 for all

τ ∈ T . Then E is a convex cone that contains 0, is closed with respect to uniform convergence
on compact sets, and is a lower semilattice, that is to say, we have f ∧ g ∈ E for all f, g ∈ E. The
principal theorem of Choquet and Deny in [61] is the converse: any such cone of real continuous
functions on X can be characterized by a set of inequalities of the above type. A special case
is the classical characterization of the cone of all continuous superharmonic functions on a
domain in Rn. If the cone E is locally compact, then the supports of the measures in S and T
can be taken to be finite sets, and the above characterization is then seen to be a generalization
of the classical Harnack inequalities.

Suppose that E is a real or complex normed vector space, that G is a linear subspace of E,
and that x ∈ E \G, and suppose that there exists in G a best approximation of g0 to x, that
is to say, we suppose that ‖x− g0‖ = infg∈G ‖x− g‖. Then there exists an element f0 of the
dual space E∗ such that (i) f0 is an extreme point of the unit ball of E∗, (ii) �f0(g0) � 0, and
(iii) f0(x− g0) = ‖x− g0‖. This theorem was proved by Singer 〈56〉 for those normed vector
spaces he called Choquet spaces, which include in particular all separable normed vector spaces.
However, in [94] Choquet shows that the theorem is true, without restriction, in all normed
vector spaces.

Let K be a compact convex subset of a locally convex space E. In [102] Choquet, Corson,
and Klee show that if E is of finite dimension d � 2, then the set expK of exposed points of
K is the union of a Gδ set, an Fσ set, and d− 2 other sets, each of which is the intersection
of a Gδ set and an Fσ set. Further results in this vein are obtained in a more general setting
that replaces K by a compact metric space and linear functionals by upper semicontinuous
functions. In the final section of the paper the authors construct, in an infinite-dimensional E,
a compact convex K that has no algebraic exposed points, and hence for which expK = ∅.

In [125] Choquet studies the properties of certain subspaces of a complete metrizable
topological vector space E. For instance, suppose that H is the vector subspace of E generated
by a set X that is either an analytic subset of E or is of the form

⋃
Xn for some finite or infinite

sequence (Xn) of closed vector subspaces of E. Then it is proved that either H is closed or
H is of the first category in itself and the algebraic dimension of the quotient space E/H is
uncountable.

By means of a counterexample Choquet [138] shows that two weakly complete cones in a
locally convex space that intersect only in their common vertex cannot, in general, be separated
by a closed hyperplane.

Let H be a separating vector subspace of C(X,C), where X is a compact Hausdorff space, let
B be the unit ball of H ′, and suppose that 0 
= l ∈ H ′. The evaluation map identifies X with a
subset of B and hence M1

+(X) with a subset of M1
+(B). Hustad, Hirsberg, Fuhr, and Phelps

have shown that there exists a complex Radon measure μ on X such that (i) l(f) =
∫
f dμ for

all f ∈ H, (ii) ‖μ‖ = ‖l‖, and (iii) |μ|/‖μ‖ is a maximal element of M1
+(B) (see § 2.3). Fuhr and
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358 GUSTAVE CHOQUET 1915–2006

Phelps also prove a uniqueness theorem for the case when H contains the constant functions.
In [130] Choquet summarizes a new treatment of these topics and, in particular, obtains a
uniqueness result for the case when H is not assumed to contain the constant functions. (For
more details, see also 〈45〉.)

Let X be a locally compact Hausdorff space, let H be a linear subspace of C(X,R), and let
H+ = C+(X,R) ∩H. Then H is said by Choquet to be an adapted subspace if (i) for each
x ∈ X there exists h ∈ H+ such that h(x) > 0; (ii) H = H+ −H+; and (iii) for each f ∈ H+

there exists g ∈ H+ such that, for every constant k > 0, there exists a compact set K such
that g(x) � kf(x) outside K. Choquet [81] proves that, if φ is a positive linear functional
on an adapted subspace H of C(X,R), then there exists a positive Radon measure μ on X
such that φ(f) =

∫
f dμ for all f ∈ H. Noting that the real polynomial functions on R form an

adapted subspace of C(R,R), he shows that this theorem provides an elegant treatment of the
Hamburger moment problem.

In [119, 122, 126, 132] Choquet undertakes an investigation of the problem of representing
positive linear functionals on a real function space by means of integrals. Direct use of integrals
is not always possible. For example, suppose that Q is the space of real quadratic functions
q(t) = a0 + a1t+ a2t

2 on R and that φ : Q→ R is defined by φ(q) = a2. Then φ(q) = ε∞(q̃),
where q̃ is the continuous extension to R = [−∞,∞] of the quotient q(t)/(t2 + 1). This
construction is systematized here in a very general setting. Given a real function space V ,
Choquet seeks to represent the general positive linear functional on V in terms of quotients
integrated with respect to a Radon measure on a compact space associated with V . For this
purpose he introduces sub-Stonian spaces. For Choquet a sub-Stonian space is a compact
Hausdorff space E in which we have A ∩B = ∅ whenever A and B are disjoint open Fσ-subsets
of E. (Some authors use a wider definition.) Choquet points out that a space is sub-Stonian if
and only if it is a compact Hausdorff F-space in the sense of 〈28〉. Given a compact Hausdorff
space E, let D(E) denote the set of all those f ∈ C(E,R) that are infinite only on a nowhere
dense subset of E. Then E is sub-Stonian if and only if D(E) is an algebra such that, for all
f, g ∈ D(E), the quotient f/g, defined on supp g, belongs to D(supp g). For such E Choquet
studies linear functionals on subspaces of D(E). He motivates this as follows. Let S be a σ-
algebra of subsets of a set I and let N be a σ-ideal of S. Then M(S,N ) is defined as the space
of equivalence classes (modulo N ) of real S-measurable functions on I, and it is proved that
there exists a sub-Stonian space E and an isotone algebra-isomorphism of M(S,N ) onto D(E).

Now let V be a linear subspace of D(E) such that V = V + − V +, where E is a sub-Stonian
space. Suppose that f ∈ D+(E) and that μ is a positive Radon measure on supp f such that
g/f ∈ L1(μ) for all g ∈ V . Then the map g �→ μ(g/f) is a positive linear form on V , denoted by
[f, μ] and called in [132] a submeasure (though this term is used differently by many authors).
The submeasure [f, μ] is proper if f ∈ V + and is a subvaluation if μ = εa for some a ∈ E. There
is an extensive investigation here of positive linear forms in terms of these concepts. Among
many results it is shown, for instance, that every positive linear form can be expressed as a
sum of proper submeasures, and that every extreme positive form is a proper subvaluation.

Let E be a weak topological vector space. We denote by b(E) the vector sublattice of RE

generated by the real affine continuous functions on E, and by b∗(E) the algebraic dual of
b(E). The affine measures on E are defined by Choquet [105, 106, 116] to be the elements
of the space b∗+(E) of positive linear forms on b(E). He shows that, with respect to the
topology σ(b∗(E), b(E)), the set B = {μ ∈ b∗+(E) : μ(1) = 1} is a Choquet simplex that has
closed extreme boundary ∂e(B), and he characterizes the latter in various ways. Given a
continuous affine map φ of E into another weak space F together with μ ∈ b∗+(E), he defines
φ(μ) : b(F ) → R by the formula φ(μ)(g) = μ(g ◦ φ), and we have φ(μ) ∈ b∗+(F ). Moreover, if
φ(μ) is a Radon measure on F for every finite-dimensional F and every continuous affine φ :
E → F , then μ is called a cylindrical measure; several characterizations of cylindrical measures
are given. We say that μ ∈ b∗+(E) has a resultant if μ(|l|) := sup{μ(f) : b+(E) � f � |l| } <∞
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OBITUARY 359

for all l ∈ E′. Every affine measure that has a resultant is cylindrical, but the converse is false.
A bijection is established between certain conical measures on E × R and the affine measures
on E that have resultants. A special study is made of the affine measures μ on a pre-Hilbert
space H that are invariant under all isometries of H. Denote by X the set of the invariant μ
that also satisfy μ(1) = 1. Then X is a Choquet simplex that has ∂eX homeomorphic with
[0,∞] via a map t �→ μt with μ0 = ε0 and μ∞ = limt→∞ μt. For 0 < t <∞, we see that μt is a
Wiener–Gauss measure if dimH = ∞ and is the normalized solid-angle measure on the sphere
S(0, t) if dimH <∞. Each μ ∈ X has a unique representation of the form

μ = aμ0 + bμ∞ +
∫
μt dπ(t),

where a, b ∈ R+ and π is a positive measure on (0,∞).
In the final part of [106, 116], E is a complete weak space, and for each conical measure

μ on E the set of all resultants of the conical measures ν � μ is denoted by Kμ. The Kμ

are symmetric compact convex sets, and their translates (which generalize the zonohedra of
Coxeter) are known as zonoforms. It is proved that a symmetric compact convex set is a
zonoform if and only if the gauge of its polar set is a function of negative type.

Suppose that X is a compact Hausdorff space and that T is a positive linear operator in
C(X). Then Choquet and Foiaş [135] prove that (i) if inf{Tn1 : n � 1} < 1, then Tn1 tends
to 0 uniformly as n→ ∞ and (ii) if sup{Tn1 : n � 1} > 1, then Tn1 tends to ∞ uniformly as
n→ ∞. Several applications are made to the study of the limiting behaviour of (

∑n−1
r=0 T

rf)/n
and of (Tnf)1/n. For a sequel to this, see 〈3〉.

2.6. Set theory [103, 107, 108]

A cardinal number n is said to be 2-measurable if, for each set A of cardinality n, there exists
a countably additive measure μ on the power set of A taking only the values 0 and 1 and
such that μ({x}) = 0 for all x ∈ A and μ(A) = 1. Cardinals that lack this property are termed
moderate (modéré) by Choquet [103]. Given a set I, he shows that the positive cone R

(I)
+ of

the direct sum R(I) is complete with respect to the weak topology σ(R(I),RI) if and only if
the set I is of moderate cardinality. He also considers the cone of compactly supported positive
Radon measures on a locally compact Hausdorff space E and shows that it is complete with
respect to the weak topology of the duality with the space C(E) of all real continuous functions
on E if and only if E is real-compact.

After the notions of filter and ultrafilter were introduced by Henri Cartan in 1937 they
became standard currency, especially for Bourbaki, whose treatment of them was based on the
axiom of choice. Choquet’s papers [107, 108] are an investigation, based on the continuum
hypothesis, of the existence and classification of ultrafilters on the set of natural numbers N

that have special properties of interest in analysis.
Choquet’s work on K-analytic sets has been described above in § 2.2. See also § 2.11.

2.7. Measure theory [27, 28, 118, 120]

Suppose that λ is one-dimensional Hausdorff measure in the plane. Choquet [27] shows that the
continuum hypothesis implies that there exists a set S such that (i) λ(S) = ∞, (ii) if T ⊆ S,
then T is λ-measurable and λ(T ) = 0 or λ(T ) = ∞, and (iii) every analytic subset of S is
countable. In [28] he considers the question whether there exists a set E in the plane such that
(a) �E ∩ { (x, y) : y = c } is of linear measure zero for each real number c and (b) λ(E ∩ L) = 0
for each λ-measurable set L that intersects every line y = c in a set of linear measure zero.
Assuming again the continuum hypothesis, he shows (1) that such a set E does not exist and
(2) that existence can, however, be proved if one modifies the question by restricting the sets
L to be Borel, analytic, projective, or of finite λ-measure.
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360 GUSTAVE CHOQUET 1915–2006

In [120] Choquet shows that the continuum hypothesis implies the existence of a function
f : [0, 1] → [0, 1] the graph Γ of which is a universally measurable subset of [0, 1]2 satisfying
μ(Γ) = 0 for every diffuse Radon measure μ on [0, 1]2. He deduces that the projection onto
[0, 1] of a universally measurable subset of [0, 1]2 need not be a universally measurable subset
of [0, 1], and that a subset of [0, 1]2 can be universally measurable without being universally
capacitable.

Next, let E be a compact Hausdorff space, let N ⊆ E, and let M ⊆ M(E). The set N
is said to be M -negligible if |μ|(N) = 0, for all μ ∈M , and uniformly M -negligible if, for
each ε > 0, we can find an open set U containing N and such that |μ|(U) < ε for all μ ∈M .
Choquet [118] asks the following question: if M is a σ(M(E), C(E))-compact subset of M+(E)
and N is M -negligible, does it follow that N is uniformly M -negligible? The answer is shown
to be affirmative (i) if N is a Kδ-set (theorem of Prohorov), or (ii) if E is metrizable, M is
countable, and N is a Gδ-set. However, for E = [0, 1]2 a counterexample is obtained via the
construction in [120] (which depends on the continuum hypothesis). Choquet also provides a
counterexample for a non-metrizable E, with N a Gδ-set.

2.8. General topology [29, 31, 36, 62, 111, 112]

The article [31] consists of three parts. The first is a detailed study of binary relations, including
semicontinuous relations, between two topological spaces. This part also includes a definition
and investigation of the expressions lim infF X , lim supF X , and limF X , where X = (Xi)i∈I

is a family of subsets of a topological space and F is a filter on the index set I. For example,
lim supF X =

⋂
J∈F

⋃
i∈J Xi. A tool used in the discussion is the notion of a grill, for which

see also [29].
In the second part of [31] Choquet studies a type of relation R(F ,m), termed the relation of

pseudo-convergence, between the filters F and the points m in a given set E. If F and m satisfy
R(F ,m), then we say that F is pseudo-convergent to the pseudo-limit m. These considerations
are applied, in particular, to the space 2E of all non-empty closed subsets of a topological space
E. Given a filter F in 2E and a non-empty closed set X in E, the relation R(F ,X) is defined
to mean that X = limF Y, where Y = (Y )Y ∈2E . This formulation generalizes the treatment,
when E is a metric space, of convergence in 2E by means of the Hausdorff metric (see 〈37〉).
There now exists an extensive literature on convergence spaces, for which these investigations
can be seen as a precursor.

The third part of [31] consists of a very general account of Choquet’s contingent–paratingent
theorem, which has already been discussed above.

In [36] Choquet examines four different ways in which one might conceivably generalize
Baire’s category theorem, and shows that none of them is possible.

By modifying the Banach–Mazur topological game, Choquet [111] defines a new class of
Baire spaces that is large enough to include the standard examples of Baire spaces, but
restricted enough to be stable with respect to numerous operations (for example, the formation
of products, whether countable or not). Given a topological space E, two players α and β choose
alternately a non-empty open subset of E in such a way that the resulting sequence (Gn) of
open sets is decreasing, β having the first move. The player α is then declared the winner
if

⋂
nGn 
= ∅; otherwise β wins. It is assumed that each player remembers only his or her

opponent’s last move. The space E is termed α-favourable if α has a winning strategy. It is
proved that every α-favourable space is a Baire space. In a modification of the game, α is
required at each step to choose an open set that contains a point prescribed by β; the space
E is strongly α-favourable if α has a winning strategy for this modified game. Choquet [112]
proves, for instance, that the extreme boundary ∂e(X) of a compact convex set X is strongly
α-favourable. In his earlier paper [62] Choquet defines another class of Baire spaces that is
stable with respect to numerous operations, namely the siftable spaces (espaces tamisable).
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OBITUARY 361

However, the latter are always α-favourable. For variants and more information see [62, 111,
112] and 〈34〉.

2.9. Late work [141, 143, 145–149, 151, 152, 156, 161–163, 169]

We confine attention here to late papers that have not already been considered above.
Let g be a C∞ Riemannian metric on R3 and let g0 be the Euclidean metric. In [141] the

authors prove that if g/g0 tends to 1 at infinity, then each Killing vector on R3 associated with
g and tending to zero at infinity is identically zero.

In [143] Choquet is interested in a class T of C1-manifolds equipped with continuous C0

metrics and having a certain good geodesic behaviour. These are ‘variétés tendues’, for whose
existence see [18]. He shows that a number of classical results that hold for smooth Riemannian
manifolds extend to the class T .

In the 1980s Choquet wrote eight papers [145–149, 151, 152, 156] investigating the
distribution modulo 1 of real sequences of the form (kθn)∞n=1, where k > 0 and θ > 1. It is
not possible to summarize these papers here, since they are themselves summaries, but some
brief indications can be given. He is mainly interested in the case where θ is rational, and
especially that in which θ = 3/2. For t ∈ R let t̂ denote the image of t in the torus T = R/Z.
Choquet remarks that, although the sequence ( ̂k(3/2)n) is uniformly distributed for almost
every k, no explicit value of k is known for which this is true. To study such sequences he
proposes to examine them in a wider setting, in order to be able to make use of a variety of
mathematical tools.

To this end he begins by introducing some basic notions concerning morphisms of compact
groups and certain operations on sets or measures associated with families of morphisms.
Suppose now that θ is an irreducible rational p/q. The maps x �→ px and x �→ qx are morphisms
of T and a subset X of T is said to be θ-stable if qX = pX; θ-stable measures are defined
similarly. A sequence (xn) of points of T indexed by an interval I of Z is called a θ-chain if
qxn+1 = pxn whenever n, (n+ 1) ∈ I. A finite θ-chain (xr)n

r=0 such that x0 = xn is called
a θ-cycle. Two basic algorithms, θ-series and recursive θ-games, are defined and applied
to the study of θ-chains and θ-stable closed sets. Using these algorithms Choquet obtains
effective procedures for constructing numbers k such that the set of numbers xn = k(3/2)n has
interesting properties. Denoting by ‖x‖ the distance of x from the nearest integer he finds, for
instance, values of k for which ‖k(3/2)n‖ � 1/3 for all n ∈ N, or for which ‖k(3/2)n‖ � 1/19
for all n ∈ N, or for which the sequence ( ̂k(3/2)n) is dense in T. He also proves that there exist
2ℵ0 numbers k > 0 such that we have ‖k(3/2)n‖ � 3−1.21−an for infinitely many values of n,
where a = ((log 3/2)/ log 2)2.

Next, he identifies various faces and extreme elements of the cone of (3/2)-stable measures
on T. Investigating the θ-stable closed subsets of T, he confirms a conjecture of Mendès–France
by showing that if k and θ are rational, with θ and θ−1 not integers, then lim supψ(kθn) = ∞,
where for a positive rational x the symbol ψ(x) denotes the length of the regular continued
fraction expansion of x. Writing Xk = { ̂k(3/2)n : n = 1, 2, . . . }, Choquet shows in a further
examination of this set that there are at most countably many values of k for which Xk is
countable and has a second derived set X

′′
k that is finite and non-empty.

Further results concern the Hausdorff dimension of various sets, including nowhere dense
θ-stable closed subsets of T and the set of k > 0 such that Xk 
= T. The wealth of pairs (k, x)
such that ‖kθn − x‖ gets arbitrarily small is demonstrated, and there is a detailed study of
θ-cycles.

In the final note of the series the set of those k > 0, such that ‖k(3/2)n‖ � 1/3, for all n is
characterized as a certain set of effectively constructible numbers, and some related questions
are raised.
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Most of the many results in these papers are stated without proof. The papers also contain
many examples and a considerable number of open problems and conjectures.

Several geometrical theorems concerning the global attractors associated with a diffeomor-
phism of a manifold are announced in [163]. Properties of the stable and unstable manifolds
and of the set of homoclinic points are studied. The relation between global and pointwise
attraction is illuminated by a noteworthy application of a version of the contingent–paratingent
theorem (see § 2.1). Suppose, for instance that V is a connected finite-dimensional differentiable
manifold and that f ∈ Diff(V), and let K be a global attractor for f with a basin of attraction
B. For x ∈ B we denote by ω(x) the subset of K defined by

ω(x) =
⋂
p∈N

{ fn(x) : n � p }.

Then there exists a dense Gδ subset R of B such that ω(x) = K for all x ∈ R. (See also [161,
162].)

Let D denote the open unit disc in R2 and let C be its boundary. Let H be the set of all
harmonic homeomorphisms of D onto itself, and let M be the set of harmonic extensions to D
of the continuous surjections g : C → C that are such that g−1(θ) is connected for each θ ∈ C.
Then in [169] it is proved that H = M|D.

2.10. Essays and addresses [75, 84, 127, 131, 134, 137, 155, 160, 165, 166, 168, 171,
172, 174]

A number of publications on a variety of subjects should be noted here, including two articles
on modern mathematics and education [75, 127], the article ‘L’analyse et Bourbaki’ [84],
two papers on mathematical creativity [166, 171], and one on the continuous versus the
discrete [168]. Choquet also composed eulogies for Brelot [134, 165] and Deny [155] and
wrote a piece [174] to mark the centenary of the Lebesgue integral (see also [172]). His
remarkable accounts [131, 137, 160] of his own mathematical development and work should
not be overlooked. (Further valuable material about his life and work is to be found in his
interview 〈53〉 for Hommes de Science.)

2.11. Books [97, 98, 101, 111–113, 115, 117, 173]

In writing his book [98] on the teaching of geometry, Choquet was concerned with the
instruction of young people in the foundations of elementary geometry. He presents an
axiomatic treatment based on a small number of axioms that formalize various intuitive notions
derived from everyday experience, such as lines, parallelism, orthogonality, and distance. In
the space of less than 140 pages he establishes the essentials of Euclidean plane geometry, and
gives clear accounts of a number of difficult concepts such as angles and their measurement,
and orientation. The exposition is thoroughly modern and gives due attention to relevant tools
from modern algebra. The book has been published in at least eight languages.

Choquet’s 1950s reform of analysis teaching in the Sorbonne has been recounted above in
§ 1. Notes for his course were written up shortly after the lectures and were made available
in hectographed form by the Centre de Documentation Universitaire. Revised and corrected
versions of these notes were subsequently published in more permanent form as [97, 115,
173]. The course consisted of three parts: Algebra, Topology, Integration and Differential
Calculus. Part II of the course was the subject matter of [97] (in English as [101], and
revised in [115]), which consists of three chapters: Topological spaces and metric spaces,
Numerical functions, Topological vector spaces. Little previous knowledge is required of the
reader apart from elementary calculus and simple facts about vector spaces. The material,
which is oriented towards applications in analysis, is carefully motivated, well illustrated,
and very clearly expounded. The judicious choice of topics makes this a valuable resource

 14692120, 2010, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s/bdq001 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [30/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



OBITUARY 363

for the young analyst. In [173] many chapters from the other two parts of the course have
been brought together, some material (in closed brackets below) from a more advanced course
has been included, and there is additional material from lectures in the École Polytechnique.
The section headings are as follows: Algèbre des ensembles, Algèbre, Nombres complexes et
nombres réels, Algèbre linéaire, Équations différentielles, [Structures Topologiques, Structures
uniformes, Espaces de fonctions,] Intégration, Analyse de Fourier. Unfortunately, the Sorbonne
chapters on differential calculus and integration could not be included, but happily a record of
the École Polytechnique course on the latter topic has survived and is included here. Although
this course of analysis was inaugurated more than 50 years ago, the content is still notable for
its remarkable modernity. Given that the standard fare had hitherto been based on such works
as the texts of Goursat and Valiron, it is small wonder that Choquet’s course precipitated a
revolution in the teaching of analysis in France. However, the decision to publish this work
now is not just an act of piety: it can be read with real profit by today’s students.

The three-volume work [111–113] is an expanded and revised account of a lecture-course
in analysis given by Choquet at Princeton in the 1967 fall term. His aim was to present
the analytical tools and methods that he had found the most useful in potential theory,
probability theory, and harmonic analysis, and the result is a particularly original and valuable
compendium of topics. Volume I treats general topology for analysis (including some descriptive
set theory), Radon measures and capacity theory, and topological vector spaces. Volume II
opens with further material on topological vector spaces, followed by integral representation
theory and some applications thereof, and concludes with a chapter on adapted spaces and
the representation of positive linear forms. Volume III is concerned with conical measures,
affine measures, and functions of negative type. Many examples and problems are provided.
Something that gives these volumes special weight and interest is the fact that Choquet has
made substantial personal contributions to many of the topics expounded here. In particular, it
is noteworthy that in 1967 the central theorems of his integral representation theory (see § 2.3)
had only recently achieved their definitive shape. Although very good concise introductions to
that subject had appeared in 〈41, 44〉, Choquet’s authoritative treatment of it in Volume II
was most timely, and it remains a definitive reference.

The lecture-course [117] is an account of some set-theoretic and topological tools in analysis.
It treats ordinals, Baire spaces, Borel, analytic, and K-analytic sets, capacities, classification
of functions, primitives and derivatives, set-valued functions, contingents and paratingents.
The text is of particular interest as an introduction to several of Choquet’s major research
contributions.

Acknowledgements. The task of writing this obituary has been greatly assisted by Cho-
quet’s own remarkable 1974 account [131] of his education and work, by the record 〈53〉 of
his interview for the book Hommes de Science, and by his description in [160] of the genesis
of the capacitability theorem. I have also drawn on material about him in a variety of other
sources: see 〈29, 38, 49, 50, 54〉 and especially 〈60, 61〉. In addition, I am very grateful to
Richard Becker, Jacques Deny, Gilles Godefroy, and Ivan Netuka for invaluable comments and
advice. The photograph has been reproduced, by kind permission, from the Archives of the
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〈25〉 W. Feller, An introduction to probability theory and its applications II (Wiley, New York, 1966).
〈26〉 T. W. Gamelin, Uniform algebras and Jensen measures, London Mathematical Society Lecture Note

Series 32 (Cambridge University Press, Cambridge, 1978).
〈27〉 R. K. Getoor, ‘Additive functionals of a Markoff process’, Lectures at Hamburg, 1964.
〈28〉 L. Gillman and M. Henriksen, ‘Rings of continuous functions in which every finitely generated ideal is

principal’, Trans. Amer. Math. Soc. 77 (1954) 366–391.
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〈49〉 A. Revuz, ‘Choquet et l’enseignement de la Géometrie elémentaire’, Gaz. Math. 111 (2007) 84–86.
〈50〉 M. Rogalski, ‘Gustave Choquet et l’enseignement des mathématiques à l’université’, Gaz. Math. 111

(2007) 77–83.
〈51〉 C. A. Rogers ‘K-analytic sets’, Analytic sets (eds C. A. Rogers et al.; Academic Press, London, 1980)

1–181.
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〈55〉 S. Z. Shi, ‘Choquet theorem and nonsmooth analysis’, J. Math. Pures Appl. 67 (1988) 411–432.
〈56〉 I. Singer, ‘Choquet spaces and best approximation’, Math. Ann. 148 (1962) 330–340.
〈57〉 M. Sion, ‘Topological and measure theoretic properties of analytic sets’, Proc. Amer. Math. Soc. 11 (1960)

769–776.
〈58〉 M. Sion, ‘On capacitability and measurability’, Ann. Inst. Fourier (Grenoble) 13 (1963) 83–98.
〈59〉 F. Spitzer, Principles of random walk (Van Nostrand, Princeton, NJ, 1964).
〈60〉 M. Talagrand, ‘Gustave Choquet (1er mars 1915 – 14 novembre 2006)’, Gaz. Math. 111 (2007) 75–76.
〈61〉 M. Talagrand,‘Notice nécrologique de Gustave Choquet’, Preprint, Acad. Sci. Paris, Séance
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Mathematica, Timişoara 20 (1944) 29–64.
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46. ‘Sur le théorème des points-selle de la théorie des jeux’, Bull. Sci. Math. (2) 79 (1955) 48–53.
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Choquet–Deny. Théorie du potentiel, 3e année (1958/59), Exp. No. 14, (Sécretariat Mathématique, Paris,
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73. ‘Sur les Gα de capacité nulle’, Ann. Inst. Fourier (Grenoble) 9 (1959) 103–109.
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 14692120, 2010, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s/bdq001 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [30/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



368 GUSTAVE CHOQUET 1915–2006
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139. ‘Sur un théorème du type Banach-Steinhaus pour les convexes topologiques’, Séminaire Choquet.
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C. R. Acad. Sci. Paris Sér. A–B 287 (1978) A1047–A1049.

142. ‘Noyaux de convolution sur-exponentiels sur Rτ ’, C. R. Acad. Sci. Paris Sér. A–B 288 (1979) A903–A905.
143. ‘Variétés riemanniennes de petites classes’, C. R. Acad. Sci. Paris Sér. A–B 289 (1979) A527–A531.
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(Université Paris VI, Paris, 1990) 1–31.
166. ‘Peut-on renouveler ses champs d’intérêt? Essai de réponses concrètes’, Atti del Seminario Matematico e
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