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THEODOR ESTERMANN

Theodor Estermann, son of Leo and Rachel Estermann (née Brenner), was born
in Neubrandenburg on 5 February 1902 and died on 29 November 1991.

His father, who came from Lithuania (and was therefore a Russian subject)
worked in advertising and business management; his mother, a Latvian, was a skilled
corsetiere. They had two children, of whom Theodor was the younger; his brother
Immanuel (who was to become an outstanding physicist) was born in 1900.

Theodor’s early schooling was first at the Talmud-Torah School in Hamburg,
where (from the age of six) he learnt to read Hebrew as well as German, but a few
years later he went to a state primary school in Berlin, which suited him much better.

Leo Estermann was an ardent Zionist (in fact, Theodor was named after the
founder of modern Zionism, Theodor Herzl). In 1914 the family moved to Palestine
and became Turkish subjects (transformed to Palestinian at the end of the First
World War), and Theodor went to the Hebrew Grammar School in Jerusalem. Here
the teachers translated their lesson notes from their own mother-tongues (often
German) into Hebrew, and Theodor used to translate his notes back into German
when he did his homework.

Before the end of the First World War, the family moved back to Hamburg. Here
Theodor and his brother Immanuel went to different schools (determined by places
available in the respective age groups), of which only Immanuel’s had laboratories,
so that only Immanuel was able to study science. It is a matter of speculation whether
this lies at the root of their respective choices of careers in mathematics and physics.
(Theodor did study physics at the University of Hamburg; the University regulations
required three courses, one of which had to be a ‘practical’ science, and Theodor
chose the two available pure mathematics courses together with physics).

When Theodor left school, his father arranged for him to be apprenticed to a
farmer, because Zionism was a ‘back to the land’ movement. Fortunately (both for
Theodor and for mathematics), the farmer not only recognised after a short time that
he was unsuited to this work, but was sufficiently perceptive to tell his father that he
ought to send Theodor to the University.

Theodor Estermann studied very briefly under Hilbert and Landau at the
University of Gottingen, but was homesick and transferred to the University of
Hamburg after a few months. Here he studied under Rademacher, and the degree of
Doctor of Science was conferred on him in 1925.

After graduating, Estermann returned to Palestine, where his father had finally
settled. He worked briefly as an ‘usher’ at Dr Biram’s school in Haifa; this was a non-
teaching post consisting mainly of supervising pupils’ activities.

In 1926 he came to England (which he had first visited on holiday in 1924) to study
at UCL. His aunt, Sarah Brenner, who ran her own corset-making business in
London, housed him and looked after him. But funds provided for him by his father
were inadequate, and he had very little money. In 1928, at the end of his very
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594 THEODOR ESTERMANN

successful studies at UCL, he was awarded the prestigious London University degree
of Doctor of Science.

Estermann then returned to Germany (it is believed to Hamburg) where he
obtained temporary work, only to find himself unemployed when the professor on
whose behalf he was giving lectures died about a year later.

When Estermann came to England for the degree ceremony in May 1929, the
UCL professor under whom he had studied was surprised to find him unemployed
and offered him an assistant lectureship in the Department of Mathematics at UCL.
He was promoted to Lecturer in 1931 and to Reader in 1940. The title of Professor
in the University of London was conferred on Estermann in 1965.

Professor Estermann retired in 1969 and the title of Emeritus Professor was
conferred on him. His retirement was a very active one. He maintained his interest in
mathematics, and was annually re-appointed as Honorary Research Fellow at UCL
until 1987 (when he was unwilling to accept re-appointment because of failing
eyesight); in addition, he took on various part-time school-teaching appointments. It
was during this period that he discovered the remarkably simple new proof of the
irrationality of 4/2 (which we reproduce below, at the end of the account of his work).
Like all the best ideas, it is obvious once pointed out; but it took about two thousand
years after Pythagoras for someone to point out this particular idea.

Estermann married Tamara Pringsheim, a granddaughter of the mathematician
Alfred Pringsheim, in 1936. They had six children (five girls and one boy), and there
are presently eight grandchildren. Estermann’s nationality (previously successively
Russian, Turkish and Palestinian) became British by naturalisation in 1948.

In view of Estermann’s quiet and modest presence, one was surprised on better
acquaintance to find that he was in fact a man of wide interests and many
accomplishments. He spoke fluent grammatical German and Hebrew (and, of course,
English). In addition, he knew some French and Latin, and studied Swedish in
preparation for the Stockholm ICM. He had an extensive knowledge of literature,
and knew large parts of Shakespeare’s plays by heart. He enjoyed classical music, and
as a young man was a keen gymnast. Klaus Roth recalls from his research student
days that his supervisor, Dr Estermann, could still demonstrate faultless handstands
with the same facility with which he made his many erudite (but apt) quotations from
Shakespeare and Gothe.

Estermann’s complete objectivity was legendary. A typical mathematical example
of this objectivity in action was provided by the way that generations of specialist
function-theorists made use of the technical concept of a ‘piecewise-smooth path’
(der eine machts dem andern nach); it was only Estermann who noticed that it was
fatuous to differentiate between ‘smooth’ and ‘piecewise-smooth’, because the two
concepts could easily be shown to be logically equivalent from their respective
definitions. It was one of Roth’s unfulfilled ambitions of his research student days to
defeat his supervisor’s objectivity by catching him out with a trick problem. Among
Roth’s many resulting disappointments was the following: Roth challenged
Estermann to count the number of occurrences of the letter ‘f” in a certain (specially
constructed) sentence. Estermann quickly gave the correct total, but asked why he
had been given such a trivial task. When Roth explained that nearly everyone gave
an answer that was one less than the true total because for some mysterious reason
only very few people counted the ‘f’ in the word ‘of”’, Estermann remonstrated ‘ You
should have told me to read the sentence. I did not read the sentence but merely
counted occurrences of f.’
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OBITUARY 595

Estermann was a very kind man, and his heroic attempts against great odds to put
Roth at ease during his PhD oral despite the latter’s extreme examination nerves is
a further source of amusing recollections.

Professor Estermann will be greatly missed. The fact that he had long since retired
in no way lessened the profound sense of loss felt by all his colleagues on the news
of his death.

Estermann’s mathematics
Early work

Estermann’s early research topics had been suggested by Rademacher, who
himself had only recently completed his studies with Carathéodory in real analysis.
Although a visit by Brun to Hamburg had already engaged Rademacher’s interest in
number theory (and Estermann’s inclination was probably towards number theory,
having studied briefly with Landau in G6ttingen), Rademacher apparently did not
feel confident yet in offering problems in number theory. Thus Estermann’s first
paper, taken from his dissertation in Hamburg, is on a problem in measure theory
closely associated with the work of Carathéodory.

His next work is on convex bodies. Blaschke [4] had posed the following problem.
Let K denote an n-dimensional convex body with volume V(K), and define the
difference body DK by DK = {x—y: xe K, ye K}. Then show that

2" V(K) < V(DK) < (2:) V(K),

and describe the extremal cases. The case n = 2 had been dealt with by Rademacher
[46]. In [1927] and [1928d], Estermann settles the case n = 3 and in particular shows
that in the second inequality, equality occurs only for a tetrahedron. This had been
done independently by Siiss [54] at the same time. Estermann’s proof is the more
natural, and is the one chosen by Bonnesen and Fenchel in their standard work [5].
The generalisation to n dimensions was not obtained until 1957, by Rogers and
Shephard [48, 49].

The papers [1928b] and [1928c] are two remarkable pieces of work. The first is
concerned with the following question. Let F be a polynomial of degree k with the
property that for every integer 4, F(h) is an integer, and suppose that F(0) = 1. Then
put g(ph...pim)= F(h,))... F(h,) and f{s) = )2 g(n)n"°. The question, of great
interest in number theory, is when can f be continued to the whole complex plane?
This had been stimulated by a paper of Ramanujan [47] which contains several
examples in which f'can be written in terms of the Riemann zeta function and so can
be continued with relative ease. In [1928b] Estermann completely solves the question,
and in a very elegant way. Letb,, = Y.  F(h) (};},) (—1)™". It follows that b,, = 0 for
all large m. Let r be the largest m for which b,, is non-zero. Then b, is a non-zero
integer and b,=1. Define «, and a by Y. _.b,x"=][]n-.(1—a,x) and
o = max (|ay, ..., |a,|). Then |a, ... a,| > 1, and so « > 1. Estermann proves that when
« = 1, the function f can be continued to a meromorphic function in the plane, and
that when « > 1, it has the imaginary axis as a natural boundary, and it can be
continued throughout ¢ > 0 to a function whose only singularities there are poles.

The function

)

m=2
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596 THEODOR ESTERMANN

is introduced in MacMahon [42] and is studied in Oppenheim [43]. In [1928c]
Estermann establishes a general theorem, a special case of which is that the function
in question cannot be continued beyond the imaginary axis.

These problems had aroused great interest, and the solutions, for which no
general techniques existed, represented considerable achievements. A remarkable
feature is that the theory of the Riemann zeta function, which one might have
expected to be essential, is hardly used at all.

Kloosterman’s sums and applications

In a sequence of weighty papers, Kloosterman [33, 34, 35] had introduced a
refinement of the Hardy-Littlewood method in order to obtain asymptotic formulae
for the number of representations of large numbers by quaternary quadratic forms.
In this work, an important réle is played by the Kloosterman sum

q

K(gu,v)= ) e((ux+vx*)/q), (1)

z=1
(z,9=1

where e(.) = exp(2ni.) and x* denotes that residue class modulo ¢ for which
xx* = 1(mod ¢).

The use of power series in the Hardy-Littlewood method had meant that,
realistically, only additive problems of a positive definite kind could be considered. In
[1929c] Estermann makes a significant simplification and demonstrates in this case the
connection with modular forms. He also shows that

K(g,u,v) < g"*"*(u, q)'", ©))

by making use of an exact formula for the fourth moment of K(q,u,v) when g is
prime. By the way, this foreshadows Mordell’s celebrated use of higher moments [40]
to deal with complete exponential sums with polynomial arguments.

For positive definite quaternary quadratic forms, more precise error estimates are
now available by the use of modular forms, as in Eichler [14], and the
Hardy-Littlewood-Kloosterman method has been largely superseded in this case.

After Vinogradov’s innovative introduction of finite sums to the Hardy-
Littlewood method in the 1930s, it became possible to treat routinely indefinite
problems. Here the Hardy-Littlewood—Kloosterman method still gives the best
estimates currently in the literature.

In [1961], following Weil’s proof [66] of the Riemann Hypothesis for rational
function fields over finite fields, Estermann establishes the, essentially best possible,
estimate

K(g,u,v) < ¢""**(u, q)'". 3)
He then goes on to apply (3) in what is now considered to be the definitive
formulation of Kloosterman’s refinement of the Hardy-Littlewood method, that is,
to the representation of a given integer by an indefinite diagonal quaternary quadratic
form. Estermann characteristically gets to the root of the method, and displays its
essence in a series of lemmas. One wishes to estimate an integral of the form

1=Jlﬂa)da,

where f:R— C is periodic with period 1, by dividing the interval [0,1] into
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OBITUARY 597

subintervals Wi(q, a) associated with the Farey fractions a/q of order @, say, and then
to take advantage of some cancellation in the summation over a in

q
I=Y Y IKga),
g<Q a=1
(a,g)=1
where we have written
l(g,a) = fla)do.
Mg, @)

The problem is that as a/q ranges over the reduced fractions with denominators
q < Q, the distance from a/q to its neighbouring Farey fraction varies appreciably.
Let a,/q, denote the neighbouring fraction to the right, left respectively. Then
normally one takes

Mg, a) = [a_+a a++a].

q9-+9°q,+q

Given a, g, Q, the values of a,, g, are readily deduced from the observations
a,q—q,a=zt1and Q—¢g<gq, < Q. Thus

M(g,a) = [é); %]

- T+

where —r, =+1(modg), Q <r, <Q+q, b, =(x1+r,a)/q. Let

b_ _a b, a]
rooq'r, q)

m(% a) = [

Then in view of the above remarks, one sees that the characteristic function g(8, ¢, a)
of N(g,a) can be put in the form

q

Y. cx(B) e(ha*/q),

h=1

where a* denotes the residue modulo ¢ for which aa* = 1 (mod g) and c¢,(f) is given
by

@) = Y e(—hr/g) whenf>0,

Q <7 < min(Q+q, 1/(gh)

c,(B) = Y e(hr/q) when B < 0.

Q <r < min(Q+q, -1/(gh)
Thus one obtains

q 1/4Q ¢ q a
S otea=[" Saw & s(G+s)enatson
a=1 ~1/0Q h=1 a=1 q
(a,q)=1 (a,q)=1
and

q
¥ lex(B)l < log2g.

h=1

In applications, one may be able to use the arithmetico-geometrico properties of the
Jfunder consideration to take advantage of some cancellation when one averages over
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598 THEODOR ESTERMANN

a. In the study of diagonal quaternary quadratic forms, the presence of the a* leads
naturally to the Kloosterman sum K(g,u,v) defined above. In recent years, the
Kloosterman refinement has been used by Heath-Brown [25], Hooley [28] and Ashton
(1].

Questions as to the order of magnitude for the error term in asymptotic formulae
for the number of representations of a number as the sum or difference of a product
were, and still are, of great importance because of connections with the Riemann zeta
function. Estermann makes a discovery of immense significance, namely that the
error terms can be made to depend on Kloosterman sums.

In [1930a] Estermann investigates the question of the asymptotic formula for the
number D(n) of solutions of

xy+zt =n, (@)

when » is large. This had been considered by Ingham [30], who had obtained the
relatively weak asymptotic formula (6/7%+ o(1)) (}_,, ) log®n. By relating the error
to the Kloosterman sum and applying (2), Estermann shows that

. 2 2
D(n)y=n) (logn) Y. c, Y d*(logd) + E(n),
r=0 §=0 din

with E(n) = O(n"® (logn)®**}_,,d"**). By the way, Estermann acknowledges a
simplifying suggestion by Hecke to use the Hurwitz zeta function rather than
Dirichlet L-functions in the analysis.

In [1931d] Estermann examines the conjugate problem of the number D(n;a) of
solutions of the equation

xy—zt=a (%)

in natural numbers x, y, z, ¢ with zz < n. The problem is only superficially similar to
that solved above. The indefinite nature of the problem prevented at that time an
application of the Hardy-Littlewood—Kloosterman technique. Instead, Estermann
develops a highly ingenious elementary method, in which the error term is expressed
in terms of a function with a simple Fourier expansion. This leads to exponential
sums which can be related to Kloosterman sums directly. Thus for #n large, (2) gives
the asymptotic formula

D(n;a) = cy(a)nlog®n+c,(a)nlogn+cy(ayn+ E(n;a), 6)

where the error term satisfies E(n;a) = O(n*'**). Earlier, Ingham [30] had
obtained the weaker asymptotic formula (c,(a)+ o(1)) nlog?n.

The error term in the asymptotic formula for the fourth moment of the zeta
function on the }-line can be made to depend on an estimate for E(n;a) which is
uniform in both »n and a, and this has been exploited by Atkinson [3] and Heath-
Brown [24].

For a long time, the only improvements in this area came about through better
estimates for Kloosterman sums. For example, Halberstam [15) indicates that (3)
would give E(n) = O(n**log®n).

Quite recently, however, the theory associated with the equations (4) and (5), as
well as the fourth moment of the zeta function on the i-line, has been revolutionised
by the Kuznetsov [36, 37] trace formulae, which transform sums of Kloosterman
sums into bilinear forms of the Fourier coeflicients of cusp forms over the full
modular group. Thus a number of authors have obtained improvements in the error
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OBITUARY 599

terms. Most recently, Motohashi [41] has shown that

E(n;a) = O((n® +na)*** 4 (n® + na)"'*** a®*° + a"* n)

10/7

uniformly for a < n**? and

E(n) = O(n"™*).

See also Ivic [31], notes for Chapter 4, and Chapter 5, for an account of this material,
especially as it relates to the Riemann zeta function.

The above work is complemented by two papers [1929a, 1932a] dealing with sums
of three or more products by an application of the Hardy-Littlewood method. Also,
in [1932b], the method used to deal with (6) is adapted to obtain a similar asymptotic
formula for

n

Y. r(h)yr(h+k),

h=1

where r(m) is the number of representations of m as the sum of two squares.

Sums of squares, quadratic forms

The paper [1959] represents a technical achievement of the highest order. Hardy
[18], Mordell [39] and Ramanujan (Hardy [19, Chapter 9]) had developed an analytic
method for treating the representation of a number as the sum of s squares when s
is odd. For s > 5 the method was comparatively straightforward, but for s = 3 it was
an open question as to whether the method succeeded. The question reduces to the
task of justifying directly an interchange in the order of summation of certain double
sums. That the interchange is in fact valid was an indirect consequence of known
results concerning the representation of numbers as sums of three squares. The
problem of finding a direct justification remained unsolved for forty years despite the
best efforts of Hardy, Mordell and others. In these circumstances, it is hardly
surprising that Estermann’s solution is one of great power and ingenuity.

The appendix to [1931e] contains a neat elementary argument for bounding the
number of solutions in non-negative x and y to ax®+by* = m. There are two basic
situations. When a, b, m are positive, the bound obtained is 2d(m) where d denotes
the divisor function, and when a, m are positive, b is negative, —ab is not a square
and x is restricted by ax? < n, the bound is 2(1 +logn) d(m). The bounds are close to
best possible, for example when a = b = 1 and all the prime factors of m lie in the
residue class 1 modulo 4. What is noteworthy and caused interest at the time is that
the argument makes no use of the theory of quadratic fields. Also, the final
conclusions are surprisingly tidy.

Waring’s problem

In the mid 1930s, Vinogradov (see, in particular, [62]) had introduced some
important refinements to the theory of the Hardy-Littlewood method as applied to
Waring’s problem, and Heilbronn had lectured on this at the British Mathematical
Colloquium in June 1935. Vinogradov was concerned only to obtain an upper bound
for G(k), the smallest s such that every sufficiently large natural number is the sum of
at most s kth powers, when k is large. It was apparent that his ideas had some
relevance for smaller powers of k, and Estermann saw that at once. In [1936a] and
[1937c] he shows that

GA) <17, G(5)<29 Q)
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600 THEODOR ESTERMANN

respectively, the previous best being G(4) < 19 and G(5) < 35 due to Hardy and
Littlewood [22] and James [32] respectively. Davenport and Heilbronn [13] also
pursued in this direction, and their proof of (7) appears immediately after
Estermann’s.

A little later, Davenport made important progress in the theory of Waring’s
problem when k is small. In particular, he showed that G(4) = 16 [10] and G(5) < 23
[11]. More precisely, if G¥(4) is the smallest s such that whenever 1 < r < s, every
sufficiently large natural number in the residue class » modulo 16 is the sum of at most
s biquadrates, then he showed that G*(4) < 14. The last few years have seen some
further advances. In Vaughan [59] and Vaughan and Wooley [60] it is shown that
G*(4) < 12 and G(5) < 17 respectively.

Hua [29] had established the Hardy-Littlewood asymptotic formula

r(n) ~ %%ﬁw-le(n),
e(n)=§l z (S(q. @) e —an/q),
(a,q)=1

q
S(g,a) = ). e(ax*/q),
z=1
for the number of representations r(n) of a large natural number » as the sum of s
kth powers of natural numbers when s > 2*+ 1. This was by an ingenious refinement
of the differencing argument for dealing with exponential sums over polynomials
introduced by Weyl [67] in his seminal paper on uniform distribution. Earlier, Hardy
and Littlewood [20] had required s > (k—2)2%'+ 5, and just prior to Hua’s paper,
Vinogradov [61, 63, 64] had reduced this to asymptotically 6k*logk for large k.
Estermann [1948b] gives a very simple elegant exposition of Hua’s theorem, and it
was from this paper that one of us [Vaughan] learnt the Hardy-Littlewood method.
More recently, the required lower bound has been reduced somewhat, by Vaughan
[57, 58] to 2* for all k > 3, by Heath-Brown [26] to 22* + 1 for all k > 6, by Boklan [2]
to 32* for all k > 6 and by Wooley [68] to approximately 2k*logk for all k > 10.

Sieve theory

The paper [1932d] is Estermann’s only essay on the sieve method. For many years
sieve theory was considered to be a ‘difficult” area. The papers were hard to understand,
technically complicated and gave only partial results. As a result of a visit to
Hamburg by Brun, Rademacher [45] had become interested in Brun’s sieve method
and had shown that every sufficiently large even number is the sum of two products
of seven or fewer primes. It seems certain that Estermann was also present in
Hamburg during this visit. In [1932d] Estermann simplifies the notation and refines
the argument of Rademacher’s paper, and is thereby able to replace the seven by six.

With the advent of new sieve ideas introduced by Selberg (see his collected papers
[51, 52]), a good deal of progress has been made in this area, culminating in the
celebrated theorem of Chen [6] (see also Halberstam and Richert [16] and Ross [50])
that every sufficiently large even number is the sum of a prime and a number having
at most two prime factors.
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OBITUARY 601

Additive problems involving primes

The paper [1937a] is a curious pre-echo of the practically contemporaneous
celebrated work of Vinogradov [65] on sums of three primes. Estermann shows that
every sufficiently large natural number is the sum of two primes and a number having
exactly two prime factors. The exponential sum

LY e(ppo)

P, P
used by Estermann is what is now sometimes called a good ‘Type II” bilinear form.
That is, one can view it as a value of the bilinear form uMv*, where the matrix
M = (a,,) has general entry e(rsa) when r and s lie in intervals I and J respectively,
and general entry 0 otherwise, and the vectors u and v are given the values of the
characteristic functions of the primes in / and J respectively. Then a non-trivial
estimate for the exponential sum can be obtained by observing that the bilinear form
is bounded by |lu|| ||lv]| A¥%, where A is the largest eigenvalue of MM*, and a good
estimate for 4 can be obtained by observing that the largest eigenvalue of a Hermitian
matrix (b,,) is bounded by the maximum over r of }_, |,,|. Of course, in each case the
necessary estimates were obtained by directly applying Cauchy’s inequality to
appropriate sums.

The paper [1938] shows that Estermann was really on the ball at this time.
Vinogradov’s celebrated work [65] is rapidly mastered, and the method applied to
show that the exceptional set E(x), the number of even numbers not exceeding x
which are not the sum of two primes, satisfies for any fixed positive 4

card (E(x)) = O(x(log x)™).

The same theorem was obtained independently by Chudakov [8] and van der Corput
[9]. It was not improved upon until Vaughan [56]. A little later, Montgomery and
Vaughan [38] showed that there was a fixed positive number  such that

card (E(x)) = O(x'™).

This may be compared with the original work of Hardy and Littlewood [21] where,
on the assumption of the Generalised Riemann Hypothesis, the above is obtained for
any < 1.

Siegel zeros and the distribution of primes
One of the most important and tantalising questions in number theory concerns
whether the Dirichlet L-function
L(s, %)

defined for Rs > 0 and y a non-principal Dirichlet character by

L(S’X) = i Xr(lr:) s

n=1

has, when  is real, any real zeros f on (0, 1), and how close any such g can be to 1.
Prior to important work by Siegel [53], the best available general bounds had been
relatively weak. Page [44], in work which is the basis of his PhD thesis written under
Estermann’s supervision, had shown that there is a suitable positive constant ¢ such
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602 THEODOR ESTERMANN

that of all the primitive characters y to moduli g < z, there is at most one for which
L(s, x) has a real zero f satisfying

4

B> 1_logz’

and then y is real and non-principal, and L(s, ) has only one such zero. Thus the main
point of interest is the nature of any possible ‘exceptional’ zero.

Siegel shows that for each positive number ¢ there is a positive number c(¢) such
that for each natural number g and non-principal real character y modulo ¢, any real

zero f of L(s, y) must satisfy
B<1l—c(e)g™.

Siegel’s proof is decidedly difficult as well as requiring a good deal of knowledge of
quadratic number fields. A number of attempts had been made at simplification (see,
for example, Heilbronn [27]), but Estermann was the first to get right to the root of
the matter. In [1948a] he shows that Siegel’s theorem can be obtained by a
straightforward argument based on classical estimates for L-functions and a simple
function-theoretic method of Landau. Estermann’s argument is that now usually
given in expositions, such as Davenport’s monograph [12], and, of course, his own
book on prime number theory [1952] which is a concise and excellent introduction to
the subject.

Other works

As well as his book on prime number theory, which formed the basis of a
postgraduate course given at University College over a number of years, Estermann
also wrote a text on complex numbers and functions [1962d). This makes an excellent
companion to Titchmarsh’s book [55] on the theory of functions. Whereas Titchmarsh
provides an overview of the ideas underlying the subject (but presented in a very
informal fashion), Estermann’s book constitutes an ideal source of concise and
accurate proofs (but without emphasis on motivation). Estermann’s treatment of the
Jordan curve theorem and of analytic continuation (particularly his definition of non-
isolated singularities) are of especial interest.

Estermann was most adept at finding simple elementary proofs. The early paper
[1928a] (see also [1929b]) establishes elementarily an asymptotic formula for
Y or _yd(mv+c), where d is the divisor function, which had been stated without proof
by Ramanujan [47], and in [1931c] Estermann obtains in an elementary way an
asymptotic formula for

L 1/¢Mm),

n<z
(n,l)=1

where ¢ is Euler’s function, which had been obtained earlier by Titchmarsh by
complex analytic methods. The latter sum was of interest as it arises in sieve theory.
The paper [1933a] gives an interesting proof of Kronecker’s theorem and is one
of those selected for their famous Introduction by Hardy and Wright [23, §23.8].
Perhaps the most celebrated short proof is that [1945] giving the sign of the Gauss
sum
q
Z e2m‘22/q.
z=1

This is still the shortest way, with the minimum of knowledge, of establishing the sign
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of the Gauss sum, and has been reproduced in various places, for example in Chowla
[7, Chapter 2].
The paper [1953] is concerned with establishing

lim (u'g(u,a)) = a,
where g(u,a) denotes the number of lattice points in the set {(x,):0 < x <,
ax—a < y < ax}. The proof acknowledges an idea remembered from a lecture of
Hecke 30 years earlier but not traceable in the literature, and again reveals the
influence of Hecke in Estermann’s formative years.

In retirement, Estermann discovered [1975] an elegant proof of Pythagoras’s
theorem which is actually simpler than the original and is sufficiently short to be
included verbatim.

Let S be the set of those natural numbers n for which n+/2 is an integer. If S were
not empty, it would have a least element k, say. Consider the number (1/2— 1) k. Then

W2-1Dkv2=2k—k+/2,

and, since k€ S, both (1/2— 1)k and 2k —k /2 are natural numbers. So, by definition
(v/2—1)keS. But (v/2—1)k < k, contradicting the assumption that k is the least
element of S. Hence S is empty, which means that /2 is irrational.

Estermann’s influence was far wider than a perusal of his published works would
suggest. For example, Kestelman in his classic text [17] on measure theory, including
what was for a long time one of the few accessible accounts in English of the Lebesgue
integral, states that the notes of Estermann’s postgraduate lectures giving an
introduction to Lebesgue integration have been incorporated and form its essential
nucleus. Moreover, although Estermann had only four doctoral students, Page,
Halberstam, Roth and Vaughan, his influence has continued through them and their
students, including Anderson, Chen, Choi, Filaseta, Ghosh, Hall, Nair, Ross,
Woodall and Wooley. Also, the University College Mathematics Department
Library houses a large collection of MSc theses by students who were taken under his
wing.

We take this opportunity to thank all of those who have kindly assisted us in the
preparation of this notice.
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