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JACOB LIONEL BAKST COOPER

Jacob Lionel Bakst Cooper, Professor of Pure Mathematics at the University of
London, Chelsea College, and one of the leading analysts in Britain, died on
8 August, 1979 in London, having been unconscious since a heart operation on
July 23. He had been a member of the Society since 1944, and made notable
contributions to operator theory, Fourier analysis, integral transform theory and
thermodynamics.

Lionel Cooper was born on December 27, 1915 in Beaufort West, Cape Province,
South Africa. His father Isaiah had a farm at Nelspoort, some thirty miles away, and
when he died in 1919 the family moved into Beaufort West. Shortly after Lionel’s
seventh birthday they moved again, this time to Cape Town, where his mother
Frances (née Bakst) thought the educational opportunities would be better for him,
and there he, his younger sister and Frances lived with his maternal grandparents.
The home was comfortable and cultured, his grandfather being a rabbinical scholar
and his grandmother widely read. Even before the family moved to Cape Town
indications of Lionel’s ability were apparent. He used to go out onto the roof of their
house late at night and watch the stars, learning all the constellations in the Southern
hemisphere; later, when a student at Oxford, he learnt about the Northern sky with
the same enthusiasm.

From 1924 to 1931 he attended the South African College School in Cape Town,
and when in his final year there he took the matriculation examination (the
University entrance examination in those days) he attracted the attention of the
principal Mathematics examiner, Professor Philip Stein of the University of Natal,
who asked to meet Lionel as he had never before seen such a brilliant paper. He
entered the University of Cape Town in 1932 and did outstandingly well, obtaining
first class honours in all the nine courses he took and winning numerous prizes,
including the Governor-General’s prize for Pure Mathematics, the Darter prize for
Applied Mathematics and the Bartle Frere prize for History; finally he was awarded
the B.Sc. degree with first class honours in Mathematics and Physics. Besides all this
he found time to take an active part in student politics, and became a socialist
member of the Students’ Parliament, with strong views against apartheid and
Nazism. There were many German-Jewish refugees in Cape Town then, and through
his friendship with one of them he became fluent in German. He had a gift for
languages, and later taught himself French, Italian and Russian.

He came as a Rhodes Scholar to The Queen’s College, Oxford in 1935 and read
Mathematics. In this more demanding environment awards continued to come his
way: in 1937 he graduated with first class honours and distinction in the theory of
functions, following which he was awarded the Senior Mathematical Scholarship and
the Johnson Memorial Prize of the University of Oxford, and won a research
scholarship at Queen’s to enable him to work under Titchmarsh; the D.Phil. degree
was awarded to him in 1940 for his thesis ‘Theory and applications of Fourier
integrals’. His work made an immediate impact, and as early as January, 1939 he was
invited to speak at Hadamard’s seminar in the Collége de France.

At Oxford he had the great good fortune to meet Kathleen Dixon, who was
reading History, and they were married in June, 1940. Their marriage was a long and
exceptionally happy one, and it is remarkable that all four of their children (Barbara,
Frances, David and Deborah) read Mathematics at University.

[BuLt. LONDON MATH. Soc., 13 (1981), 429-450]
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430 JACOB LIONEL BAKST COOPER

When war came in 1939, like most young men of his generation he volunteered
for the armed services (the Fleet Air Arm), but was turned down because of his poor
¢yesight and thus decided to take a job with the Bristol Aeroplane Company,
working on projects connected with the war effort. He stayed at Bristol from 1940 to
1944, when he was allowed to leave to take a Lectureship in Mathematics at
Birkbeck College, London, which in those days was open for teaching only at the
weekends. A part-time weekly teaching post at Imperial College for a term or so
helped to lessen the impact of the considerable reduction in salary he had taken on
leaving Bristol. He remained at Birkbeck until 1951, being appointed Reader in
Applied Mathematics in 1948. Those early years in London were productive and
rewarding for him: it was then that he wrote two of the three important papers [6],
{73, [9] on operator theory which are cited in many books on functional analysis
and which led to the award of the Junior Berwick Prize by the Society in 1949;
and his growing correspondence included two letters from Albert Einstein in 1949
concerning possible logical inconsistencies in quantum mechanics.

In 1951 he was appointed Professor of Mathematics and Head of the
Mathematics Department at University College, Cardiff, and for the next few years
the greater part of his energy went into the considerable task of reorganising and
reorienting the Department. The existing courses in Pure Mathematics there were of
a classical nature, and it was entirely due to his efforts that they were improved and
modernised, the end product being an attractive blend of forward-looking courses
with functional analytic methods given some prominence. He brought research more
to the forefront by giving advanced courses and seminars and before long the climate
in the Department was transformed. A break from this activity came in 1954, when
he interchanged with Philip Stein and spent some time in the University of
Witwatersrand as Visiting Professor and Acting Head of Department. Back in
Cardiff he played a full part in College and University affairs, being Dean of the
Faculty of Science from 1956 to 1958 and a member both of the Council and Court
of the Governors of the College and of the Court and Academic Board of the
University of Wales; he was a prominent member of the Commission set up in the
1960’s to enquire into the future organisation of the University of Wales. The links
between the College and local schools were assiduously fostered by him, and he
organised numerous highly successful refresher courses for teachers of mathematics.

These activities on behalf of the College and the University were not
achieved without considerable personal cost, for they effectively cut off his research
at its most promising stage, and from 1953 it was not until 1960 that research papers
began to appear again, first one on positive-definite functions [24] and then a series
of fundamental contributions to Fourier analysis [27], [28], [29]. In 1963 he made
the first of many visits to Oberwolfach, and participated in a conference on
Approximation Theory organised by Professor P. L. Butzer, with whom he struck up a
particularly happy relationship. He spent the academic year 1964—-65 in Pasadena as
Visiting Professor at the California Institute of Technology, and during this period
his feeling that it was time for a move came to a head and led to his resignation
from his chair at Cardiff in order to accept a full professorship at the University of
Toronto. He settled down quickly and easily in Canada, where his sharp intellect was
much appreciated; he was Editor of the Canadian Journal of Mathematics from 1965
to 1967. However, the pull of England, and London in particular, was too much for
him to resist, and he left Toronto in 1967 to become Professor of Pure Mathematics
and Head of the Department of Mathematics at Chelsea College.
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JACOB LIONEL BAKST COOPER 431

At Chelsea he made an immediate impact on his department and on the College,
which was emerging from its former status as a Polytechnic; soon he was in the thick
of the British mathematical scene once more. He served on the Mathematics Panel of
the University Grants Committee from 1971 to 1975, and his interest in all aspects of
education led him to accept membership of many committees. In 1974 he organised a
highly successful Science Research Council Rencontre on Differential Equations at
Chelsea, the theme being the interaction between Functional Analysis and
Differential Equations. Throughout this period he maintained his contacts with
Canada and made three visits there. He was also a leading participant in the triennial
conferences on Functional Analysis, Approximation Theory and related topics at
Oberwolfach organised by Paul Butzer from 1965 onwards, and took part in all but
the first of these.

Lionel Cooper did much hard work for the Society: he was Editor of the
Proceedings from 1952 to 1959 and served on the Council from 1949 to 1961. In 1959
and 1960 he took part, on behalf of the Society, in the negotiations with DSIR to
arrange for the translation of the mathematical periodical Uspekhi Matematicheskikh
Nauk from the Russian, and from 1961 to 1963 was Editor of Russian Mathematical
Surveys, in which these translations appeared. Another considerable service which he
performed for the mathematical community in this country was as one of the
organisers of the Instructional Conference on Functional Analysis held in University
College, London in April, 1961. This was the first of the Society’s Instructional
Conferences and was a great success.

As a lecturer he could be hard to follow: sometimes the sequence of ideas came
too quickly for the comfort of those in the audience with less agile minds; sometimes
he overestimated the background knowledge of his audience. However, many of his
lectures were enormously stimulating and were full of unexpected insights into the
topics being studied. To students he was invariably helpful, and the sweep of his
knowledge was so great that he could be relied upon to suggest a fruitful line
of attack upon a problem; he had numerous research students, notably
E. Benham-Dehkordy (Iran), D. E. Davies (Farnborough), B. P. Duggal (Nairobi),
R.E. Edwards (Canberra), C.E. Finol (Venezuela)) G.G. Gould (Cardiff),
F. Holland (Cork), M. B. Sadiq (Iran) and J. D. Stewart (McMaster). Many others
benefited from his advice: Professor Butzer testifies in his very moving tribute to
Lionel (Jacob Lionel Bakst Cooper—In Memoriam, Functional Analysis and
Approximation, Proc. Oberwolfach Conf. 1980 dedicated to J. L. B. Cooper
(P. L. Butzer, E. Gorlich and B. Sz.-Nagy, Eds.) ISNM 60, Birkhduser Basel 1981) to
the great assistance he (and his students) received from him over many years. For
my part I am happy to acknowledge the profound influence he had upon me, which
was largely responsible for the shape my career has taken and for my interest in
functional analysis and partial differential equations.

Outside mathematics, Lionel had many interests. He loved music and the theatre,
enjoyed poetry and was exceptionally widely read; the force of his intellect
was undeniable. A delightful account is given by Alan Hill of this side of Lionel
(A.J. W. Hill, 4 Testimony from a Friend, published with Professor Butzer’s tribute
mentioned above). When younger he was a keen squash player, and after giving this
up he continued to swim, to play tennis with great determination and to walk,
especially in the Lake District which he loved and knew so well. In public he
appeared reserved or even shy, and there was certainly nothing at all ostentatious in
his make-up; underneath the reserve, however, there was a quiet self-confidence
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432 JACOB LIONEL BAKST COOPER

which enabled him to assess problems dispassionately and on their merits. It took
time to know him, but those who became close to him found him absolutely reliable,
a tower of strength in difficult times and always a marvellous companion. He was an
excellent after-dinner speaker, with a real flair for story-telling; this never failed to
surprise those who had seen him on less festive occasions. But he was at his very best
with his family. Wherever they were, Kathleen and Lionel had always gone to great
pains to entertain students, faculty and visitors, and one’s problems were soon placed
in perspective in the warm family atmosphere which they created at such gatherings.
Some of my happiest moments have been spent with them and their children, with
conversation swirling about, everyone talking at once, all shades of opinion being
projected; yet the overwhelming impression produced was that of a family deeply
united and in harmony. Seldom have I seen so remarkable a family, with such deep
affection for one another.

In 1978 Lionel became alarmingly breathless while walking in the Lake District.
After a variety of checks it was discovered that he had a heart defect and that surgery
was essential. He faced up to this calmly, telling me wryly that the medical problems
involved were interesting, but perhaps a little too interesting. Having waited until all
his examination duties were over he went into hospital, there being every reason to
believe that he would make a full recovery. In the event he suffered a massive
haemorrhage shortly after the operation and never recovered from this.

Lionel Cooper’s mathematical qualities are intertwined with his personal ones;
those who knew him best admired his ability to get to the roots of a problem, his
sense of justice and humanity, his calmness and his energy and determination in
overcoming difficulties. He was the most modest of men, entirely free of
self-importance. Britain has lost a distinguished analyst who did much to further the
cause of his subject. It was a privilege to know him.

Contributions to Mathematics

Lionel Cooper worked on diverse but inter-related areas of mathematics, and an
account of his work will now be given by mathematicians working in the different
fields:

B. Sz.-Nagy-—Operator Theory,
P. L. Butzer and R. J. Nessel—Transform Theory.

The section on Thermodynamics is adapted from a manuscript which J. Serrin has
kindly given me.

His work on Functional Analysis, on Differential Equations and on
miscellaneous topics 1 have summarised myself. Items occurring in the lists of
additional references in the various sections are marked by ¢ », while Cooper’s
papers will throughout by denoted by [ .

J. L. B. CoopeErR AND OPERATOR THEORY

B. Sz.-Nagy

One of the main areas of functional analysis to which Cooper contributed with
particularly original ideas is the theory of (linear) operators in (real or complex)
Hilbert space.
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JACOB LIONEL BAKST COOPER 433

In the first period of the theory, namely the first quarter of this century,
continuous—and therefore bounded—operators only were considered. The main
result obtained at that time was the spectral resolution theorem for bounded
symmetric operators and the corresponding spectral multiplicity theorem. But with
the advent of quantum mechanics, in the late 1920’s, it became evident that a
limitation to bounded symmetric operators did not comply with the mathematical
needs of that theory. This stimulated a rapid development of the theory of
non-necessarily bounded operators, in particular by J. von Neumann, M. H. Stone
and F. Riesz. The first problem was to single out those operators A which
correspond to the needs of quantum mechanics. It was accepted that one of those
needs was that the operator 4 be symmetric on its (linear) domain of definition, not
necessarily filling the whole Hilbert space, and that it should have a ‘spectral
resolution’,

A= J‘/ldE,-v,

R

where E is an orthogonal projection-valued Borel measure on R, the vectors x of the
domain of definition of A being exactly those for which the numerical integral

Jizd(E;.x, x)

R

converges, its value then being (Ax, x).

It was J. von Neumann who, following a suggestion of E. Schmidt, first proved
that the symmetric operators having the above property are exactly the self-adjoint
operators, i.e. those for which 4 = A*. Symmetry only implies that A = A*, and
while every (densely defined) symmetric operator B has at least one maximal
symmetric extension, it can happen that none of these extensions is self-adjoint.

For the spectral resolution of a self-adjoint operator there exists nowadays
numerous proofs. The original one, by J. von Neumann, reduces the problem via the
use of ‘Cayley transforms’ to the (relatively simple) problem of the spectral resolution
of unitary operators. Namely, von Neumann observed that the problem of finding all
symmetric extensions of a symmetric operator A is equivalent to that of finding all
isometric extensions of the (isometric) Cayley transform V of A, where
V = (A—il)(A+il)”', and that A is self-adjoint if and only if V is unitary (that is,
an isometric map of the Hilbert space onto itself). Since a unitary V is known to have

2n

a spectral resolution V = J e"dE!"", one infers, via the inverse Cayley transform of

0
V,thatis, A = i(I+V)(I—V)!, that A also has a spectral resolution, namely of the
form

(*) A= j;.dE‘;",

the spectral (i.e. orthogonal projection-valued) measures E“ and E' being simply
related.
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434 JACOB LIONEL BAKST COOPER

Other proofs of the same result, given by M. H. Stone, F. Riesz, etc., used a
variety of different techniques, but none of these entered into a discussion of whether
the existence of a spectral resolution (*) is the only motivation, from the point of
view of physics, of the exceptional role of self-adjoint operators among other types of
operators, or least among the symmetric operators.

In his paper [6], Cooper starts with the objection that the self-adjointness
condition “does not convey any direct physical notion at all” and he proposes a
different approach. Instead of taking, as a point of departure, the Schrodinger
eigenvalue equation (which leads, mathematically, to the spectral resolution
problem), he considers the time-dependent Schrodinger equation

1 dy
* —_—— = H =
@ - =HY, YO = ¢
for an arbitrary (closed) symmetric operator H, with domain of definition D in a
Hilbert space R and subject to the following condition:

(a) for every element ¢ of a linear sub-manifold D’ of D, dense in D, ()
has a solution (t) on the whole real line (—o0 <t < ).

Then he shows in a direct way, partly by a method due to Titchmarsh, but using the
real-variable theory of Fourier—Stieltjes integrals instead of Laplace integrals, that
the operator H has a spectral resolution (*). He also shows that, conversely, every
self-adjoint operator H satisfies condition (a).

In such a way his method also yields the von Neumann theorem of spectral
resolution of self-adjoint operators. This way may appear somewhat lengthier, but is
undeniably of great interest, both from the physical and mathematical points of view.

Still more important is that the method also applies to symmetric operators of
more general type, as shown by Cooper in [9]. Indeed, he proves there (Theorem I)
that equation (}) has a solution y(t) for every maximal symmetric operator H and
for every ¢ e D, either for all t > 0 or for all t < 0. In the self-adjoint case,
U(t)¢ = Y(t) defines the usual Stone group U(t) = exp (iHt)(— o0 < t < o0), and
this leads again to spectral theory. For maximal symmetric operators, U(t)¢ = y(t)
defines only a semigroup of isometries {U(t)}, >, or {U(t)}, <o, according to the
above cases. Investigation of these semigroups led Cooper to all the essential results
on maximal symmetric operators, obtained originally by von Neumann by means of
the Cayley transform, and he points out that here the physical interpretation of the
quantum mechanical requirement that the operator H in Schrodinger’s equation be
self-adjoint is immediately seen to be equivalent to the physical statement that the
system has both a complete past (— oo < ¢t < 0) and a complete future (0 < t < o).

These investigations were continued by Cooper in [7]. Whereas the essential
result of the preceding paper was to show that a maximal symmetric operator is the
infinitesimal generator of a semigroup of isometric operators, this paper handles the
converse problem and shows that every one-parameter semigroup {U(t)},,, of
isometric operators, depending in a measurable way on ¢, and with U(0) = I, leads
to a maximal symmetric operator H as infinitesimal generator, that is, for which

d
—ia U(t)=HU(t) (t=0). One obtains H by forming the integral

A= j U(t)e™'dt, and then the graph of H is the set of pairs {iAh, Ah—h}, h
0
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JACOB LIONEL BAKST COOPER 435

running through the elements of the underlying Hilbert space. The same ideas were
further developed in his subsequent paper [17].

These papers of Cooper in operator theory can be regarded as pioneering pieces
of work. Although strongly attached to the basic work of F. Riesz, J. von Neumann,
M. H. Stone and others, his work was among the first which—still remaining close
to problems posed by physics—pointed out the necessity and fruitfulness of
investigations of non-self-adjoint and non-unitary operators. His work had notable
influence on the later development of operator theory.

It is not the place here to examine the whole oeuvre of J. L. B. Cooper in
functional analysis, its broad spectrum and originality, but his scientific strength and
devotion is perhaps truly and convincingly mirrored by the very valuable piece of
work which he did in operator theory.

CooPER’S WORK IN TRANSFORM THEORY

P. L. Butzer and R. J. Nessel

1. Introduction

Transform theory is one of the central parts of the work of J. L. B. Cooper. His
first paper submitted for publication, on 18 May, 1938, dealt with this fundamental
area of mathematics, and he returned to this topic again and again, writing at least
twenty papers on it. Cooper did not really treat transform theory from the
(operational) point of view of the applied mathematician—a field for which Britain
is especially well known—but always in the spirit of the pure mathematician. Indeed,
Cooper was a doctoral student of E.C. Titchmarsh (1899-1963) at Oxford, and
therefore Titchmarsh’s classical treatise on Fourier Integrals of 1937 (cf. (21)) was
no doubt his initial guiding star. Titchmarsh in turn was G. H. Hardy’s (1877-1947)
first student, and it was Hardy and J. E. Littlewood (1885-1977) who built up the
great British school of analysis, second to none in the world. So Cooper had the
fortune to grow up in this great tradition. On the other hand, already Cooper’s early
work on transform theory is permeated with the ideas of the theory of linear
operators, just evolving at the time (in fact, he often cites Banach’s book <1)).
However, all this does not mean that he was not interested in the applications. On
the contrary, his work is indeed applicable. See, for example, the account by
D. E. Edmunds of Cooper’s work on differential equations.

The wide area of transform theory in which Cooper did important research may
be classified into three fields: his work on representation and uniqueness of various
integral transforms, on representation and approximation, and his work on linear
transformations obeying appropriate functional equations. These contributions are
not so much concerned with some concrete property of any particular transform but
mostly with problems pertaining to the basic underlying structures. In many cases
the situation is as follows: Cooper picks up a certain result and generalizes it from a
given situation to one which is general enough to treat the sharpness of the results
deduced, perhaps in the sense that the conditions involved are best possible or even
that inverse assertions hold, thus extending the specific point of departure to a
necessary and sufficient setting. An interesting feature is that he rather quickly turns
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investigations of non-self-adjoint and non-unitary operators. His work had notable
influence on the later development of operator theory.

It is not the place here to examine the whole oeuvre of J. L. B. Cooper in
functional analysis, its broad spectrum and originality, but his scientific strength and
devotion is perhaps truly and convincingly mirrored by the very valuable piece of
work which he did in operator theory.
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area of mathematics, and he returned to this topic again and again, writing at least
twenty papers on it. Cooper did not really treat transform theory from the
(operational) point of view of the applied mathematician—a field for which Britain
is especially well known—but always in the spirit of the pure mathematician. Indeed,
Cooper was a doctoral student of E.C. Titchmarsh (1899-1963) at Oxford, and
therefore Titchmarsh’s classical treatise on Fourier Integrals of 1937 (cf. (21)) was
no doubt his initial guiding star. Titchmarsh in turn was G. H. Hardy’s (1877-1947)
first student, and it was Hardy and J. E. Littlewood (1885-1977) who built up the
great British school of analysis, second to none in the world. So Cooper had the
fortune to grow up in this great tradition. On the other hand, already Cooper’s early
work on transform theory is permeated with the ideas of the theory of linear
operators, just evolving at the time (in fact, he often cites Banach’s book (1)).
However, all this does not mean that he was not interested in the applications. On
the contrary, his work is indeed applicable. See, for example, the account by
D. E. Edmunds of Cooper’s work on differential equations.

The wide area of transform theory in which Cooper did important research may
be classified into three fields: his work on representation and uniqueness of various
integral transforms, on representation and approximation, and his work on linear
transformations obeying appropriate functional equations. These contributions are
not so much concerned with some concrete property of any particular transform but
mostly with problems pertaining to the basic underlying structures. In many cases
the situation is as follows: Cooper picks up a certain result and generalizes it from a
given situation to one which is general enough to treat the sharpness of the results
deduced, perhaps in the sense that the conditions involved are best possible or even
that inverse assertions hold, thus extending the specific point of departure to a
necessary and sufficient setting. An interesting feature is that he rather quickly turns
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436 JACOB LIONEL BAKST COOPER

to an operator-theoretical view of the problems, as indicated. In this regard see also
the appreciation of Cooper’s work on operator theory given by B. Sz.-Nagy.

Let us conclude these preliminary remarks with some terminology used
throughout. With R the set of real numbers, let I?(R), 1 < p < o0, denote the space

o0

of measurable functions, p-th power integrable over R with ||f]|?:= J |f (u)|Pdu,

and BV (R) the space of functions which are of bounded variation on R. Let L} (R)
or BV, (R) be those sets of functions which are either locally Lebesgue integrable on
R, that is, on every compact subinterval of R, or locally of bounded variation on R.

If f € ['(R) and g € BV (R), the Fourier and Fourier-Stieltjes transforms are given by
f )= J e f(x)dx, g (v):= J e~ " dg(x),

respectively, whereas the conjugate function is defined by

o]

/(%) :=% lim Jf(”“);f(x_“) du.

2. Representation and uniqueness

Cooper’s first paper [1] was published in 1938, actually two years before
receiving his doctorate. He considers the integral equation

x

(N J k(y=x)f(y)dy =0,

suggested to him by Titchmarsh who treated ({19)) the system of linear equations

Y. 4,X,4m = 0. Obviously, if k™ has an n-fold zero at —a, then P(y)e'™ is a solution
n=1

of (1) for any algebraic polynomial P(y) of degree (n— 1). The interesting point is that
under suitable conditions all solutions are of this type. For example, Cooper is able
to prove the following result via complex Fourier transform methods: If e"k(t),
e " f(t)e 20, x¢) for some a > b > 0, and "' f(t) € [*(— o0, 0) for some real ¢, then

[ satisfying (1) has the form f(y) = Z P(y)e™ where the sum ranges over the zeros of

k” for which —¢ < Im(—a) < b, P(y) being a polynomial of degree one less than the
order of the zero. Further results in connection with different order conditions upon
the functions are derived by means of a theorem of N. Wiener. Finally, there are a
couple of theorems concerned with positive non-increasing kernels k. For example,

if k(t) is a non-increasing function of t, and k(t) > 0 for t > 0, then (1) has no solution
oC

f not identically zero (a.e.) such that lim f(t) = 0 or Jf(r)dr exists. Finally it is
t— o
0
shown that results of this type cannot be true without the assumption of k being

non-increasing.
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JACOB LIONEL BAKST COOPER 437

Cooper’s second paper [2], indeed received for publication even earlier than [1],
follows a suggestion of L. S. Bosanquet and extends the results of (5 concerning the
absolute Cesaro summability of Fourier series to Fourier integrals—in fact, Cooper
uses Riesz summability. The results correlate the absolute Riesz summability of the
Fourier inversion integral of a function with the bounded variation of some fractional
mean of the function. To indicate just his first assertion, following Cooper’s

oo

terminology, the integral J g(x)dx is summable |C, o, o« = 0, if

0

i

1(3)= J <1 - %)ag(ﬁ)du

0

is of bounded variation over [0,00). With @(t):= f(t+x)+f(t—x) let

<«

1//(u):=jd)(t)cosutdt. If ¢(t)e BV[0, ) tends to zero as t— oo, and if

o]
0

¥(u) e L} [0, o0), then J Y (u)du is summable |C, of for any o > 0. Again it is shown
0

that the results obtained are best possible as regards the values of « for which they
hold. Cooper also indicates corresponding results for more general methods of
summability.

In his next publication [5] concerned with integral transforms, Cooper turns to
the important question of uniqueness of trigonometrical integrals. The new idea he
introduces into the subject is the following: What happens when the relevant
integrals are only convergent in mean? His main result in this connection reads as
follows: If f e L} (R) and if over any finite interval of t

loc

lim J de f(l— l—i‘l> f(u)e “du—F(t)| =0,
then for almost all u
1 - n+3 )
f(u) = — lim J(l— m) F(t)e™dt .
2n ;= ,

-/

This extends results of Macphail-Titchmarsh {14) in as much as uniform convergence
1s now replaced by mean convergence. (Offord’s work <16) is of a different, more
pointwise nature.) Again the sharpness of the conditions and results deduced is
considered to some extent. Finally, Cooper treats corresponding problems for a general
class of summability kernels; in this case the results are largely based upon some growth
condition at infinity such as (1 +|u|") ! f (u) € L'(R). In [14] he observes that the results
of [5] hold true, almost without change in the proofs, if convergence in mean is replaced
by weak convergence.

The discussion of problems connected with functions satisfying a growth condition
of the previous algebraic type is continued in [11] with representation theorems of the
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438 JACOB LIONEL BAKST COOPER

Poisson—Stieltjes type for functions analytic in a half-plane. Cooper’s main result
states: Let f(w):= p(u, v)+iq(u, v) be an analytic function of w = u+iv for v > 0.
Suppose that M(v):= sup{|f(u+iv)l;ue R} < oo for v > 0, lim M(v) = 0, and that
there exists o, 0 < o < 2, such that for all v > 0 roe

J (L+[ul)~*Ip(u, v)ldu < N(v)

where N(v) is bounded for 0 < v < vy. Then there exists a function p € BV,
that

(R) such

loc

a

)l _
J (e < WP AN

-

u3

p(uz)—p(u,) = liir(l) j p(u, v)du .

If o < 1, then for all v > 0

f(w) = (1/mi) J (x—w)"'dp(x),

and if o € 2,

p(u,v) = (1/m) j [Ge—u)*+0*] ™ vdp(x).

A converse assertion is valid as well. This in particular extends pertinent work of
Titchmarsh (20> (who gave the result for o« = 0). A simple example of a function
covered by Cooper’s theorem but not by the earlier results on the subject is
f(w) = €'/iw; it satisfies the conditions stated above for any a > 0.

The representation theorems of [11] are used in Cooper’s treatment [13] on
Fourier—Stieltjes integrals—in fact, both publications were received and read at the
same date (May 20 and June 19, 1947, respectively). Up to that time Fourier—
Stieltjes integrals, important as a generalization of both Fourier series and integrals,
were considered for functions which are of bounded variation over the whole real
axis. But this only covers the case of absolutely convergent Fourier series and
integrals. Therefore in [13] Cooper discusses a wider class of Fourier—Stieltjes
integrals, sufficiently general to include Fourier series and integrals of all [P-classes.

o«

These integrals are of the type f(x) ~ j e~ "*dp(t), where p € BV, (R) is such that
for some ¢ = 0

- 0

J (1 +1e)~*ldp(t)] < 0.
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JACOB LIONEL BAKST COOPER 439

The method employed by Cooper to make these ideas precise depends heavily on his
representation theorem derived in [11]. Applications are given to positive definite
functions, generalizing classical work of S. Bochner (1932). Again a large portion of
the paper is devoted to extensions to rather general classes of summability kernels, as
well as to a discussion of the sharpness of the conditions and results deduced.

Let us conclude this section with the remark that the topics considered by
Cooper in this first group of contributions to transform theory were indeed central to
the subject and of great interest at the time. This is in particular revealed by the
independent investigations of F. Wolf (22> and recent work of F. Holland {11).

3. Representation and approximation

In 1959 the senior author of this review was stuck on some basic problems in
Fourier transform theory, the solutions of which were needed to solve problems in
trigonometric approximation theory. Several of the most prominent experts of the
field were asked, but it was Cooper who communicated a complete solution within a
few weeks. One of these problems was conjectured to have the following solution
(cf. <6); p.407): For f € I!(R) and g € BV(R) one has

() bl /" (v) = g (v) =~ €BV(R).

Cooper established this conjecture in [27] and, moreover, extended the matter to
fractional derivatives of the conjugate function, ie., to the case |v]'f (v) = g (v),
y > 0. He also considered counterparts for the spaces IP(R), 1 < p < 2. This
material was taken up in detail in {(8); pp. 194, 214, 224, 406, and {7); p.247.

Since that time there arose a close connection between Cooper and the Aachen
group on approximation theory. One of its concrete common points of interest was
concerned with extensions of a classical representation theorem due to H. Cramér
{9> (see also Thm.5, case « = 0, of [13]; p.274). It states that for a continuous
function F to be representable as a Fourier—Stieltjes integral, thus F(v) = g (v) for
some g € BV (R), it is necessary and sufficient that the first Cesaro means of the
Fourier inversion integral be bounded in L!(R); thus for p = 1

(3) ” j(l— Bl) F(v)e™**dv

In connection with saturation theory (see below) the question came up whether there
are counterparts of Cramér’s theorem for 1 < p < 2. This problem was solved by
Cooper in [29]; he showed that (cf. (8); p.237) for Fe LL(R) and 1 <p <2
condition (3) is necessary and sufficient for the existence of some g € [!(R) such that
F(v) = g (v) ae.

As already mentioned, Cooper’s solution of the preceding problems in harmonic
analysis paved the way for basic saturation results in approximation theory. Let us
explain the situation in connection with the particular example of the Cauchy-
Poisson process

=0(1) (p— ).

p

P(f,x,y):=% J{)(zx_;;)du (xeR, y > 0).
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440 JACOB LIONEL BAKST COOPER

It solves Dirichlet’s problem for the upper half-plane

¢tw(x,y)  w(x,y)

e I 0, w(x,0)=f(x)

in the sense that the boundary value f e L'(R) is attained strongly in the metric of
L} (R), that is,
lim |IP(f, x,y)=f(x)ll;, =0.

y—0+

Concerning rates of convergence, these are limited according to the saturation
phenomenon occurring. Indeed, if f e L'(R) is such that

IPCSf,x, p) =Sl = oly) (y—0+),
then necessarily f(x) = Oa.e. In order to characterize the saturation class
S:={/ e L(R): [IP(f, x, )= f(X)l; = O(y),y = O+},

one may proceed via the Fourier transform method (cf. (6)) to show that fe S if
and only if there exists some g € BV (R) such that [v| / (v) = g (v) for all v e R. Here
representation theorems of the Cramér—Cooper type were needed. Instead of this
characterization in the Fourier transform state, one would of course like to proceed
further and to derive characterizations in terms of the original function spaces. Here
(2) meets the needs, showing that f € S if and only if f~ € BV (R). For further details,
however, we have to refer to the relevant treatments in textbooks on the subject, e.g.
(8),(15).

In his original contribution [29], Cooper in fact considered the representation
problem in much more general terms. As is well known, every f e I/(R), 1 < p < 2,
has Fourier transform f~ e I?(R), 1/p+1/p’ = 1, and the set of Fourier transforms
of I? forms a proper subset in [7. The problem of characterizing the [?-transforms in
[ has attracted the attention of many mathematicians, so that there have been
developed a variety of necessary and/or sufficient conditions guaranteeing, for a
given F e I?', the existence of some f € I? such that F(v) = f (v) ae. In his paper
[29] Cooper discusses a very general class of criteria. To this end he starts off with
integral transforms of the type

X

S )= j k(u, v, p)F(v)dv,

- X

where k(u, v, p) is a certain kernel, and p is a positive parameter tending to infinity,
for example. Then Cooper examines the relations between the following
propositions:

(A) The set of functions f,(u) is bounded in I*(R) for p > 0,

(B) F is the Fourier transform of some f € I/(R),

(C) lim f, = f in some appropriate sense.

p— %
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JACOB LIONEL BAKST COOPER 441

Cooper derives various theorems unifying and generalizing all the representation
theories scattered in the literature. Let us just mention: Let k(v, p) tend to 1 as p — oc,
boundedly over every finite interval. Let F € L} (R) such that k(v, p)F(v) € L'(R) for all
p > 0. Let

(4) Solw) = J e""k(v, p)F(v)dv

be bounded in [*(R). Then F = fA, where fe IP(R) is the weak limit in I?(R) of {,}
This theorem applies in particular to the Cesaro kernel, establishing the sufficiency of
the Cooper criterion mentioned (cf. (3)).

In [29] Cooper also considered corresponding problems for Fourier series and
coefficients. In fact, in his lecture [28] at the 1963 Oberwolfach Conference he not
only outlined the main features of his general approach in [29], but he also added
details concerning counterparts for functions defined on arbitrary locally compact
abelian groups. The methods were further refined and developed in [30], [32] in
connection with representation theories for Laplace transforms. In comparison with
the Fourier transform situation sketched above there are two main differences: In the
one-sided Laplace transform case one is essentially dealing with functions (or
distributions) with support confined to [0, o0), and the Laplace transform is an
analytic function. Indeed, as a consequence of assumptions of analyticity and of
restrictions on the growth at infinity it is possible to prove Laplace representation
theorems by considering the corresponding norms of the integral transforms

(cf. (3,4))

1 J‘ k(v, p)F(c +iv)e'“* ™ dy
n

only over (0, c0), their natural domain of definition in the one-sided Laplace case.
This in fact extends results derived in (2}, {4). Again such representation theorems
have important applications to saturation theory, see (3).

4. Group representations

Cooper’s contributions [36], [37], [41], [42], [44] to transform theory during the
last decade are concerned with linear transformations which obey functional
equations induced by certain group representations. The motivation underlying
these studies was expressed very pointedly by Cooper himself in the first sentence of
[42]: “The integral transforms important in analysis are those which have
particularly simple behaviour when the spaces on which the transformed functions
are defined are subjected to certain transformation groups.” In a review (MR 50
# 14079) of [42], R.A. Askey (Madison, Wis.) then continued: “This is the first
sentence in the paper under review, and there is no disputing this fact. The cottage
industry which adds one more parameter to an already published transform should
take note of this sentence and refrain from further sterile generalization.” Let us
follow the introduction of [37] for a short outline of the problems Cooper is
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442 JACOB LIONEL BAKST COOPER

interested in; in fact, we may be very brief since the matter is already treated in
textbooks on the subject, see e.g. G. O. Okikiolu {17, Chapter 8.

Let A(X) be a space of functions on an interval X < R. A group of transformations
{W(a): a € R} of A(X)into itself is called an appropriate (one parameter) group if each
W(a) is of the form W(a)f(x) = Q(x, «)f (V(x)x), where

(3) W(at+p) = W)W (p), wO) =1,

V(a) is a group of transformations of X onto itself satisfying (5), and Q(x, «) and
V(e)x are continuous functions of « for each xeX. A transformation
T : A(X) — B(Y), with range B(Y) defined analogously to A(X), is said to obey an
appropriate functional equation if there are appropriate groups { W(a)} and {W*(a)}
on A and B, respectively, such that TW(a) = W*(«)T for all « € R. This general
approach subsumes practically all the classical integral transforms, e.g., the Fourier,
Hilbert, or Mellin transform, fractional integrals. Particular functional equations of
the present type had already been studied, e.g., by M. Plancherel {(18) and H. Kober
{12, {13); Kober had actually attributed some results and proofs of {13) to
Cooper. He himself considered those functional equations from a general point of
view. For example, Cooper is interested in classifying appropriate functional
equations. One of his main results is that under quite general assumptions about the
topologies of 4 and B the possible equations can be reduced to four canonical forms,
roughly speaking to

[T/ (x+))(w) = [Tf(x))(u+a),

[Tf (x+a)](u) = V[ Tf(x)](w),
[Te™ f(x))(u) = [T/ (x))(u+a),
[Tef (x))(u) = ™[ Tf(x))(u).

Cooper then turns to questions concerning the solvability and the explicit evaluation
of solutions of these equations. In his subsequent lectures and contributions [36],
[41], [42], [44] to transform theory, he further refined and extended this approach
to appropriate functional equations. In fact, his work in this regard heavily
influenced that of a number of mathematicians, notably that of Duggal (cf. {10)) and
Okikiolu (cf. {(17) and the literature cited).

Let us finally add that Cooper also contributed an article to the Handbook of
physics [34]. It deals with linear spaces, Hilbert spaces, linear functionals and
operators, integral equations (Hilbert—Schmidt theory), integral transforms
(including Fourier and Laplace transforms, and applications to differential and
integral equations), distributions. He managed to cover this large amount of
material, the selection of which is excellent, in an expert fashion in about six printed
pages. This article, or any direct discussion with Cooper on a specific mathematical
problem—both authors had the pleasure to have had many such discussions with
him since 1963—readily reveal his great strength: He always had a terrific amount of
material at his disposal, the broad scope of his knowledge ranged from pure to
applied mathematics and theoretical physics; he was indeed a great scholar with a
sharp and penetrating intellect.
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FUNCTIONAL ANALYSIS

While not of so pioneering a character as his work on operator theory, Cooper’s
research in this area nevertheless contains much of interest. The paper [12], for
example, is concerned with conditions under which it can be shown that if a family of
operators on a space converges everywhere, then it converges uniformly; such results
essentially apply only when the space involved is a completely additive Boolean ring,
or when a reduction to this case is possible. With a view to the unification of various
theorems from different branches of analysis he introduces the concept of a mesh: a
filter .# on a complete Boolean ring is called a mesh if it has a base 2 such that if
XeBe#and Y < X, then Y € #. His main result is the following: Let (L)), be a

iel
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Samily of completely additive set functions such that L,(X) is defined for all elements X
of a complete Boolean ring K and is absolutely continuous with respect to a mesh .# on
K for each X in K let LX) tend to a limit according to a filter & on I having a
countable base. Then given any 6 > 0, there exist M(d) e A and F(0)e & such that
|LI(X) < 6 if X e M(d) and i € F(J).

Theorems due to Vitali (32, Lebesgue (29> and Hahn (26) are special cases of
this; and from it also follows the result (which generalises a theorem of Steinhaus
(cf. <24); p. 392)) that a matrix which sums all convergent sequences of 0’s and 1’s to
their actual limits cannot sum all sequences of 0’s and 1’s to a limit.

In [19], meshes and the topologies defined by them are examined in detail, the
results obtained being subsequently applied in [21] and [31] to Cooper’s theory of
co-ordinated linear spaces, which are generalisations of the Kothe spaces (cf. {27),
(28) and (25)) and are characterised by the existence in them of a Boolean algebra
of projections and by a dual defined not in terms of continuity but rather by the fact
that the elements of the dual induce completely additive set functions on this algebra.

Finally, in [S0] he turned to spaces with indefinite scalar products. These have
applications in quantum field theory (cf. <30)), and were first studied by Pontryagin
{31}, although the spaces he introduced, subsequently called after him, were
restricted in that there was an upper bound to the dimension of the subspaces on
which the scalar product was negative definite; a comprehensive account of the basic
theory is given in {(23). Cooper observed that there was no adequate theory of
unbounded hermitian operators in spaces other than Pontryagin spaces, and his
paper is devoted to this gap. In Hilbert space, his paper [9] had shown that a

1d
solution of the Schrodinger equation —,d—l/; = Ay valid for all time exists for
i

arbitrary initial values only when A4 is self-adjoint, mere symmetry not being enough;
it turns out that in Krein spaces (cf. {23)) even self-adjointness is not adequate for the
existence of a global solution of the Schrodinger equation, or equivalently, for the
existence of the exponential map exp (it4). The main achievement of his paper is the
identification of a class of maps, called by him fully self-adjoint, for which existence is
assured.

Additional references

{23) J. Bognar, Indefinite inner product spaces (Springer-Verlag, Berlin-Heidelberg-New York, 1974).

(24) P. Dienes, The Taylor Series (Oxford, 1930).

{25) J. Dieudonné, “Sur les espaces de Kothe™, J. Analyse Math. 1 (1951), 81-115.

{26 H. Hahn, “Uber Folgen linearer Operationen”, Monatsh. fiir Math. und Physik 32 (1922), 3-88.

{27> G. Kothe, “Neubegriindung der Theorie der vollkommenen Raume”, Math. Nachr. 4 (1951), 70--80.

(28> G. Kothe. Topologische lineare Riume, Vol. I (Springer. Berlin-Gottingen-Heidelberg, 1960).

{29) H. Lebesgue, “Sur les intégrales singuliéres™. Ann. de Toulouse (3), 1 (1909), 25-117.

{30) K. L. Nagy. State vector spaces with indefimve wetric i.. quantum field theory (Noordhoff Groningen
and Akadémiai Kiado Budapest, 1966).

{31} L.S. Pontryagin, “Hermitian operators in spaces with indefinite metric”, Izr. Akad. Nauk SSSR, Ser.
Mar. 8 (1944), 243-280.

{32) G. Vitali, "Sull' integrazione per serie”, Rend. del Circolo Mat. di Palermo 23 (1907), 137-155.

DirrereNTIAL EQUATIONS

Differential equations meant a good deal to Cooper: they coloured his approach
to operator theory, and he was always on the look out for applications of his work,
particularly that involving transform theory, to them.
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His first paper [3] on differential equations dealt with a problem originally
studied by A. Weinstein (36>, <37) in the context of hydrodynamics: given a real
number k, the question was that of finding a function u which was harmonic in the
infinite strip {(x,y):x€R,0 < y <1} in the plane and satisfied the boundary-
conditions u(x,0) = 0,u,(x, 1) = ku(x, 1) for all x € R. By using truncated Fourier
transforms he was able to establish the existence of a solution (in an explicit form)
without the conditions on growth at infinity which earlier authors, notably
S. Bochner {33); p. 167, had imposed. Truncated Fourier transforms were also used
in [153, where he studied the uniqueness of solutions of the heat equation u,, = u,
for xeR,0 <t < T, T being arbitrary. What is proved is that a solution u of this
equation is identically zero if

(1) u,u,e}([a,b]x[d,T]) for all real a and b, and ali 4 € (0, T);

(ii) for some constant ¢ there exists sequences (x,), (x,), tending to oo and — o
respectively, such that |u(x, t)] < e for all te (0, T) and any x in either
sequence;

b

(i11) IimJu(x,t)g(x)dx =0 for all a,beR and all functions g which are
-0

bounded and Lebesgue integrable on (a, b).

This result improves earlier work of Titchmarsh {(34); pp.281-283, and
Tychonoff (35), largely on account of the comparatively weak local condition (iii)
which, as Cooper points out, is a natural one on physical grounds. The same
technique is used in [16] to solve the initial-value problem for the wave equation in
any number n of space dimensions, use being made of spherical Abelian means to
extend the validity of the inversion formula. Here his method enables him to give a
set of conditions on the initial data which are transmitted to the corresponding
solution. More precisely, he shows that if the solution v is such that f(.,0) and
f:(., 0) possess space derivatives of all orders up to and including those of order s+ 1
and s respectively, each of these derivatives being in L2 (R"), then the same is true of
f(.,ty) and f(.,¢t,) for any ty > 0. Yet another application of Fourier transform
methods occurs in [8], where he analysed the propagation of waves in an elastic rod,
estimated the allowable velocities of propagation and established the dispersive
nature of both transverse and longitudinal waves.

His final paper [45] on differential equations is concerned with the solution of
constant coefficient equations by means of Laplace transforms: he shows that
solutions obtained in this way are weak solutions, in a certain sense, and gives
conditions for these weak solutions to be classical ones.

Additional references

{33 S. Bochner, Vorlesungen iiber Fouriersche Integrale (Leipzig, 1932).
(34> E. C. Titchmarsh, Fourier integrals (Oxford, 1937).

{35) A. Tychonoff, Rec. Math. (Mat. Shornik) 42 (1935), 199-216.

{36) A. Weinstein, Rend. Accad. Lincei, Roma (6) 5 (1927), 259-265.
(37> A. Weinstein, Comptes rendus, Paris 184 (1927), 497-499.
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THERMODYNAMICS

Lionel Cooper’s lifelong interest in fundamental questions of applied
mathematics showed itself in his research particularly clearly in his papers devoted to
the foundations of thermodynamics. He was a pioneer of the modern trend toward
strict rigour in this traditionally non-rigorous field, his paper [33] setting a standard
of historical criticism and precise formulation which can hardly be surpassed. In this
work the axiomatic structure developed by Carathéodory in his celebrated paper
{38) was subjected to the sharpest scrutiny—revealing perhaps for the first time its
genuine limitations (and some of its logical errors)—and then extended to a broader
and more satisfying formulation. His later work [35], [46] consolidated these
developments and so gave us in some sense an ultimate analysis and delineation of
Carathéodory’s structure. Perhaps most brilliant is Cooper’s treatment of irreversible
processes, which Carathéodory could handle in only the most limited degree,
together with his remarkable discovery that Carathéodory’s axiom scheme required
further augmentation to prove that the absolute temperature scale was indeed a
homeomorphism on the hotness manifold. Carathéodory’s error lay in his
identification of absolute temperature with the reciprocal of an integrating factor of
the differential form representing the work done in a small reversible (quasistatic)
change of state. For this to be possible one would have to prove that this reciprocal
was a monotonic function of empirical temperature, and this does not follow from
his basic hypothesis (Carathéodory’s law) as this hypothesis would be fulfilled if the
differential form were already exact, in which case the integrating factor would be
constant.

While more recent research on thermodynamical foundations has returned to the
ideas of Carnot, Kelvin and Clausius, it was Cooper’s work in essence which led to
the critical re-evaluation of Carathéodory’s concepts and to the modern standards of
rigour which at last have penetrated the miasmic traditional presentations.

Additional reference

(38> C. Carathéodory, “Untersuchungen iiber die Grundlagen der Thermodynamik™, Math. Ann. (1909),
355-386.

MISCELLANEOUS

Cooper’s remaining papers cover a variety of topics, illustrating the breadth of
his interests. For example, in (4] he used Laplace transform methods to give simple
derivations of identities and asymptotic expansions for the Fermi-Dirac functions of
quantum statistics, while [10] provides a criterion for the convergence of the usual
relaxation process for natural frequency equations. His interest in historical matters
is illustrated by [20], in which he gives a delightful account of the controversy
surrounding Heaviside and the origins of the operational calculus; and from his
inaugural address in London [38] we can gain some idea of his skill as a speaker to
general audiences.

Perhaps the deepest work, however, of that considered in this section, occurs in
[24], where he extends Bochner’s celebrated result (39) about the representation of
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positive definite functions by monotonic non-decreasing functions. Let us recall that
a function f: R — C is called positive-definite if

n

Y f(x;—x)&&; 20 forallneN, forall x;,x,,..., x

i,j=1

eR

n

and all £,,¢&,,...,¢,€C.

Bochner’s result is that a function f may be represented in the form

[«4]

f(x) = J e dw(y), where w is a non-decreasing function (the representation being
unique under suitable normalisation), if and only if f i1s continuous and positive-
definite. Other authors have replaced the defining inequality by its integral analogue:

f f f(x=y)d(x)(y)dxdy > 0

for all functions in, say, C,(R) (the space of all continuous functions with compact
support). In fact, if f is continuous, these integral and sum definitions of positive-
definiteness coincide; differences appear when requirements of continuity or
boundedness are abandoned.

In [24] Cooper calls a function f positive-definite for a set J of functions from R
to C if the integral above exists in the Lebesgue sense and is non-negative for all ¢ in
J; the class of all such functions f will be denoted by P(J). It emerges that P(L!(R))
is nothing more than (modulo sets of measure zero) the family of all continuous
functions which are positive-definite in the sense used by Bochner, while P(C,(R)) is
a much larger family, containing unbounded functions. Cooper proved that
P(Co(R)) = P(L5(R)) for all p > 2, where LE(R) is the set of all elements of I?(R)
with compact support; while if 1 < p <2 and g = ip/(p—1), any element of
P(L3(R)) which is in L{ (R) belongs to P(LZ(R)). His main result is that if
fe P(Cy(R)), then there is a non-decreasing function p, with p(u) = o(u) as
u — + o0, such that in the (C, 1) sense,

2nf(x) = j e "*dp(u) for almost all x in R,

and

j j S(x=y)d(x)¥(y)dxdy = J ®(u)P(u)dp(u) for all ¢, y in LY(R),

® and ¥ being their Fourier transforms. The analytic properties of positive-definite
functions were examined in detail by F. Holland in {40}, while Cooper returned to
the topic of positive-definiteness in {43]. A survey of the main developments in this
area is given in {41).

The last paper which he wrote, [51], published posthumously, dealt with the
closeness by which functions of several variables, invariant under some group of
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transformations, may be approximated in [? by functions which are products of
functions of the individual variables. Like much else in his work, this problem arose
out of a quantum mechanical question.

Additional references

(39> S. Bochner, Vorlesungen iiber Fouriersche Integrale (Leipzig, 1932).

{40) F. Holland, “Contributions to harmonic analysis”, Ph.D. thesis, University of Wales, 1964.

<41) J. D. Stewart, “Positive definite functions and generalisations, an historical survey”, Rocky
Mountain J. of Math. 6 (1976), 409-430.
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