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Reuben Louis Goodstein was born in London on 15 December 1912, the second
son of Alexander and Sophia Goodstein. His family was of Russian origin and for a
while in the twenties they lived in Danzig. His father was a cigarette manufacturer
with factories in several parts of Europe. A number of these were in Germany and
they were confiscated when the Third Reich came to power, as a consequence of
which the family’s fortunes dropped dramatically after 1933.

Goodstein was educated at St. Paul’s School, London, where he received a
Foundation Scholarship in 1927, a Senior Scholarship in 1928, and the Sir James
Jeans Prize in 1931. This latter award was for an essay on Divergent Series won in
open competition amongst pupils in London schools. In 1931 he entered Magdalene
College, Cambridge with a Major Open Scholarship in mathematics. He obtained
first class marks in the Mathematical Tripos both in Part I in 1932, and in Part II in
1933; his special subject (schedule B) was analysis. From 1933 to 1935 he did research
under Professor J. E. Littlewood in the field of transfinite numbers, and he received
Research Scholarships in 1934 and 1935.

He left Cambridge in 1935 with an M.Sc. to take up an appointment as lecturer
in pure and applied mathematics at the University of Reading, a position he held until
December 1947. Here he lectured on a wide range of mathematical topics, especially
during the Second World War when he was lecturer in charge of applied mathematics
as well as analysis and group theory for honours students. He also taught engineering
apprentices in evening classes and was an examiner for the National Certificate in
Mechanical Engineering. His own research ideas were developing at this time and for
this work he received from the University of London the degrees of Ph.D. in 1946 and
D.Litt. in 1950.

In January 1948 he was appointed Professor of Mathematics at University
College, Leicester (University of Leicester from 1957 onwards); a position he held
until his retirement in September 1977. At Leicester he had a major influence on the
development of that institution from a small college whose students took London
University degrees to a fully fledged university with over 3,000 students. He held
many academic and administrative appointments including Dean of Science from
1954 to 1957 and Pro-Vice-Chancellor from 1966 to 1969. A colleague said of his time
at Leicester that it combined to a rare and happy extent the aesthetic outlook and
severe standards of the pure mathematician with a first hand knowledge of the
compromises and approximations of the practical scientist and administrator. He
suffered a stroke in 1976 which unfortunately put an end to his active research work.
In his last years he lived quietly with his wife Louba and died on 8 March 1985 at the
age of 72.

Apart from his sterling work at Leicester for nearly thirty years, Goodstein made
valuable contributions in two further directions. The first concerns his influence on
the early development of mathematical logic in the United Kingdom. He was the first
person whose main interests were in mathematical logic to hold a chair in a British
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university. In 1958 he expressed the opinion that there would not be another in his
lifetime. Fortunately he was wrong and his influence has had a considerable bearing
on this more healthy state of affairs. Many British mathematical logicians have at
some time either worked with him or been influenced by him. The following did
research under his guidance: R. Beazer (now at Glasgow University), A. Bundy (now
in the Artificial Intelligence department at Edinburgh), R. A. Cunninghame-Green
(now Professor in Operational Research at Birmingham), J. Hooley, R. D. Lee (now
at Essex University), M. H.Lob (now Professor of Mathematical Logic at
Amsterdam), M. T. Partis (now at the University of Western Australia), H. E. Rose
(Bristol), G. Rousseau (now at Leicester University), P. Schofield, K. Stewart
(sometime head of department at Hatfield Polytechnic), and H. P. Williams (sometime
Professor of Business Studies at Southampton). He was a member of the council of
the Association for Symbolic Logic 1965-69 and received an Sc.D. from the University
of Cambridge in 1975 for his work in mathematical logic. He was elected to
membership of the Society in 1944,

His second main contribution concerns his work for the Mathematical
Association. He was an excellent teacher, always able to communicate his enthusiasm
for his subject whether to an elementary extra-mural class or in postgraduate lectures.
This led him to take a great interest in the Association. He was instrumental in the
moves of both the Association’s library to the University of Leicester and the
Association’s headquarters to London Road, Leicester, which has been described as
its first real home. He published over sixty articles and notes in the Mathematical
Gazette of which he was editor from 1956 to 1962, and he was the Association’s
librarian for many years and its president in 1975-76.

Louis Goodstein was an intensely private person with what today might be
considered rather traditional views — for instance, he was not keen on student
participation in university committees. But all his colleagues and students will
remember his quiet courtesy, his willingness to assist with any administrative or
mathematical problem, and his great enthusiasm for his chosen subject.

During the preparation of this obituary I have received considerable assistance
from Roy Davies, Peter Goodstein, Alan Hayes, Georg Kreisel, and an anonymous
compiler of biographical data on the academic staff at Leicester. Their help has been

invaluable and I am most grateful.

Goodstein’s mathematical publications

Goodstein’s published work will be considered under five headings (a) the
restricted ordinal theorem, (b) primitive recursive arithmetic and analysis, (c)
philosophy of mathematics, (d) textbooks, and (¢) Mathematical Association notes.
We shall not consider (d) or (e) in detail. His textbooks were characterised by their
clear style and ingenious methods to elucidate difficult points. He was disappointed
that his mathematical analysis text [1], which presented a novel approach to
elementary differential and integral calculus (the ‘uniform calculus’), did not find
favour. Also, many of his Mathematical Association notes (66 in all) and notes for
other journals gave valuable points for the teaching of mathematics both in school
and in the university.

(a) The restricted ordinal theorem. Although only two papers [26, 40] are
involved and the work was carried out early in his career, this is one of his most
important contributions.
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Given a positive integer n, another integer P,(n) can be constructed as follows.
Write n in radix form with base x (x > 1), that is

n=a.x*+a,_  x*'+...+a,

where 0 < a, < xfor i =0,..., k. Further, write each exponent of x in this expression
in radix form with base x, and continue this process until all exponents, exponents of
exponents, etc., are in radix form. Now define a new integer P,(n) by subtracting 1 and
replacing each occurrence of x in this radix form by x+ 1. So for example if n = 529
and x = 2 then

§29 = 2942041 =221 4020 4 =22 2

d oy g
an P(529) = 341 4 39" i 1.33 x 10%.

The sequence n, P,(n), P,,, P(n), ... is now called a Goodstein sequence. The restricted
ordinal theorem states that for all positive integers n and bases x, the Goodstein

sequence
(n)’ Pz+1 Px(n)’ zt+2 z+1 (I’l)

terminates with zero in a finite number of steps. This result is a number theoretic
analogue of the fact that all strictly decreasing sequences of transfinite ordinals are
finite. Goodstein gave a proof of the restricted ordinal theorem in [26] using
transfinite induction J, for ordinals less than ¢,, and he noted the connection with
Gentzen’s proof (2) of the consistency of arithmetic which also uses 7, . o' His interest
in the finitist programme was clearly developing at this time for he described /, as ‘a
minimum deviation from the previously accepted field of finitist processes’.

The importance of this result only became apparent in 1982 when Kirby and Paris
{3) showed that it provided a straightforward number theoretic property which is
not provable in first order arithmetic. The Kirby-Paris result grew out of the
Paris—Harrington independence results and uses the subrecursive hierarchy as well as
Goodstein’s material. The first two of these topics have only been developed recently
and this explains the delay in the recognition of the significance of Goodstein’s 1944
paper.

(b) Primitive recursive arithmetic and analysis. The full potential of what is now
called primitive recursive arithmetic and analysis was developed over a thirty-year
period in two books [5, 6] and a long series of papers beginning with [30] published
in 1945. Goodstein took an extreme finitist view of mathematics (see (c)) and this led
him to investigate those concepts and theorems from arithmetic and analysis which
can be interpreted primitive recursively. The first discovery (in [30]) enabled the
formalisation of primitive recursive arithmetic to be given as a ‘logic-free equation
calculus’; that is, it is not necessary to include any reference to propositional
connectives or rules in the basic formalisation. (This was also discovered,
independently, by H. B. Curry; see (1>.) Primitive recursive arithmetic has an
axiomatisation in which all propositions are equations of the form 4 = B where 4
and B are primitive recursive functions or terms, and whose rules are standard
substitution and uniqueness (induction) rules. (He attributed the replacement of
induction by uniqueness to Wittgenstein; see [119].) The propositional connectives
(and, or, not, implies) and the bounded quantifiers can be introduced arithmetically.
For example, as only natural numbers are involved,

A=B and C=D
|A,B|+|C,D| =0

6 BLM 20

is equivalent to
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The number theoretic aspects of primitive recursive arithmetic were presented in [S).
It should perhaps be noted that no consideration was given to other systems in what
is now known as the subrecursive hierarchy, although he did consider multiple
recursions in some papers.

From early in his career Goodstein was interested in characterising those parts of
analysis which are acceptable to the finitist. For example, as unbounded quantifiers
cannot be used, such basic results as the Weierstrass theorem (all monotone bounded
sequences have a limit) are unavailable; but it is surprising how much can be
saved.

A primitive recursive real number is a primitive recursive function f: N — Q (that
is, a sequence of rational numbers) such that another primitive recursive function
g:N— N, which is strictly monotonic, can be found to satisfy

n, > n, > g(k) implies |fn,)—flny)| < 107*.

(Note that there are only countably many primitive recursive reals.) Similarly, many
of the basic definitions of analysis are presented as usual except that each existential
quantifier is replaced by an actual primitive recursive function. Goodstein showed
that these restrictions are not as formidable as they appear at first sight; in a long
series of papers he was able to present many analytic topics from his strictly finitist
viewpoint. For example, the theory of the exponential, logarithmic and circular
functions was given in [65), a constructive theory of plane curves was given in [70],
and the recursive transcendence of # was proved in [87]. His book [6] gave a good
introduction to this work. One result that eluded him for many years was the so-called
fundamental theorem of algebra. But finally, in [112], he was able to show that
Gauss’s second proof of this result can be rewritten in finitist form.

(c) Philosophy of mathematics. Over the period of his working life Goodstein
wrote a number of essays on the nature and structure of mathematics. As he stated
in [81], his purpose was to study:

‘...the problem of the nature of the entities of mathematics [which]
continues to be, as it has been for the past hundred years, one of the central
questions in foundation researches. Whether it is considered in its full
generality or in the limited aspect of the existence problem, the question
leads immediately to the heart of the controversy between formalism and
finitism, realism and platonism.’

He expressed doubts about both the formalist and intuitionist (finitist) approaches to
mathematics, and this led him to take up an extreme finitist position which, roughly
speaking, consisted of those parts of mathematics that are accepted in all schools of
thought. He was greatly influenced by Wittgenstein whose lectures he attended in
Cambridge between 1931 and 1935.

With Brouwer he rejected the formalist approach which claims that mathematics
has no ‘meaning’ and should be treated as a ‘game’ played with axioms and rules.
For him axiomatisation was only a tool which could be used to characterise parts of
mathematics. As a consequence, he rejected the tertium non datur when it is used to
assert existence. He often quoted the following example based on Goldbach’s
conjecture. Let P(n) denote the proposition ‘n > 1 and 2xn is a sum of two primes’.
(Note that, for each n, the validity of P(n) can be checked in O(n®) steps.) Now let
p(n) = 0 if, for all m < n, P(m) holds, and let p(n) = 1 if there is an m < n such that
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P(m) is false. The sequence { p(n)} is bounded and monotonic and so, by Weierstrass’s
theorem, it has a limit if we accept the tertium non datur. Clearly this limit is 0 or 1
but the proof gives no method for deciding between these two possibilities. He felt
that this situation was unacceptable, and hence that this, and similar, methods of
proof should be discarded and replaced by more constructive ones. As he wrote in
[81]: ‘It is not whether or not a certain entity exists which is in dispute but how the
terms should be used.” A proof of the existence of an entity T should only be accepted
if it provides, at least in principle, a method for constructing 7. This is an ideal to
which many mathematicians aspire with varying degrees of success.

Goodstein went further than Brouwer and the intuitionists arguing by analogue
that if we reject the tertium non datur

not(¥x) R(x) implies (3x)notR(x),
then we should also reject the complementary implication
not(3x) R(x) implies (Vx)notR(x).

This led him to a complete rejection of quantification theory and thus to the
development of his equation calculus (see (b)). As a consequence he was also forced
to question the acceptability of the standard definition of a recursive function. A
function is recursive (computable) if a machine exists to evaluate it; although, in
general, no bound can be given in advance on the length of the computation. He
argued that the notion of a computable function was not captured by this definition
as it allowed arbitrarily long calculations. Hence he put forward primitive recursive
arithmetic as an acceptable basis for mathematics because it is ‘logic-free’ and all its
functions have simply bounded computations. The main criticism of this approach is
that wide areas of mathematics are completely ignored.

Apart from his negative approach, Goodstein also attempted to justify his
position positively. When asked how to define an entity in mathematics he would
(following Wittgenstein) turn the question around and ask how does it fit into the
structure as a whole; that is, what role does it play? He introduced the natural
numbers by stating [S] that ‘the object of our study is not number itself but the
transformation rules of the number signs’. He used an analogue with the game of
chess. The ‘king’ in chess is not a piece of wood or ivory but an entity that can make
certain moves. So in mathematics the natural numbers obey the rules of primitive
recursive arithmetic. He realised that his description of the properties of the natural
numbers was very incomplete and expressed the hope that in time more of the rules
would be discovered. As he wrote in [19]:

‘It is not a new foundation of mathematics that is needed but a close
examination of its skeletal structure and of its ornamental coverings.
Mathematics is like a city of fine buildings, filled with precious gems, but
buried deep in the mud and sand of a desert. The task of digging up these
treasures is a slow and arduous one; some progress has been made....’
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Publications of R. L. Goodstein
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9.
10.
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. (With T. A. A. BROADBENT) ‘ The convergence of iterative processes’, J. London Math. Soc. 22 (1947)
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