
HAROLD DAVENPORT

C. A. ROGERS

Harold Davenport's father, Percy Davenport, worked in the office of Perseverance
Mill, a cotton mill in Huncoat, near Accrington. At first a clerk, he became the
company secretary. He married Nancy Barnes, one of the daughters of John
Barnes, the owner of the mill. Their first child, Harold, was born on the 30th October,
1907, their only other child Grace was born a few years later.

When 10 or 11 years old, Harold started at Accrington Grammar School, and
later he wrote that he had had on the whole a very happy and enjoyable time there.
He discovered the public library, and read every work of Dickens that he could obtain.
He maintained and extended his interest in the English classics throughout his life.
He was much inspired by his chemistry master, Mr. Ackroyd, and by his mathematics
mistress, Miss Heap," a lady with enthusiasm for mathematics, who paid no attention
—thank God—to any regular syllabus or curriculum there may have been". He
specialized in these two subjects, and in 1924 obtained scholarships from Lancashire
County and from Manchester University that enabled him to spend the next three
years, from the age of 16 to 19, at Manchester University.

He went to Manchester University with the intention of taking both Honours
Mathematics and Honours Chemistry, but was forced to make a choice between the
two. For better or worse he chose mathematics. It is clear, from what he wrote
later, that he enjoyed the mathematical content of his course, but was rather too
shy to take full advantage of the social and cultural opportunities. In particular,
he learnt real analysis from C. Walmsley, complex analysis from L. J. Mordell, and
applied mathematics from E. A. Milne. He obtained his degree in 1927 with First
Class Honours.

Encouraged by Milne, he had entered for, and obtained, a Scholarship to Trinity,
and now left home for Cambridge to take a second first degree; it was quite usual
in those days for graduates from other universities to spend two years taking a
Cambridge degree. He quickly found himself one of a group of mathematical friends,
including H. S. M. Coxeter, R. E. A. Paley, D. H. Sadler and H. D. Ursell. His
main recreations were walking, the cinema and the theatre. His Directors of Studies
were R. H. Fowler for Applied Mathematics and S. Pollard and later A. S. Besicovitch
for Pure Mathematics.

Recently Coxeter wrote in a letter to Mordell:
" When Davenport was working for the Tripos he seemed wonderfully relaxed.

This article is reprinted (with a few editorial changes) from the Biographical Memoirs of the
Royal Society by kind permission of that Society. A photograph is published there; other photo-
graphs are reproduced in the memorial volumes of the Proc. London Math. Soc, (3), 21 (1970) and
of Ada Arithmetica, 18 (1971).
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HAROLD DAVENPORT 67

He would give me a cheerful welcome whenever I dropped in to see him in his
room under the Clock in Trinity Great Court. I would find him listening to
' Scheherezade' on the phonograph or reading Gibbon's Decline and Fall for the
third time. He and Sadler and I often went together to a cinema or to the Festival
Theatre. I once asked him how he still managed to do such a prodigious amount
of mathematics. He replied ' Between midnight and 3 a.m.' His mind must have
worked so rapidly that he could do in those 3 hours more than anyone else could
in 6."

While at Cambridge, Davenport took some Applied Mathematics courses each
year, but he was more attracted by the pure mathematics, especially the advanced
lectures of J. E. Littlewood on the theory of primes and of A. S. Besicovitch on
Almost Periodic Functions and on Sets of Points. He took Part II in 1929, offering
both Schedule A and Schedule B, and, after writing nearly twenty three-hour papers,
emerged as a Wrangler in Schedule A and with a Distinction in Schedule B.

Davenport stayed at Cambridge to work under the supervision of J. E. Littlewood.
Initially Littlewood gave him a selection of problems in analysis and number theory,
he evidently found the number theory problems, especially those on the distribution
of quadratic residues, the more attractive. Littlewood now regards his supervision
of Davenport as " nominal ", saying that Davenport thought of his own problems
and that he (Littlewood) just read his work and made encouraging noises. Although
he submitted his first papers [1, 2] in the summer of 1930 (to the Journal of the
London Mathematical Society) and was awarded a Rayleigh Prize in 1931 and a
Trinity Fellowship in 1932, he did not start his mathematical career in any very
spectacular way and gave no hint of his later productivity. Littlewood recalls a
conversation at the beginning of a new Lent term. He asked Davenport what he
had been doing in the Vac.

" Nothing ", Davenport replied.
" That's all right, the great time for work is in the long vacation, and that's about

all you get when you have a job."
Something in Davenport's reaction made Littlewood ask, " You do work in the

Long Vac?"
" No!"
" Well, I think a young man who can't live for pleasure, and do a substantial

job of work shows a poor mastery of the art of life."
" I'll think it over."
I myself have no doubt that the result of thinking it over was a resolution to

combine a substantial job of work with a determination to find time for pleasure as
well. No matter how hard he worked later he always found time to do the things
that he enjoyed.

During the tenure of his Trinity Fellowship he was invited by H. Hasse to stay
with him in Marburg, mainly so that Hasse could improve his English. Later Daven-
port wrote " I learnt a lot from him, though nothing like as much as I should have
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68 HAROLD DAVENPORT

done had I been more receptive (less pigheaded). In return he took an interest in
quadratic residues and was able to go further than I had done."

Davenport returned to Cambridge and started to write a crescendo of papers.
While much influenced by Hardy and Littlewood, he mainly worked by himself, or
in the later years with Heilbronn. His interests at this time clearly centred on the
theory of exponential sums.

From 1933 onwards a succession of mathematicians arrived in Cambridge from
Germany, driven out by the actions and threats of the Nazi party. Davenport, with
his ready sympathy, and his knowledge of German, did much to help them in all
sorts of practical matters. In particular, he came to know R. Rado, K. A. Hirsch,
R. Courant, A. Walfisz, Miss O. Taussky, H. Kober, and K. Mahler in this way.

On the expiry of his Trinity Fellowship in 1937, Davenport was appointed by
Mordell to an Assistant Lectureship in Manchester. Under Mordell's influence
Davenport acquired a lasting interest in the Geometry of Numbers and in Diophantine
Approximation. Mordell also recruited K. Mahler, P. Erdos, and for a short while
B. Segre, forming a concentration of talent that can seldom have been equalled.
Davenport, Erdos, Ko, Mahler and 2ilinskas found time to play regular bridge.
Mahler, who had only recently taken up the game, was prone to miss the best play,
and the others and Mahler himself were soon describing poor play as being O.M. (or
more correctly O(M)). Mahler long remained unaware that the Landau notation was
in use and that this stood for " Order of Mahler".

At this time and later Davenport often worked with Erdos. Erdos never missed
an opportunity of seeking out Davenport to interest him in his number theoretical
problems and to work with him.

In 1938 Davenport received the Cambridge Sc.D.; I am told that both examiners
referred independently to the " grace " of his work. In 1940, while still an Assistant
Lecturer at Manchester, he was elected a Fellow of the Royal Society for his distin-
guished contributions to the Theory of Numbers. In 1941 he was awarded the
Adams prize of the University of Cambridge for essays on Waring's Problem and
on the Geometry of Numbers. Then in October 1941 he joined the University College
of North Wales as Professor of Mathematics in succession to Professor W. E. H.
Berwick.

While at Bangor, Davenport met Miss Anne Lofthouse who was on the staff of
the modern languages department. They were married in 1944. Although she never
attempted to understand mathematics, Anne took a great interest in Harold's mathe-
matical work and mathematical friends, and sustained him in all he did. They
welcomed very many mathematical visitors to their London flat and later to their
Cambridge house.

The mathematics students and some of the mathematics staff" of University
College, London had been evacuated from London to Bangor. The mathematics
honours students of the two University Colleges were taught together by the two
staffs. In 1945, University College London ill repaid the hospitality they had received
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HAROLD DAVENPORT 69

from the University College of North Wales by taking Davenport to London to
succeed G. B. Jeffery as Astor Professor of Mathematics. Initially H. S. W. Massey
was head of the Department of Mathematics with Davenport in charge of the pure
side of the department. Later, in 1950, when Massey became Quain Professor of
Physics, Davenport became head of the department with W. R. Dean in charge of
the applied side under Davenport. Both arrangements worked well, the two profes-
sors working closely together. Davenport undertook considerable administrative
work for the University of London, being Chairman of the Board of Studies, of its
Higher Degrees Sub-Committee and of the Board of Examiners for the B.Sc. (Special)
Degree (perhaps not all at once). He was glad to be relieved of this work when he
moved to Cambridge, but regretted the loss of the secretarial assistance he had had
in London. In his day-to-day administration of the Department he was much
helped by H. Kestelman, whom he held in high regard, and to whom he acknowledged
a debt of gratitude.

On coming to London, Davenport undertook the supervision of the first of a
long line of research students, and started his Number Theory Seminars. J. H. H.
Chalk (who later took a second Ph.D. under the supervision of L. J. Mordell at
Cambridge) was one of Davenport's first students. Amongst the early attenders at
the seminar was Freeman J. Dyson, and Dyson's remarkable proof (Dyson, 1948a, b)
of Minkowski's conjecture for the product of 4 non-homogeneous linear forms was
an immediate reaction to one of Davenport's seminars, the first draft, 60 pages long,
being written in three or four days. Although I, myself, was working under the
supervision of R. G. Cooke and L. S. Bosanquet, I attended Davenport's lectures
and seminars, and I am proud to claim to be one of Davenport's students. He gave
me inspiration and unlimited help and friendship. At this time Davenport worked
mainly on the Geometry of Numbers and on Diophantine Approximation; he also
acquired a lasting interest in problems of packing and covering. It was this last
interest that spurred me to some of my most satisfying work.

Davenport spent the year 1947-48 visiting Stanford University in California.
Although he acquired a taste for the American way of life, and made life-long friends
of Polya and of Szego, it is scarcely possible to detect any influence of this visit on
his work. It is perhaps surprising that essentially the only joint work we did, was
done by correspondence during this period. Although we often discussed problems
of mutual interest at other times, when solutions came they were due to one or the
other (usually Davenport). He was an exceedingly rapid worker and I could not
keep up with him.

In 1946 K. F. Roth came from Cambridge, after a year's schoolmastering at
Gordonstoun, to research under the supervision of T. Estermann. On the com-
pletion of his thesis, he joined the staff at University College. Naturally he attended
Davenport's lectures and seminars. He soon turned from problems of the Hardy-
Littlewood type to problems of a more diverse nature, allowing freer scope for his
remarkable originality, and he received much encouragement from Davenport.
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70 HAROLD DAVENPORT

Roth often told of an amusing incident at the Amsterdam Conference in 1954.
Roth had given a twenty-minute talk about his work on irregularities of distribution
(Roth, 1954), giving a concise but essentially complete proof of his main result, but
leaving himself no time to discuss its significance. Davenport found Roth after-
wards, and explained to him what he had done wrong in preparing his talk, and
exactly how he should have presented his material. Roth escaped from Davenport
only to meet Mordell, who congratulated Roth on his talk, saying how much he had
enjoyed it, and how much Roth's style of lecturing had reminded him of Davenport's.
It need hardly be said that by the next international conference in 1958, Roth had
become a brilliant lecturer. Sometime after this Amsterdam conference Davenport
initiated a "teaching seminar" where the participants were to study Siegel's and
Dyson's work on the Thue-Siegel theorem, and to explain it to each other. One of
the major assignments fell to Roth, and he soon obtained a deep understanding of the
method and went on to obtain his spectacular improvement for which he received a
Field's Medal in 1958. Davenport was very proud of Roth's brilliance and held
him in high regard and affection.

In 1950, shortly after his return from India, G. L. Watson sent his elementary
proof of the seven cube theorem to Davenport. Davenport at once gave Watson
all possible encouragement and in a few years Watson had an established reputation
as a mathematician and a position at University College.

D. A. Burgess worked under Davenport's supervision from 1956 to 1958. His
work on the distribution of quadratic and higher residues to a large prime modulus
(Burgess, 1957) was the first major advance in some of these problems since the
original work of Vinogradov in 1918. Burgess's acknowledgment " I take this
opportunity of thanking Professor Davenport for much valuable advice, and also
for preparing the final draft of the paper " is remarkably frank (much franker than
some other acknowledgments that have been written to Davenport): but Davenport
made it clear that the credit for the advance was due to Burgess.

While in London, Davenport did a great deal of work for the London Mathe-
matical Society. He was an ordinary member of Council from 1944 to 1947, then
Librarian from 1950 to 1957 and finally President from 1957 to 1959. In particular,
it was largely through the joint efforts of Davenport and W. B. Pennington that the
Society obtained an interest-free loan from the Nuffield Foundation and embarked
on its ambitious and highly profitable reprint programme.

By 1953, Davenport was concerned with the increasing delays in publication.
He initiated a proposal for the publication of a journal by the University of London.
Although the mathematicians at the other London Colleges were anxious to help,
they could find no way of offering any financial support. It was only at University
College that such support could be found, and so the new journal was published
from the Mathematics Department of the College. Davenport consulted his classical
colleagues and was delighted to find that, not only was the title Mathematika a good
Greek word, but it was also the title the Greeks might well have given to a mathe-
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HAROLD DAVENPORT 71

matical journal, had they published one. Of course he retained his editorship and
his interest in Mathematika throughout his life.

In 1956 he obtained his result [112] on indefinite quadratic forms in many variables,
showing that if a quadratic form in n variables is of signature (r, n-r) and

n ^ 185, r ^ 37, n-r ^ 37,

then the quadratic form takes arbitrarily small values, non-trivially. This was a
quite new departure, combining a re-modelled form of the Hardy-Littlewood method
with ideas from the Geometry of Numbers. It marked a quite sudden change in
Davenport's interests; he turned from the Geometry of Numbers to other problems
in Number Theory. In particular, his follow-up work on cubic forms brought him
into contact with D. J. Lewis and B. J. Birch who independently obtained results
overlapping substantially with Davenport's; this led to most fruitful collaborations
between Davenport and Lewis and Davenport and Birch.

In 1958, Davenport moved to Cambridge to take up the Rouse Ball Professorship.
He now had less administration to do and his mathematical output increased. He
also found it easier to spend a term or two away visiting the United States or, for
one period, in Germany to take up his appointment as the visiting Gauss Professor
der Mathematik an der Akademie der Wissenschaften zu Gottingen. Visits to Ann
Arbor and return visits by Lewis to Cambridge enabled the collaboration of Daven-
port and Lewis to flourish. A visit to Boulder for a couple of months in 1968, pro-
duced a flurry of work with W. Schmidt on problems of Diophantine Approximation.

A. Schinzel visited Cambridge for the session 1960-61. He shared Davenport's
interest in the properties of Polynomials, and they were soon working together.
They clearly enjoyed collaboration and did so whenever they could meet.

In 1963 and 1964 E. Bombieri spent some time with Davenport in Cambridge.
In 1965 Davenport visited Milan for a month. He started work with Bombieri on
the distribution of prime numbeis, trying to show that the difference between con-
secutive prime numbers is sometimes rather smaller than its usual value. They found
that they needed information about primes lying in arithmetic progressions. Daven-
port told Bombieri of Roth's large sieve result (Roth, 1965); a result that was not in a
form that could be used in their problem. When Davenport returned from a four-day
holiday that he had taken with his wife visiting Florence and Venice, they were met
by Bombieri at the railway station. Bombieri explained that he had not been to
bed for four days and produced a manuscript with his version of the large sieve and
its application to the distribution of primes in arithmetic progressions (Bombieri,
1965).

At Cambridge Davenport was never without a research student. One was J. H.
Conway who has done some quite remarkable work. Another was A. Baker.
According to Davenport, Baker worked largely independently, just giving him
completed manuscripts to read. It may be my fancy, but my impression is that
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72 HAROLD DAVENPORT

Baker was much more influenced by the writings of Mahler and others than by his
contacts with Davenport. Davenport was very pleased to know that Baker had
been put forward to the Committee of the International Congress of Mathematicians
1970 for consideration of the award of a Field's Medal; he would have been delighted
had he known of the subsequent award. Davenport also thought very highly of one
of his last students H. L. Montgomery.

Davenport was naturally one of the members of the committee set up by the
London Mathematical Society to edit the collected works of G. H. Hardy. His
notes on the first part of the first volume provide a model for such work. He, with
assistance from his wife, did a very great deal of the general editorial work and
proof-reading needed for the subsequent volumes.

After a lifetime's heavy smoking (despite various attempts to give it up) Daven-
port had to have a lung removed in January 1969. His condition improved but
then deteriorated and he died on the 9th June. During his last few months he was
not well enough to undertake mathematical work, and spent some time writing notes
on his early life and on the first half of his mathematical work. These notes have
been a most valuable help in writing this memoir. He leaves his widow, Anne, with
their children James and Richard.

The reading of such a brief account of a man's life will bring him clearly to the
minds of those who knew him well; but it leaves unsaid much that must be said to
give others a true picture of him. Although mathematics was Davenport's dominant
interest, he always found time for other things. He used to go on most energetic
walking holidays, sometimes with Heilbronn. He read and re-read the works of
Dickens, Johnson, Boswell, Trollope, Austen, Gibbon, Lewis Carroll and Wodehouse.
In particular he read The Decline and Fall a dozen times. A few years ago he
achieved a boyhood ambition of making a working pendulum clock using only
standard Meccano parts. His children came late in his life, but he always gave them
his time and attention, and derived much joy from them.

Davenport always looked on mathematics as a human activity. The problems
were there; the task was to solve them or to help and encourage others to solve them.
The measure of his greatness is the extent to which he succeeded in this task. While
his own work can be surveyed, the extent to which he helped others can only be
guessed; he was probably responsible for encouraging work at least as extensive as
his own. But he always regarded mathematicians as people, not as abstractions.
He made his collaborators and colleagues his friends, and gave them generously of
his humour and wisdom. He made a practice of writing helpful letters to all who
approached him on mathematical matters whether they were professionals, students,
amateurs or even cranks. By correspondence and by direct contact he stimulated
and encouraged many mathematicians to do much of their best mathematics. Those
of his research students who could find their own problems were guided to the relevant
literature and were encouraged and helped to solve them; others were found interesting
problems within the bounds of their capabilities. At least two of the mathematicians
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HAROLD DAVENPORT 73

Davenport helped have resolved to try always to be as kind and helpful to young
people as Davenport had been to them.

Lewis writes of Davenport's life at Cambridge:
" Davenport used to sit from 10 to 12 most mornings drinking coffee and talking

to his students and colleagues, including the many post-doctoral visitors who appeared
at Cambridge each year. A pad of paper was readily at hand. The students always
knew where he could be found and that he was always ready to discuss their latest
successes and failures. Usually it was a conversation between him and one other;
but the students all sat around waiting their turn to put a question. The conversation
was almost entirely mathematical, nevertheless a regular habitue of the coffee house
soon was aware of the Davenport philosophy regarding mathematics and life in
general. ' Mathematicians are extremely lucky, they are paid for doing what they
would by nature have to do anyway. One should not have a non-teaching fellow-
ship too long, there comes a time when one must make a contribution to society.
Great mathematics is achieved by solving difficult problems not by fabricating elabo-
rate theories in search of a problem.' But usually the conversation became an
effort to determine the answer to the mathematical problem posed."

Davenport would say that, when he was young he used to enjoy going to lectures,
but he had long since reached the stage when he could only bear to go to a lecture
if he was giving it himself, and was rapidly approaching the stage when he could
hardly bear to go to a lecture even if he was giving it himself. In fact he never reached
this last stage; he was an outstanding lecturer and clearly enjoyed exercising his
skill. He was by nature rather conservative, taking the attitude that all change was
for the worse, but his tact, in putting forward proposals to mitigate the evils of any
change that seemed inevitable, usually resulted in the change being for the better
rather than for the worse.

Davenport was essentially a problem solver, being impatient of abstract theories
that merely systemised known results. Indeed the main bulk of his work was centred
round a few key problems that he regarded as of outstanding importance: the distribu-
tion among the residue classes of the values of a polynomial with integral coefficients;
the values taken, for integral values of the variables, by an algebraic form, with
rational or real coefficients; Minkowski's conjecture on the product of non-homo-
geneous linear forms; the approximation and simultaneous approximation of real
numbers by rational numbers. Although he often studied his problems from a
geometrical point of view, sometimes drawing many diagrams, or even making paper
models, he almost invariably recast his proofs in a severe analytical form, so that
they could be easily checked and be seen to be correct. He often produced many
draft versions of a single publication being dissatisfied until he had produced the
strongest results that his methods would yield, and until the proofs had been explained
in the best way he could find. His results seemed to come from hard and systematic
study of his problems rather than by some sudden flash of inspiration; no doubt he
had his flashes but they seemed to come only as a result of a considerable study.
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74 HAROLD DAVENPORT

In three subsequent sections, we give a brief survey of Davenport's main work.
It remains here to mention his books and some of the distinctions he received. His
first book The Higher Arithmetic, Hutchinson's University Library, London, 1952,
made a very genuine effort to bring some of the most beautiful results of the Theory
of Numbers within the reach of the man in the street. As he says in the introduction,
he was well aware that it would not be read without effort by those who are not,
in some sense at least, mathematicians. But it has undoubtedly been a source of
joy and inspiration to many mathematicians both amateur and professional.

His second book, Analytic methods for Diophantine equations and Diophantine
inequalities, Ann Arbor Publishers, Ann Arbor, Michigan, 1962, gives a most valuable
introduction to the Hardy-Littlewood method, including Vinogradov's improvement.
It discusses in considerable, but not complete, detail Davenport's modifications
[116,134] that enabled him to show that arbitrary cubic forms with integral coefficients
and 16 or more variables represent zero non-trivially; the details are given for such
forms with 17 or more variables. It discusses in detail the proof of Davenport and
Heilbronn [49] that an indefinite diagonal quadratic form in five variables with real
coefficients, not all in rational ratios, assumes arbitrarily small values. Further results
of Birch, Davenport and Lewis are sketched. The whole serves as an excellent
introduction to a rapidly developing branch of number theory.

His book Multiplicative Number Theory (Markham, Chicago, 1967) contains
an extremely readable account of the analytic approach to the theory of the distribu-
tion of primes in arithmetic progressions, taking this as far as Bombieri's important
theorem (E. Bombieri, 1965) and the Davenport-Halberstam proof of the basic
sieve results of Roth and Bombieri.

Davenport received the Berwick Prize of the London Mathematical Society in
1954. He was elected an ordinary member of the Royal Society of Sciences of
Uppsala in 1964. He received the Sylvester Medal of the Royal Society in 1967,
and an honorary degree of D.Sc. from the University of Nottingham in 1968. After
his death, Mathematika changed its title page to acknowledge its foundation by
Davenport. The London Mathematical Society published the first part of the 23rd
volume of the third series of its Proceedings as the Davenport Memorial Issue.
Acta Arithmetica has also dedicated its volume 18 to Davenport's memory.

In the next section I give a brief account of Davenport's contribution to the
Geometry of Numbers and to Diophantine approximation. I am most grateful to
Dr. B. J. Birch for providing the section on the analytic theory of Diophantine
equations and to Professor H. Halberstam and Professor D. A. Burgess for writing
the section on multiplicative number theory.

C. A. Rogers

Work on the Geometry of Numbers and on Diophantine Approximation

When Davenport went to Manchester for the beginning of the session 1937-38,
Mordell showed him a letter from Siegel proving an interesting result on the product
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HAROLD DAVENPORT 75

of n non-homogeneous linear forms. Much later Davenport wrote " with the imperti-
nence of youth I could not resist simplifying Siegel's proof and with great generosity
Siegel insisted that I should publish my simplified version instead of his publishing
anything ". This Davenport did in [22] explaining the circumstances. Let Lu ...,Ln

be real linear forms

Li=ailul + ...+ainun, i = 1,...,«, (1)
with determinant

A = |det(ao-)|,

and let cu ..., cn be real constants. Siegel's result is that there is a constant yn, inde-
pendent of L!,..., Ln, c1}..., cn, such that the inequality

n (2)

always has a solution in integers ux, ...,«„. Minkowski bad proved this result with
y2 = £ when n = 2 and had conjectured that, in general, it holds with yn = 2~".
Siegel's value for yn was too large for his result to be a good approximation to
Minkowski's conjecture, but the ideas in this short note have been used repeatedly
in later work. Problems connected with this conjecture of Minkowski on non-
homogeneous linear forms recur in Davenport's subsequent work.

Davenport took up the problem of finding the arithmetic minimum of a product
of three real linear forms, studying the problem by geometrical methods and drawing
diagrams on triangulated graph paper. When he came to write up the work [24, 25]
he eliminated all reference to the geometry he had used as a guide and presented a
severely analytic proof that, in the above notation, there are always integers ult u2, u3,
not all zero, satisfying

IL^LaKIA.
Much later he presented a beautifully simple proof [39] of this result, and by a very
complicated elaboration of his simplified method, showed [42] that there will be
values of ulf u2, u3, not all zero, satisfying

\Li. L2 L3\ < — A,

except when LiL2L3 is equivalent to a multiple of the norm form of a cyclic cubic
field of discriminant 49 or of discriminant 81. This provides an analogous " isolation''
situation similar to the well-known Markoff results for quadratic forms. In a joint
paper v/ith Rogers [79] such isolation results and results asserting the existence of
infinitely many solutions were discussed in a general setting. This work was taken
further by Rogers (1953) and J. W. S. Cassels and H. P. F. Swinnerton-Dyer (1955).
Very recently Swinnerton-Dyer, by very subtle use of an electronic computer, has
found a chain of 18 special forms so that the inequality \LXL2L3\ ^ (1/17)A can
be satisfied unless LiL2L3 is equivalent to one of the 18 forms. Davenport and
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76 HAROLD DAVENPORT

Swinnerton-Dyer have studied the product of four linear forms and the result will be
published, if the necessary calculations work out as expected.

Shortly after completing his " y " result, Davenport tackled the corresponding
result for the product of three linear forms, one real and two conjugate complex, or
equivalently the form L1(L2

2 + L3
2), showing that there will be integral values of

ult u2, u3 not all zero, satisfying

Although the proof is presented in an analytic form, the geometry from which it
was obtained is less well hidden, and indeed this is one of the very few of Davenport's
papers that actually contains a diagram. No really simple proof of the result is
available; the best that has been obtained so far is based on Mordell's reduction
(Mordell, 1942) to the problem of a binary cubic form and Davenport's simplified
discussion [41] of the binary cubic problem. The discussion of the cases of equality
and of a limited type of " isolation " is given in [79]. An application to the problem
of simultaneous Diophantine approximation was obtained jointly with Mahler
in [47].

Davenport [28] gave a very simple proof of Minkowski's theorem on the successive
minima of a convex body, Minkowski's original proof being long and obscure.
Davenport's proof has been criticised on the grounds that he merely remarked that
functions (f)h i = 1, 2 , . . . , r— 1 could be defined to satisfy certain conditions, without
explaining how this was to be done. These criticisms seem quite unjustified as it
clearly suffices to take (j>i(xr*, . . . ,xn*), i = 1,2, . . . , r - l so that (<j)u ...,<^>r_1,
xr*,..., xn*) is the centre of gravity of the section of Ar_x K by the linear space

or the Steiner point of this section, or, if K is taken to be closed rather than open,
the nearest point of this section to the point (0, ..., 0, xr*, ..., *„*).

In [29] Davenport gave a simple proof of Minkowski's conjecture (see above)
for the product of three non-homogeneous linear forms; Remak's earlier proof was
extremely difficult. Davenport explained his method at his seminar and in a few
days F. J. Dyson had found his long and deep proof of the four dimensional case of
the conjecture. The conjecture, which is trivial when the coefficients of the forms
are rational, and which has been proved by Birch and Swinnerton-Dyer (1956)
when the coefficient matrix of the forms is " nearly " diagonal, remains, in its general
form, one of the most baffling problems in the Geometry of Numbers.

Davenport followed up his proof [41] of Mordell's results, giving the best possible
inequalities for the arithmetic minimum of a binary cubic form

ax3 + bxz y + cxy2+dy3,

by providing a reduction theory for such forms [45, 46] and by finding asymptotically
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HAROLD DAVENPORT 77

the average number of such forms with integral coefficients and a numerically large
discriminant

D = \%abcd + b2c2-4ac3-4b3d-27a2d2

[89, 90]. These results were applied later to a problem of Volkmann [126] and in
collaboration with Heilbronn [190, 191] to determine the density of discriminants
of cubic fields.

Davenport studied a series of special products of two or three linear forms,
finding their non-homogeneous minima [51,52,61,62,66] and in some cases obtaining
isolation results. He also showed that, in the notation already used, for any real
constants c1,c2,c3i there are integers ul,u2,u3 satisfying

and that this result is isolated [63]. These studies of non-homogeneous minima led
through an intermediate result [68] to his paper [70, see also 77], which shows that
given Ll 5 L2, there are always real numbers cu c2 such that

for all pairs of integers uu u2, and which shows that Euclid's Algorithm can hold
in the real quadratic field k(y/rri) only if m ^ (128)2. This enabled him in the first
place, with Chatland [74], to show that Euclid's algorithm holds in no real quadratic
fields beyond the last known example (believed at the time to be yJ91 but now, after
the work of Barnes and Swinnerton-Dyer (1952), known to be V73), and secondly
to show that Euclid's algorithm holds in only a finite number of cubic fields with
negative discrimant [76] and in only a finite number of complex quartic fields with
complex conjugate fields [82]. J. W. S. Cassels (1952) gives a unified account of
these last results.

Davenport constantly returned to problems connected with simultaneous Dio-
phantine approximation. He was the first to show that there are continuum many
pairs 0, (f> of irrational numbers that are badly approximable in that, for some c,
(here are only a finite number of integral solutions of the inequalities

< 4-, q > 0.
0*

The proof [104] was exceedingly intricate, 0 and <f) being chosen so that the linear form

Ou+(})v + w

has one infinite sequence of approximate representations as a multiple of a linear
form with coefficients from one totally real cubic field and a second infinite sequence
of such representations with coefficients from a second totally real cubic field. Later

u
0

q

c

q*

v
(b

q
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78 HAROLD DAVENPORT

(see, for example [144]) he obtained much more general results using far simpler
methods. Two of his latest papers [185, 189] written with W. M. Schmidt discuss
in great depth the circumstances in which Dirichlet's theorem on Diophantine
approximation can or cannot be improved.

Working in collaboration with Schmidt, he took up the problem studied by E.
Wirsing (1960) of the approximation of irrational and algebraic numbers by algebraic
numbers or by algebraic integers [173,177, 183,188]. They obtained many striking
results. For example, they proved that, if n ^ 3 and £ is real but is not an algebraic
number of degree at most %(n— 1), then there are infinitely many real algebraic
integers a of degree at most n which satisfy

H(a) denoting the numerically largest coefficient in the defining equation for a.

C.A.R.

Work on the analytic theory of Diophantine equations

Heilbronn, who had met Davenport in Gottingen in 1933, came to Cambridge
in 1935. In [11], they proved the best-possible result that every large positive
integer is the sum of 17 fourth powers (the same theorem was proved indepen-
dently at the same time by Estermann). Hardy and Littlewood had proved the
result, but with 19 fourth powers instead of 17 • Davenport and Heilbronn obtained
their improvement using Vinogradov's version of the Hardy-Littlewood method.
Their main extra device was Vinogradov's trick of taking the variables of different
sizes—this trick was to become one of Davenport's trademarks, see for instance [30].
The style is terse and technical, with much quotation: a necessary lemma was proved
in [14].

The collaboration with Heilbronn was continued. In [18], they proved by
moderately conventional methods that almost all positive integers are of the form
x2+.y3+z3. The methods of [19] are more exciting; here, they showed that almost
all integers are the sum of a prime and a fc-th power (for any fixed k). They used the
Hardy-Littlewood technique to estimate the mean-square error £ {r(ri)—p(«))2

where r(w) is the number of solutions of n = p+xk, and p{n) is a plausible approxima-
tion to r(«); the theorem follows when

The most interesting part of the proof is their estimate for the sum over primes,
£ e(ap); this depends on a formula for the number of primes in an arithmetic

progression, with a good error term depending on Siegel's result (then very recent)
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HAROLD DAVENPORT 79

about the (presumably non-existent) real zero of an L-function. It is easy to modify
the method to prove that almost all numbers have the form p+xk or 2p+xk with p
a prime congruent to 1 modulo 4, so almost all numbers have the form x2+y2+zk.

In [30], Davenport announced a new method for constructing distinct sums of
fc-th powers, which enabled him to prove new Waring-type results for sums of fc-th
powers for k = 3, 4, 5, 6. The announcement was followed by several papers in
which his method was described, developed, and applied to improve almost all the
known results on Waring's problem for small exponents. Briefly, the method was
described in [31] and improved in [34]; meanwhile, Erdos had produced a different,
slightly weaker, method, and this was combined with Davenport's in [36]. As for
applications, it was proved in [33] that, for large enough N, at least jy13/15~* integers
less than N are sums of 3 cubes, and so almost all positive integers are sums of 4
positive cubes; in [35], he showed that every large enough positive integer not con-
gruent to 15 or 16 modulo 16 is a sum of 14 fourth powers; and in [37] he showed
that every large enough positive integer is the sum of 23 positive 5-th powers, and
is the sum of 36 6-th powers. Some years later, in [87], Davenport used extreme
ingenuity to prove that, for large enough N, at least N*1/5*~e integers less than N
are sums of 3 cubes; so far as I know, this is still the best known.

Between 1939 and 1956, Davenport almost deserted Waring's problem in favour
of the Geometry of Numbers and Diophantine Approximation. Just two papers
on the subject date from this period: [87] which we have just described, and [49], a
very significant joint paper with Heilbronn. They attacked a conjecture of Oppen-
heim, that an indefinite quadratic form with real coefficients in 5 or more variables
always takes small values, and proved it for diagonal forms. To be precise, they
proved that if Xu ..., X5 are real numbers not all of the same sign, then there are
integers xu..., xs not all zero so that |£Aj x2\ < 1. This is by no means a difficult
paper, indeed it is one of the least complicated of all the many applications of the
circle method, but it made it clear for almost the first time that Diophantine inequali-
ties may be treated by the method as well as Diophantine equations. Papers on
similar lines were soon published by Watson, Bambah, Roth and others; particularly
interesting is the problem of reducing the number of variables from 5 to 4, but so
far this has resisted all attacks.

Oppenheim's conjecture for non-diagonal forms is enormously harder than the
diagonal problem; there are obvious difficulties in applying the essentially additive
circle method to a problem which is not additive. In [112], after considerable effort,
Davenport was able to solve the problem, at any rate when the form was sufficiently
indefinite and involved enough variables; this was a breakthrough. To describe the
ideas involved we cannot do better than quote from Davenport's presidential address
to the London Mathematical Society [123]: " Let O be an indefinite quadratic form
with arbitrary real coefficients; the problem is to prove that the inequality

l$(*i> •••,*„)! < 1
is always soluble in integers (not all 0) if n is sufficiently large. The essential difficulty
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80 HAROLD DAVENPORT

lies in estimating an exponential sum such as

when P is large and a is a real number that is neither very small nor very large. It
would suffice if one could prove that such a form is of lower order of magnitude
than Pn~2. However, this cannot be true unconditionally, since it is possible (for
example) that <D may have integral coefficients and a may be 1, in which case every
term in the sum is 1. It is natural to begin by investigating the consequences of the
supposition that the desired estimate does not hold for a particular a; it is possible
to prove that the form O must then represent a form in a small number of variables,
say 5, whose coefficients are nearly integers. The arguments which lead to this con-
clusion are mainly concerned with systems of linear inequalities, and depend partly
for their effectiveness on considerations taken from the geometry of numbers. If
the new form, say ^(yi, ...,y5) is indefinite, we can appeal to an elementary but
elegant theorem discovered by Cassels in 1955. This states (in particular) that an
indefinite quadratic form in 5 variables with integral coefficients represents zero
with integral values of the variables which satisfy a simple estimate in terms of the
size of the coefficients of the form. This result is applicable to the almost integral
form ¥()>!, ..., y5), and leads to the conclusion that ocO, and hence O itself, assumes
arbitrarily small values. Thus, if the estimate needed for the success of the Hardy-
Littlewood method fails to hold for any a, the desired final conclusion nevertheless
follows. There remains, however, the difficulty of ensuring that the almost integral
form ¥()>!, ..., y5) shall be indefinite, and at first I could do this only by imposing a
condition on the signature of the original form 0. ' In his first attempt [112] Daven-
port was able to deal with forms of signature (r, s) when r ^ 37, s ^ 37; in a second
paper [114] he mobilised the theory of successive minima from the geometry of
numbers and reduced the 37 to 16. Improving the same method further, he proved
in a joint paper with Ridout [120] that r+d ^ 21, min (r, s) ^ 6 is enough.

In the series of joint papers [115], [118], [119], written with Birch, a different
technique is applied for the case r + s ^ 21, min (r, s) < 4; using a method of Brauer,
one can show that a non-diagonal quadratic form in many variables can almost be
diagonalised, in the sense that one can find integral vectors ul9 . . . ,us so that
O(E/,u() = SA.f^ + H^t), where ¥ has small coefficients. The crux of the matter
accordingly is [119], where one proves a refined version of [49], which tells us that
for any 5 > 0 there is a constant Cs so that | SA(-t?\ < 1 always has integral solutions
with 0 < r i V i 2 ! < QlAi ... X5\

1+s. The proof of this estimate was a wonderful
example of Davenport's power and industry (and, at the time, a wonderful example
for a young student). The crucial period was 13-19 August, 1957, during which
(in four separate, complete, drafts of the paper) he improved the estimate from
0 < T.\Xttt

2\ < C5max\Xi\
40+s to 0 < SIA,*,2! < C5\XX... A5|

2+<5; at that stage, he
did not think the result would be improved further, but he was able to reduce the
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HAROLD DAVENPORT 81

exponent further during the Christmas vacation, obtaining the published result
0 < llXit^l < C6\Xi ...X5\

i+3. Subsequently, the proof has been made more
transparent by Dr. Pitman (it is mentioned in her thesis). Ridout (1958) finally used
the Birch-Davenport method to deal with the case r+s ^ 21, min(r, 5) =5, so
establishing Oppenheim's conjecture for indefinite forms in 21 or more variables.

Davenport often proposed the analogous theorem for definite quadratics: if
Q(x) is a definite quadratic form in (say) 21 variables, that is not proportional to a
rational form, then there is an NQ such that \Q(x)-N\ < 1 is soluble for all N > No.
So far, no-one has succeeded in proving this—the difficulty is that the result ceases
to be true for rational forms.

In [116] Davenport proved that a rational cubic form in 32 variables always
has a rational zero. It was a paper of which he was (justly) proud; in his own words,
" it kept him deeply engaged for many months". The circle method is applied, and
as usual the difficulty is with the minor arcs. The methods developed in [112] and
[114] of estimating exponential sums are applied to the sum £ exp (2ni<xf(x)), where
f{x) is a cubic form; the "main lemma" states that either the sum is small or a is
well approximate or f(xx, ...,*„) represents a form of shape ayo

3+g(xx, ...,xm)
for a suitable m <n. The crux of the paper was to deduce this useful geometric
condition on / from the awkward selection of inequalities that the method throws
up; some geometric condition is essential, as otherwise the lemma is simply untrue.
The logic of the paper is complicated; one starts with a form fo(xx, ...,x32) and
shows that either the circle method works, leading to an asymptotic formula for the
number of zeros of f0, or / 0 represents a form of the shape axyx

z+fx(xx, ..., AT24);

either the circle method applies to ax yx*+fx
 o r it represents a form of shape

and so on. After seven steps, one has a diagonal form in 8 variables, which is easily
dealt with. A feature of this paper, a foretaste of difficulties to come, is that the
/7-adic problem involved in proving the singular series positive is no longer trivial.

In [130], a very difficult paper, Davenport improved the 32 variable result to one
involving 29 variables. A year later, he found the proper geometric condition that
should occur in the "main lemma", and was able to prove quite simply that a
rational cubic in 17 variables always has a non-trivial zero. This simple proof was
written up in his book; in the paper [134], he saves a little extra, and proves the result
for cubics in 16 variables, but the proof is no longer simple. There the problem
rests; no. better result is known for cubics, no simple results are to be expected for
forms of even degree, and though results have been proved for " general" forms of
odd degree, and for forms of odd degree in stupendous numbers of variables, no
attempt to prove a decent unconditional result for quintics has yet succeeded.

From now on, most of Davenport's papers were written jointly. This applies to
all the papers on forms in many variables. The more important of these later papers
may be taken in three groups. In [135] and [148], he works out in collaboration with

BULL. 10
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82 HAROLD DAVENPORT

D. J. Lewis the application of the ideas of [116] and [134] to, first, cubic exponential
sums and, second, inhomogeneous cubic equations—their paper [148] was comple-
mented by some exceedingly intricate work by G. L. Watson (1969). Then, in [124],
[128] and [131], collaborating in turn with Chowla, Birch and Lewis, various favour-
able cases are treated, where it is particularly easy to use the circle method to prove
that certain Diophantine equations are soluble; for instance, in [128] it is shown
that if F(xlt ...,xn) is the sum of n d-th. powers of linear forms over an algebraic
extension field, then £ exp (2naF(x)) may be estimated as well as if F were a sum
of rational d-th powers; and in [131] it is shown that if K is an algebraic number
field, then every large enough integer is the sum of two K/Q norms and a d-th power.
This set of papers is probably most useful for the refinement of the technique.

Finally, there is a set of rather long papers ([138], [167], [184], [186]) written
jointly with Lewis in which diagonal equations are treated. The first paper of the
set proves a particularly pleasant result; if cu ..., cs are integers not all of the same
sign, then the equation £1x1* + ... + csxa

k = 0 is soluble in integers xlt ...,x, not
all zero so long as s ^ k2 +1, except possibly when 7 ^ k ^ 17; the theorem is the
best possible when k+1 is prime. As usual, the proof falls into two parts: first one
shows that the equation is p-adically soluble for every p, and then one uses analytic
techniques to deduce, from the " local" p-adic solubility, the " global" solubility
in rational integers. The new feature of the proof is that, while the analytic part of
the argument is fairly standard, though skilful, the p-adic part (almost trivial in most
applications of the circle method) is in this case decidedly difficult. In later papers
of this set, it becomes even clearer that the analytic techniques are well understood
though complicated to apply, but that the solution of p-adic equations is not. The
later papers are all concerned with the solution of simultaneous diagonal equations;
[167] deals with two cubics in 18 variables, and then in [184] they prove a more
general but less precise result for R simultaneous diagonal forms of degree k in n
variables: if k is odd and n > 9R2 k log 3Rk then the forms certainly have a common
zero. As they say in the introduction, they have not exercised great economy in the
analytical work, as the answer is dominated by the p-adic problem. In [186], more
precise p-adic results are proved for two simultaneous diagonal forms; however, a
long-standing project of Davenport and Lewis to prove a good general result about
the rational solubility of a pair of general cubic equations has been frustrated by
the lack of p-adic information.

BJ.B.

Multiplicative number theory

1. Work on character sums. Davenport submitted his first paper [1] in October
1930, on a subject suggested to him by Littlewood: to compute the number Rn of
sets of n consecutive quadratic residues (or non-residues) modp among 1, 2,..., p— 1,
p being an odd prime; the result to be expected was that Rn would be about p/2". In
1906 Jacobsthal had evaluated JR2 exactly, as well as K3 when p = — 1 mod 4; and

 14692120, 1972, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s/4.1.66 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [30/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



HAROLD DAVENPORT 83

he had been able to show also that if p = 1 mod 4, R3 = ^/23 + O(p*). After that,
there was little progress for a long time, but in 1930 appeared a partial result about
•R4, due to H. Hopf; this came to Littlewood's notice, and so to Davenport's, and
the latter was able to prove that

Rn = L.+O(pi) when w = 4and5. (1)

Davenport was fortunate in his first investigation—unspectacular as the problem
appeared at first sight, it raised questions of the greatest importance. The estimation
of Rn quickly reduces to the estimation of sums of the type

S r ( t f i , . . . , ar) = J ^ l n a i '" n — - j , (2)

where the integers at, ...,ar are incongruent modp and (x/p) is the Legendre symbol
of x modulo p; and this turns out to be, in general, extremely difficult if r ^ 3. Daven-
port was able to show, in an elementary but highly ingenious way, that

Sr(<*i, . . , ar) -4 p* if r = 3 and 4,

and from this he derived (1). Although Davenport did not make this observation
at the time, his result was significant in another way. The number Nr of solutions
x, y of the congruence

y2 = (x+a^...(x-¥ar)mo6.p

is given by

so that, by the results of [1],

Nr = p + O(p*) when r = 3 and 4;

and one may obviously raise similar questions in regard to the number Nf(k) of
solutions of the congruence

yk=f (x) mod p, deg/ = r, (3)

and even of more general polynomial congruences in two (or more) variables.
Although Davenport did not realise this until the following year, when he went to
stay with Hasse in Marburg, Artin had already conjectured (implicitly) that

Nf(k) = p + O(p*), (4)

where the constant implied by the O-notation depended only on k and the degree
of / ; and this conjecture implied that the sums Davenport had considered in [1]
were <̂  p*.
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84 HAROLD DAVENPORT

Davenport was not to settle Artin's conjecture. It occurred to no-one at the
time that (3) might best be viewed as a question of algebraic geometry over GF(p)y

and, indeed, Weil's celebrated work was still almost ten years away. But, stimulated
by Mordell and Hasse, both of whom he had managed to interest in these questions,
Davenport developed his elementary methods over the next few years in a series of
technically brilliant papers. In [3] he extended the ideas of [1] to higher power
residues modp, in [6] he gave a method for dealing with the sums (2) for r > 4,
and in [27], his first Acta Mathematica memoir, he improved all his previous results
and presented them in a very general setting; in so doing, he pushed his elementary
methods about as far as they could go. [27] contained also an elementary account
(as compared with Hasse's) of L-functions associated with an algebraic function
field generated by an equation of the form yk = / ( * ) , and establishes for them a
functional equation, thus confirming a conjecture of Hasse. (This was to be the
first of many occasions when Davenport gave technically elementary versions of
proofs of other people. Often these lead to actual improvements of the results.)
In [5] Davenport, following up some pioneering work of Mordell, studied the related
exponential sums

P-I p-i
X exp (2Tii/(*)//>) and £ exp (2ni(ax" + bx~n))

x=0 x=l

—the latter a generalisation of Kloosterman's sum—and applied his results to
partial (incomplete) character sums. This work, too, was, in due course superseded
by the deep results of Weil. In later years Davenport would sometimes raise with
his students, or in a seminar, the question of making these results of Weil accessible
to a wide circle of mathematicians, and to number-theoreticians in particular. From
the point of view of the latter group, J. V. Armitage, a former student of Daven-
port, has recently developed some promising approaches through the geometry of
numbers.

Years later, Davenport returned to the estimation of exponential sums in [135],
with Lewis, and in [150], with Bombieri. In these papers the sum

T,T.exp(2nif(x,y)/p)
* y

is estimated, where / i s a non-degenerate cubic polynomial. The estimate O(p*)
of [135] is strengthened to O(p) in [150] using the multiple exponential sum estimates
of Bombieri (1966), which, in turn, were based on Dwork's work on congruence
C-functions. [150] also discusses the problem raised by Mordell, of finding a small
m not assumed as a value of the polynomial f(x) modulo p. They obtained the
estimate m = O(p* log/?) provided [/(*)—/()>)]/(*~JO n a s a n absolutely irreducible
factor, a condition that was shown to be necessary by MacCluer (1966-67).

Davenport's visit to Hasse was fruitful in several ways. Not only did he learn
much, as is shown in the joint paper [8] with Hasse, where some very general results
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HAROLD DAVENPORT 85

of Hasse are examined in a number theoretic context and then applied to some
concrete arithmetical questions, but he turned Hasse's interest to residue problems,
one result of which was Hasse's famous proof (Hasse, 1936) of (4) in the case (c/. (3))
k = 2, r = 3. Mordell tells the story that Davenport challenged Hasse to demonstrate
the usefulness of abstract algebra, and this was Hasse's reply!

Although Davenport did not continue in the mainstream of these important
developments, what he learnt in these early years about character and exponential
sums, about polynomials and algebraic number theory in general, was to play a
decisive part in much of his later work. A distinctive characteristic of his highly
organised mind was that he learnt always to turn experience to good account. His
remarkable handling of exponential sums in applications and adaptations of the
Hardy-Littlewood method illustrates this admirably—for an account see the previous
section written by Birch.

Davenport returned once more, in [101] (jointly with Erdos), to the distribution
of quadratic and higher power residues. They studied the distribution of the
" partial" sum

- ) ,

showing that the distribution of h~*S(x,'h) is asymptotically normal; and they
were able to improve slightly Vinogradov's famous estimates of the least quadratic
(and, more generally, k-th power) non-residue mod p. A few years later, Davenport
proposed to his then pupil D. A. Burgess the problem of improving on [101]; he
had in mind the possibility of a further slight improvement on Vinogradov's results,
but was delighted to see Burgess go far beyond anything that might have been hoped
for (Burgess, 1957).

Two other papers, [20] and [141] (with Lewis), belong to this chain of results.
They deal with character sums in general finite fields: the first is concerned with the
distribution of primitive roots in such fields, by the method of Vinogradov, and the
second deals with the estimation of "partial" character sums in the manner of
P61ya-Vinogradov and Burgess. An interesting result in [20] is the proposition that
if 9 is an arbitrary generator of GF[pn], n fixed, and if p > pQ(ri), there exists a primitive
root of the form 9+x. A somewhat similar problem, posed by Conway and solved
in [175], consists of showing the existence in GF[pn] of a primitive root 9 for which
9,6P,..., 9pn"i is a normal basis. The results of [141] have been improved, for some
finite fields, by Jordan (1967) and Burgess (1967).

An interesting paper to be mentioned in this context is [78], dealing ingeniously
with the signs of partial sums of L(l, x)i and also [125] which improved P. J. Cohen's
famous contribution to Littlewood's problem of finding a good lower bound for

x

i dx,
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86 HAROLD DAVENPORT

where nu ..., nN are any JV (N large) distinct integers. Cohen used the Hahn-Banach
theorem to obtain the lower bound

c
I logN \*
\loglogiV7

with c a positive absolute constant; and Davenport improved the exponent \ to \.
Characteristically, Davenport also gave a completely elementary account of Cohen's
proof.

The last group of results to be mentioned under this heading concerns Daven-
port's work on the large sieve with Bombieri and Halberstam. Despite his deep
interest in character sums, and his knowledge of analytic methods in number theory,
Davenport had made no contribution to the study of prime numbers ([96] is a
popular expository account) up to the time that he visited Bombieri in Milan in 1965.
It may have been at Bombieri's suggestion, or perhaps it was because Davenport
was then helping to edit Hardy's collected papers on prime number theory; but they
decided to look at the problem of estimating

n-*ao l 0 g p n

a problem that had been the theme of Hardy and Littlewood's unpublished memoir
" Partitio Numerorum VII" of 1926, and was later the subject of a series of papers
by Rankin. It is easy to show that E < 1;if the prime twin conjecture were true,
Pn+i —Pn would equal 2 infinitely often so that probably E = 0. Actually it proved
difficult to show even that E < 1—this was first done by ErdSs using Brun's method,
and later several other authors (Rankin, Ricci) obtained explicit numerical estimates,
all rather close to 1. Bombieri and Davenport, like Rankin, set out to put into
effect the original programme of Hardy and Littlewood—a weighted form of the
Hardy-Littlewood circle method using major arcs only—and they did so in a most
elegant and efficient manner; the chief new idea they introduced was the use of
Bombieri's theorem on primes in arithmetic progressions—actually they had planned
to use an older result of Re"nyi which would have led them to E < $—but Bombieri
discovered his theorem in the course of the joint work, and this led to the improved
inequality E < •£. The final step from this to E ^ 0-46650... was accomplished by an
appeal to the Selberg upper bound sieve, also in conjunction with Bombieri's theorem.

In a last section they discussed a related problem proposed by Erdos, namely
that of estimating

Er = lim infP"+ r P n (r = 2, 3,...);
\Ogp

and they showed that Er<r—%. This result has since been improved by Davenport's
former student, M. N. Huxley (1969) who showed, for example, that E2 ^ 1-451....
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HAROLD DAVENPORT 87

In the following year Davenport gave a graduate course of lectures in Ann Arbor
on prime number theory leading up to Bombieri's theorem (these lectures were
later published as Multiplicative Number Theory, the first volume of a new lecture
notes series published by Markham, Chicago); and in the course of these lectures
Davenport and Halberstam (who also was visiting Michigan at the time) found a
simple version [168] of the basic large sieve inequality in the following form:

If ocu ..., xN are any R real numbers such that

\ \ x r - x , \ \ > & > 0 f o r r ^ s

(\\x\\ denotes the distance of x from the nearest integer), and the an are any complex
numbers, then

R

2
r = l

M + N
2 anexp (2ninxr)

» = M + 1

M+N

n = M + l
W. (5)

with K(N, S) = -i
5

Lmax(N, S'1). They also derived a corresponding inequality
for character sums, but the proof they gave (also in Multiplicative Number Theory)
was unsound except when the an are zero for composite «; a correct account of an
even better result was, however, given in [179]. In [170] Davenport and Halberstam
sharpened a result of Barban's, an interesting second mean analogue of Bombieri's
theorem; this was later improved by Gallagher (1967) (who found an even simpler
proof of (5)) and extended by Montgomery (1970). Davenport corresponded with
Bombieri about this work, and in [172], [181] they sharpened the form of K(N, 5)
in (5) in various ways; they also gave some significant applications. The analysis
in [181] is especially difficult and delicate. Inequality (5) attracted considerable
interest, by virtue of its form and the simplicity of the argument, and gave rise to
many other investigations. Notable among these are the papers of Montgomery
who discovered a far-reaching extension of (5) and was able to prove with its help
a new " world record " for gaps between consecutive primes—he showed that, for
any e > 0 and x > xo(e), there is a prime between x and X+JC( 3 / 5 ) + 8; and the papers
of Huxley who extended much of this work to algebraic number fields. Both Mont-
gomery and Huxley were students of Davenport at the time of his death. One
might mention here too the paper of Burgess and Elliott (1968), the latter also a
former student, who proved, using the large sieve, that the least primitive root mod/?
is, on average, <̂  log2p(loglogp)4.

2. Polynomials and Diophantine equations. Davenport travelled extensively after
his move to Cambridge, mostly to the U.S., and when he was in residence in Cam-
bridge there were invariably mathematical visitors there eager to work with him.
In this way he entered upon several fruitful collaborative ventures, notably with
Lewis, Schinzel and Bombieri. Among the results were a number of attractive
papers on polynomials.

In [129], with Lewis and Schinzel, is a study of the Diophantine equation
f(x) = g(y), where / and g are polynomials with integer coefficients. In view of
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00 HAROLD DAVENPORT

Siegel's fundamental theorem on the solubility of Diophantine equations in two
variables, the problem becomes one of deciding when/(x)—g(y) is irreducible over
the complex field, a question of independent interest; if/(x)—g(y) is thus irreducible,
then, according to Siegel, f(x)—g(y) = 0 has at most finitely many solutions if the
genus of the equation is positive. Davenport and Lewis found a simple condition
which ensures irreducibility of fix)—g(y) as well as, in general, positive genus; and
as a special application they showed that if

f(x) = x"+xn-1 + ...+x, g(y) = ym+ym~1 + ...+y (n > m > 1),

then/(x) = g(y) has at most a finite number of solutions.
In [146] Davenport and Schinzel also studied irreducibility of polynomials of

several variables. In particular, and in answer to some questions posed by the
latter, they succeeded in characterizing polynomials f(x, y,z) with complex coef-
ficients, irreducible over the complex field but reducible as polynomials in x and y
for infinitely many values of z.

[145], with Lewis and Schinzel, sets out from the well known result that if f(x),
a polynomial with integer coefficients, is a k-th power for every positive integer x,
then/(x) = (g(x))k identically, for some polynomial g with integer coefficients, and
proves that the same result is true provided only/(x) is a fc-th power for some x
in every arithmetic progression. Some other general results of this kind are proved,
from which a similar kind of condition is seen to determine when/(a) is identically
the sum of two polynomial squares. This investigation was taken further in [158].
The topic is one where there appear to be other interesting questions still unanswered—
for example, is there a " two cubes" theorem of this type?

In [140] and [159] Davenport settled two specific problems about polynomials.
In the former he answered an interesting question addressed to him by N. J. Fine,
showing that there do not exist rational functions Flt F2, F3, with real coefficients,
of xlt ..., x4 such that JC1

2 + . . . + X 4
2 = Fl

2 + F2
2 + F3

2. Since then Cassels (1964)
has taken this further, into a more general context. In the latter he settled a con-
jecture of Birch, Chowla, M. Hall Jr. and Schinzel that if/, g are polynomials with
arbitrary real or complex coefficients, then

d e g ( / 3 - £ 2 ) > | d e g / + l ,

except when/3 = g2 identically.
Finally, in [182] Davenport and Baker dealt with a question raised by van Lint

at the 1968 Oberwolfach meeting: Is 120 the only value of N for which

1,3,8,N

are such that the product of any two, increased by 1, is a perfect square? This prob-
lem reduces to showing that the simultaneous Diophantine equations

3x2-2 = y2, 8x2-7=z2

have no solution sets other than (1, 1,1) and (11,19, 31); and this was the specific
question settled in this paper. The method was based on the deep results of Baker.
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HAROLD DAVENPORT 89

3. Dirichlet and other series. Davenport did not at any time become deeply
involved with the study of Riemann's C-function and allied functions; but he was
always well up in the subject, and made several interesting and useful contributions.
In [2], an early work suggested to him by Littlewood, he showed that, for fixed
s = a+it, L(s,x) <t ki{i~a) if x is a non-principal character mod A;; this improved
by a logarithmic factor on what was known at the time, and provided a ^-analogue
of the classical estimate ((a+it) -4 f*(1 ~a) for fixed a. In [10] he gave an alternative
proof of an integral mean-value theorem of Ingham (1933) for {(s), and extended its
range of validity; and in [171], written while he was Gauss professor at Gottingen,
he extended slightly the region near s = 1 known to be free of zeros of L{s, x), the
point being that though his results were weaker than Siegel's, all the constants
appearing in his results are capable of explicit computation.

In [12] Davenport and Heilbronn showed that the function

00

C(s, a) = 2 (n + a)~s (0 < a < 1, a # i),

in contrast to £(s), has infinitely many zeros in Rs > 1 when a is rational or transcen-
dental. The more difficult case of a algebraic was settled many years later by Cassels
(1961). They began a similar investigation in regard to the Epstein zeta function,
and completed this in [15]. Their results have since been completed by others (see
Stark (1967)).

Papers [17], [21] and [155] deal with delicate convergence problems. In par-
ticular, the first two study conditions on 0 under which the formal identity

£ — {nO} = f; — sin 2nn0, An = T ad,
n = i n n « = i n d\n

arising from the Fourier expansion of {n0}, is valid; here

\t~[t]-h t*[t],
»• t

The special cases an = //(«), A(«), A(«) are shown in [17] to lead to valid relations
for all rational 0, and for almost all 0; and in [21], Vinogradov's work on trigo-
nometric sums with prime arguments having appeared in the meantime, the relations
are shown to be valid uniformly in 0 when an = /*(«) (and X(n) is stated to give a
similar result). The results of [21] are based on the truth of estimate

2 /*(«) exp (2nin0) < xlog"**

for any fixed h, uniformly in 0; and the proof of this was not simple even given
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9 0 HAROLD DAVENPORT

Vinogradov's results. [155] established a power series representation of

y, x £ anexP(2niny) , ,
fix) = £ < „ , , \x\ < I, a, y real,

-oo l-xexp(27rma)

and the asymptotic behaviour of f(x), x = r exp (2nik<x) (k = [k] and a irrational),
as r -*• I from below, under rather weak conditions on the an.

Paper [69], with P6lya, is a souvenir of Davenport's visit to Stanford. The
problem arose from the study of the vibration of a membrane stretched across a
rectangular frame; and it asked, specifically, for conditions on the sequences
[tyiL [»»] of positive numbers so that, if

the sequence {wn} is (i) monotonic or (ii) logarithmically convex (in the sense that
wn

2 < wn_x wn+l). Some simple conditions, comparing un and vn with certain
binomial coefficients, were obtained.

4. Miscellaneous results. Davenport was, in his youth, an avid student of Landau's
Handbuch; from this interest sprang [4], a study of the arithmetic function

<k(«) = £ m\
m = l

(m, n) = l

In [7] Davenport studied another arithmetic function, a{n) = X w; in particular,
m\n

he showed that the sequence of ^-abundant numbers, i.e. numbers n for which
<T(«) ^ kn, possesses an asymptotic distribution function, continuous in k. Daven-
port's method was based on a paper of I. Schoenberg. Behrend and Chowla proved
the same result at much the same time, and Erdos has, since then, taken the study
of abundant numbers much further.

If n is abundant, so is every (positive) multiple of n. If n is abundant, but no
divisor of n is abundant, one refers to n as primitive abundant; so that the sequence
of abundant numbers arises as the set of all distinct multiples of the primitive abundant
numbers. This led Erdos to the concept of a " primitive " sequence, i.e. one having
no one member dividing another. Erd6s proved that the logarithmic density of any
primitive sequence is 0; and in [16] Davenport and Erdos proved that, on the other
hand, if a sequence has positive logarithmic density, it is imprimitive to the extent
that it contains a subsequence in which each term divides the next. They based their
argument on a Tauberian theorem of Hardy-Littlewood; but, later, in [92], they
gave an elementary proof. There is a systematic account of this interesting field in
Chapter 5 of Sequences (by Halberstam and Roth, Clarendon, 1966); the particular
problem investigated by Davenport and Erdos has been further studied by Erdos,
Sarkozi and Szemeredi (1966, 1968).
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HAROLD DAVENPORT 91

Still on the subject of general sequences, the " a+^-hypothesis" on the addition
of integer sequences was a notorious open question in the mid-thirties, and Davenport
left his mark on the subject with his famous modp analogue [9]: if the at modp
(i = 1, ...,m) and tymodp (j = 1,...,«) are two sets of distinct residue classes
mod/?, then the number / of distinct residue classes representable as at+bjmodp
satisfies

/ ^ min(m+n—\,p).

Many years later Davenport (see [60]) found this result in Cauchy's work; and this
useful result has justly become known as the Cauchy-Davenport theorem. The
result can be seen in its proper setting in Sequences or in H. B. Mann's Addition
theorems (Interscience, 1965). The rather simple extension to composite moduli
was accomplished by I. Chowla and recorded in Landau's Fortschritte.

A number between 0 and 1 is said to be normal (in the scale of 10), if in the decimal
representation of the number, every finite combination of digits occurs with the
proper frequency. Champernowne proved that 0-12345 ... is normal, and Besicovitch
that 0-1491625 ... (i.e. 0-11 22 32 42 ...) too is normal. In [93] Davenport and Erdfis
showed that 0-/(l)/(2)/(3)... is normal, / being an integer valued polynomial;
and some stronger results are obtained too. Weyl's inequality for exponential sum
was used.

In [152], [154], [192] Davenport and Schinzel had occasion to look at an attractive
combinatorial problem, namely, to find the greatest length Nd(ri) of a sequence con-
sisting of elements from 1, 2,...,«, such that

(i) no consecutive terms are equal,
(ii) there is no subsequence of type abab ... with d+1 terms and a # b.

(Thus N2(n) = n, N3(n) = In— 1.) They obtained upper and lower estimates for
Nd(n)ifd>3.

Finally, in [139] Davenport and Lewis discuss the analogue for power series
fields of characteristic 0 of Littlewood's problem: for any real 6, <f> and any e > 0,
does there exist an integer n > 0 such that

They gave an inductive construction of a pair 9(t), 0(/) for which the conclusion is
false. Baker (1964) gave an explicit example of such a pair and Armitage (1970)
has since extended Baker's construction to the case of characteristic > 3.

H.H. and D.A.B.
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