THOMAS HENRY HAVELOCK

P. H. ROBERTS

Thomas Henry Havelock was born in Newcastle upon Tyne on 24 June, 1877,
to Michael Havelock, an engineer, and Elizabeth Barras Havelock (née Bell). Some
signs of his talent became clear during his early education at a private school,
Singleton House, in Newcastle; he was, for example, the only candidate in the entire
country to achieve in the Cambridge University Junior Local Examinations of 1891
a distinction in Botany, a like class being also awarded to his French and his Mathe-
matics papers. After further specialisation in Science, he left Singleton House in
1893 at the age of 16, with ambitions of becoming an apprentice draftsman at the
Neptune Works on Tyneside. It was decided that, while waiting for such a vacancy,
he could profitably fill his time by pursuing his scientific studies at the Durham
College of Science in Newcastle. Here his gifts were swiftly recognised and, encour-
aged by his successes in, and his growing love for, Mathematics and Physics, thoughts
of the shipyard faded: when the once hoped for opening at the Neptune works did
finally occur in March 1894, he declined it. Nevertheless, his early interest in ships
and their motion remained with him throughout his life, and ultimately brought
him international recognition.

In 1894, Havelock was awarded his Associateship in Physical Science and the
following year, at the age of 18, he completed his Honours B.Sc. course, with a
distinction in Physics. He stayed in Newcastle for a further two years of postgraduate
study. In 1897, he entered St. John’s College, Cambridge, as a Pensioner, becoming
a Scholar the following year. On 24 November, 1898, an event occurred which was
to have serious repercussions on his life. Major-General H. H. Kitchener visited
Cambridge to receive the Freedom of the Borough, an honorary LL.D. from the
University, and honorary membership of the University Union Society. In the
evening the undergraduate community celebrated less formally in the market place
by discharging fireworks, and by lighting a huge bonfire which they fed in every
manner their wit could devise. Trees lost boughs, the Pieces their seats, tradesmen
their stalls, householders in Sussex Street their front doors, and Trinity College a
large garden shed, reduced to manageable components by a student-propelled horse-
roller. Earlier in the day, undergraduates had similarly substituted their power for
that of horses in the shafts of the Sirdar’s carriage, and had triumphantly drawn it
and its distinguished occupant through the streets. The excitement of the day was,
however, marred by a dangerous incident. At about 2 o’clock, when Kitchener was
to receive his degree at the Senate House, the cordon of policemen holding back the
dense crowd that had gathered there broke, and ““. . . a general scramble to get
upon the railings ostensibly for a good view of the Sirdar ensued. Some of the bolder
spirits among the undergraduates attempted to climb over . . . (Cambridge Weekly
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222 THOMAS HENRY HAVELOCK

News, 25 November, 1898). Local reports continue: “ Just as the Sirdar’s carriage
was moving off, the mouldings of the railings with a loud crack gave way. Instantly
everyone clinging to them jumped down, and those persons in the near vicinity
quickly moved away. Hardly had the last person reached the ground ere over sixty
yards of the iron palings began to fall. Involuntarily every person within reach
grasped them, with the result that the force was broken. So great was the number of
people underneath that by much exertion they were enabled to safely lower the ponder-
ous weight of iron that threatened to crush them, but a few persons were hurt, one or
two badly. . . . Mr. H. Havelock, of St. John’s, fared very badly. He fell under
the stonework and railings. His injuries are not exactly known, but it is feared that
he was badly crushed.” (Cambridge Express, 26 November, 1898.)

The fears were justified: Havelock’s health was permanently impaired and for
the remainder of his life he was forced to avoid all unnecessary physical exertions,
More immediately, he was unable to keep the Lent Terms of 1899 and 1900, and in
Part I of the Mathematics Tripos in 1900, the year in which J. E. Wright became
Senior Wrangler, he was placed a disappointing fifteenth wrangler (out of 16). But
now his mental power began to wax, perhaps partly because his physical stamina
had waned. In 1901 he alone in Part II of the Tripos was placed in Class 1, Division 2,
with Wright alone above him in Division 1. In 1902 for an essay *“ On the distribu-
tion of energy in the continuous spectrum ™ he shared the Smith’s Prize with Wright
Also in this year he was elected to a three-year Isaac Newton Studentship for an essay
“ On the general theory of wave propagation . In 1903, his college elected him to
a six-year Gregson Fellowship.

In his early career, Havelock developed the mathematical theory of wave motions,
In addition to generalizations to p-dimensions of the work of Poisson, Kirchhoff
and Whittaker, he was one of the first [3]} to clarify the distinctive difference between
the cases of even and odd p. He also [4] presented the work of Coulon, Hadamard,
and Hedrick in a fresh light. These authors had supposed the partial derivatives were
everywhere continuous. Extending a paper by Love (1903), Havelock showed [4]
that, for the simple linear wave equation or for Maxwell’s equations in free space,
some partial derivatives might be allowed to be discontinuous at a wave-front or
other characteristic.

During this period at St. John’s, Havelock gradually drifted away from the study
of mathematical points for their own intrinsic interest, and towards the application
of mathematics, first to optics as the title of his Adam’s Prize essay suggests, and
later to water waves. He was, then, given the title of Special Lecturer in Applied
Mathematics when he returned in 1906 to Armstrong College, as the Durham College
of Science at Newcastle had since 1904 been known, as its first teacher of that subject.
The following year he received its D.Sc. degree (by examination) in preparation for
which he had already obtained an ad eundem M.Sc.

Soon Havelock began to take an interest in the ship wave problem, that is, the

+ Numbers refer to the order of papers in the bibliography below.
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THOMAS HENRY HAVELOCK 223

determination of the surface waves created by a boat in motion. In 1887, Kelvin
(1891, 1905) had proposed a simple model in which the vessel was represented by a
o-function of pressure moving uniformly over an infinitely deep ocean. Apparently
inventing his method of stationary phase for the purpose, he showed that, for a point
lying within two straight lines radiating from the point of disturbance, each making
an angle of sin™! (1/3) &~ 19° 28’ with the path the point had previously described,
the Fourier integral representing the surface elevation of the waves possessed two
points of stationary phase, corresponding to the so-called transverse and diverging
wave systems. Outside this region, the disturbance was exponentially small. For
the two “‘ caustics ”, i.e. the lines mentioned above separating the two regions, the
points of stationary phase merged, and the amplitude of each wave system became
infinite. Kelvin (1905) had recognised the cause of this unrealistic feature, but it
was left to Havelock [11, see also 59] to refine the analysis, and to show that, although
the amplitude of the disturbance on the caustic was large compared to its magni-
tude elsewhere, it was not infinite. (For a recent and deeper discussion, see
Ursell, 1960.) Havelock also generalised Kelvin’s results to include the effects of
surface tension, and finite ocean depth, #. The latter case is quite interesting: both
phase and group velocities of the waves are then bounded by the critical speed
¢ = /(gh), where g is the acceleration due to gravity. Havelock found that, if the
velocity, v, of the ship exceeded ¢, the wave pattern it generated was quite different
from the case v < ¢ (or # —» o). In fact, because of the analogy between waves on
shallow water and two-dimensional compressible flow (¢ then being the speed of
sound), it was later realised that Havelock had created insight into the shock-wave
pattern produced by a body moving at supersonic speeds.

The surface waves generated by a moving ship are of great practical importance,
for they radiate its motion “ to infinity ” and, unless a motor, sail or tow-rope
replenishes this energy, the boat will come to rest, even in the absence of frictional
effects. This phenomenon is known as * wave resistance > (W). Strictly it is not a
well defined concept, since in addition to its direct ‘ skin friction ” (S), viscosity
causes separation of the streamlines from the hull. Nevertheless, since S and W
“scale ” in different ways (S depending on Reynolds number and W on Froude
number, F), this division of the total resistance (T") experienced by a boat in motion
is of fundamental importance in predicting its behaviour from model experiments.
Crude estimates of S can be obtained from Froude’s experiments on thin planks [30],
and it is found that W is an important fraction of T; indeed, for high performance
(e.g. naval) vessels with streamlined hulls, W may exceed S. The magnitude of W
depends crucially on the shape of the hull. It can be reasonably calculated, in a first
approximation, by neglecting viscosity and computing the radiation of energy by
the surface waves in the resulting ““ ideal ” flow. Kelvin’s é-function of pressure is
now too gross a model, and Havelock [14, 29, 34] at first replaced it by an assigned
continuous function of pressure over a finite surface area. The care with which he
attempted [e.g. 17, 18, 25] to relate the resulting theory to observation is exemplary.
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224 THOMAS HENRY HAVELOCK

He succeeded in obtaining a semi-empirical expression for W in terms of three para-
meters dependent on the form of the hull, and it did appear that, when these para-
meters were correctly chosen, the value for W for given F was given with reasonable
accuracy (better than +50%(, according to figures indicated in 18). The primary
difficulty was that of predicting the correct values of the three crucial parameters in
advance of observation, for it was not obvious how the assigned pressure distribution
should be related to the hull form, and this limitation appears to have brought him
increasing disillusionment with the practical usefulness of this method. Nevertheless,
the experience he gained in relating pressure patterns to wave resistance clearly influ-
enced his later thought.

While these developments were taking place, Havelock had not lost his early
interest {1, 2, 6] in optics. His efforts became increasingly focussed on understanding
the scattering of light, particularly at infra-red wavelengths, by matter, particularly
crystalline solids. Rayleigh (1892), in attempting to explain early results by Lorentz
(1880) and Lorenz (1880) on the variation of refractive index, n, with density, p, had
proposed a simple model of a crystal in which spherical particles of one material
were centred on a cubic lattice of another. He computed » as a function of p and
of the wave-length 4, assumed large compared with the interparticle spacing. Havelock
[7] realised that a mechanical stress, either directly applied to the solid or indirectly
through the magnetostrictive action of an applied field, would distort Rayleigh’s
cubical structure and create (artificial) birefringence. He examined the effect by
generalising Rayleigh’s model to a rectangular lattice.

A more fundamental way of examining the interaction of light with matter is to
return to the motion of the individual ions recognising that the displacement of the
charges by the electric field, E, of the wave will affect the polarisation, P, which
therefore depends on the frequency, w, of the wave. In the absence of the wave,
the force opposing the displacement of an ion from its mean position in the lattice
depends, in the simplest treatment, linearly on the vector changes in its separations
from the remaining ions. Under these forces, the lattice possesses normal modes
of oscillation (frequency wg, say). Of these, the optic modes, i.e. those in which
the ions of each species (in a diatomic molecule) move against a similar motion in
the reverse direction by those of the other, are most important. When light of
infra-red frequency, w, passes through such a crystal it sets up a disturbance of this
type (by an Umklapp process), but this becomes, on the present model, infinite in
amplitude as w approaches the resonance frequency w,. This failure is exemplified
by the behaviour of the refractive index, n, which on this theory is

2 2 no®—ng’

S = ®
and which evidently is infinite for w = w,. Here n, is the static refractive index,
good for @ < wy, while n,, (< ng) is the high frequency refractive index valid for
w, € w <€ w,, where o, is a typical electronic frequency beyond which the present
theory totally fails. Again, if 0, < © < w; = w, ny/n,, light incident on the crystal
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THOMAS HENRY HAVELOCK 225

should be totally reflected (n? < 0), which, in fact, is not the case, although the crystal
often exhibits an absorption maximum in that frequency range. Indeed, the linear
equations are not adequate for w ~ w,. The large primary oscillations which then
occur cascade the incident energy, by non-linear interactions which are then important,
down the wavelength spectrum to lattice vibrations of ever smaller scale until the
energy supplied appears as heat. A proper treatment of this process would be as
formidable as the turbulence problem, but a simple ad hoc procedure (akin to the
notion of eddy viscosity in turbulence) is to add, to the equation of motion of an ion,
a frictional force proportional and opposed to its velocity. By this device, the
linearity of the equations is preserved, at the minor expense of a complex refractive
index (1 +ix) n, where nx is known usually as “ the index of extinction . Havelock
made several comparisons [19, 21, 39] of (a), now using complex », with experiments,
and gave a method [21] for extracting x from the data with the minimum of assump-
tions. Many of his results, concerning the location of the maxima of the absorption
and of the reflective power R = |(n—1)/(n+1)|> were in good agreement with
observations (see, for example, his table on p. 498 of [39]). The prevailing view
today seems to be that significant departures from the theory occur in crystals (see,
for example, Born and Huang, 1954, §10). It appears, however, that Havelock’s
own opinion [19, p. 522], that the theory is often adequate to describe dispersion in
gases and liquids, is tenable. Havelock [36] also used the theory leading to (a) to
compute the Verdet constant (oc wdn/dw) of the Faraday effect. Also, as before,
he generalised (a) to the non-isotropic case [10], and applied his results [13, 51] to
birefringence in solids and liquids (e.g. carbon disulphide, rock salt, quartz, etc.).

Scattering created by a diffuse cloud of particles illuminated by a pencil of radia-
tion whose wavelength is long compared with the grain size is known as * Rayleigh
scattering * (Rayleigh, 1871). (The word “ diffuse  implies that only an insignificant
fraction of the beam encounters a grain more than once before leaving the cloud.)
If the particles are optically spherical, the component of linear polarisation of the
incident beam which lies in the plane defined by the incident and emergent rays is
seriously curtailed by the particles. Indeed, when the angle between the rays is a
right-angle, its intensity is zero. When the particles are not optically spherical this
is no longer the case because since the orientation of the particle is random, only a
small percentage will fail to scatter, at least to some extent, in the required direction.
Rayleigh (1918) computed the ratio of the intensity of the resulting (weak) component
of linear polarisation to that of the (strong) component perpendicular to both
incident and emergent rays. This picture was, to some extent, akin to his model
for the lattice mentioned above and, in the same way, Havelock [35] carried out a
generalisation analogous to his development [7] of the Rayleigh theory for a solid,
obtaining the dispersion of each component of polarisation. He applied the theory
to molecular hydrogen. The frequencies with which he was now concerned were in
the ultraviolet and the corresponding motions in the gas were electronic. Each
atom and its surrounding electrons was considered as a resonator whose properties

BULL. 5§ 7
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226 THOMAS HENRY HAVELOCK

(e.g. w,) depended on the direction of polarisation of the incident light. This work
led him on to examine dispersion in various diatomic (H Cl, H Br) and triatomic
(H,0, H,S, CO,, CS,) molecules [45], and later [46] to more complicated molecules
(NH;, CH,, CCl,) of four or five molecules, regarding each as a rigid framework
connecting resonators. (He even considered the mathematician’s molecule XH,,
for some X!) For a five atom molecule such as methane, he could distinguish between
(say) the four H in a square coplanar with the C, and a tetrahedral structure of H
with C at its centre. He did so [47], finding in favour of the latter, so confirming
a view long held by the chemists (Van't Hoff (1874) and Le Bel (1874)). He
also concluded that a methane molecule should be considered as a C* ion surrounded
by four H™ ions rather than a C~ ion surrounded by H*.

As always, Havelock was tireless in attempting to marry theory to experiment
(e.g- [13, 19, 51]), and undoubtedly his success contributed to his election on 7 May,
1914, to a Fellowship of the Royal Society at the early age of 37, the first member of
Armstrong College to be so honoured. The following year a second chair of (applied)
mathematics was created for him.

During World War I, Havelock served as a licutenant in the Officers Training
Corps, and the University Library at Newcastle still contains notes on squad drill
taken by him when he attended a course at Chelsea. His damaged health prevented,
of course, a more active participation in the struggle.

Apart from a teaching text on Mechanics [15), Havelock wrote only one short
book [24]. It expounded the theory of linear dispersive waves in one dimension,
and carefully clarified the pitfalls and paradoxes that can arise when the concepts of
phase velocity, group velocity, wavefront, and energy propagation are too carelessly
used. He showed a gift for the felicitously chosen example (see also [16]), and in this
connection it is worth noting in passing that his solution [38] to an example of adia-
batic invariance (proposed by Levi-Civita, 1912) is still useful in teaching this topical
subject.

Havelock’s activities in theoretical optics were maintained until 1929, but gradu-
ally diminished as his preoccupation with hydrodynamics grew. (Volume 84 of the
Proceedings of the Royal Society contains, interestingly enough, a contribution from
each field.) Perhaps this increasing dedication to naval architecture dates from his
recognition of the potential importance of a neglected paper by J. H. Michell (1898).
Michell postulated a ship whose sides were at a small angle to the vertical and to the
(bow to stern) plane of symmetry. Without introducing any of Havelock’s empirical
parameters (or any others), Michell was able to compute W directly from the plan
form of the ship, and he performed such a calculation in one particular case. After
testing Michell’s theory and applying it to four further models [37], Havelock recast
it in a form in which the disturbance was excited along the symmetry plane by an
equivalent distribution of dipolar source-sinks, the theory of which he had previously
considered [29]. An energetic extension to include discrete and continuous sources
followed [48, 58), and this allowed him to investigate all the major factors relating
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THOMAS HENRY HAVELOCK 227

hull form to wave resistance such as, the effects of finite draught, of straight or hollow
bow lines, of blunt or fine sterns, of parallel middle bodies, of variations of entrance
and beam for constant displacement, of variations in wave profiles with systematic
changes in ship form, and so on [37, 40, 41, 42).

An analytically more tractable example of wave resistance is provided by the
submerged body in motion, and it is not surprising that Havelock studied this theory,
often in parallel with his development of Michell’s method, for which it provided
valuable points of comparison [27, 42, 44, 48, 49, 50, 53, 54, 62, 76, 77, 79, 81].

The form of W as a function of F is often quite complicated, showing maxima
at speeds for which the bow and stern waves interfere. Provided the plan form of the
ship is described by a relatively simple function and provided the Michell theory is
applicable, Havelock found a good agreement between the theoretical and experi-
mental values of W(F), except at small values of F. He attributed [42] this discrepancy
to the separation of the boundary layers from the sides of the hull, a process which
he felt would depress the wave production from the stern below the value predicted
on the earlier ideal theory. He first, therefore, reduced semi-empirically the source
strength representing the wave generating power of the stern [57, 61]. Encouraged
by the improved agreement, he redoubled his efforts, ultimately effecting a consider-
able improvement in the theory [74] which reduced the conflict between the measured
and theoretical W(F) for small F without destroying the satisfactory agreement at
large F. It is probably fair to say, however, that much still remains to be done in
this area.

Many other problems of ship hydrodynamics occupied Havelock’s later years.
He became intrigued by the influence of the weather, first considering [64; see also 81]
the effect on W of free waves generated at infinity. Later he examined the phenomena
of trim [73], sinkage [66], virtual mass and damping [70], drifting force [69], acceler-
ated motion [76], and heaving and pitching [72, 82, 85, 97]. For many of these, a
rational theory is even more difficult than for wave resistance, and the importance
of his contributions has, in some cases, still to be evaluated. It is widely believed,
however, that his insight into these problems will speed their ultimate solution.
Throughout his career in naval architecture his faith in the applicability of linear
theory outside its apparent range of validity was unshaken, and on the whole has
been well vindicated. (His single attempt [28] in non-linear theory concerned the
infinite train of finite amplitude surface waves over an infinitely deep ocean, and
seems to have been overshadowed by a parallel study by Rayleigh (1917).) From
time to time he published valuable progress reports [43, 59, 78] of his theoretical
advances.

In all his work, the physical explanation, the mathematical style, and the com-
parison of theory with available experimental information is admirably thorough and
clear. During much of his active life there were few experiments that bore directly
on his work, and he was very skilful in extracting useful knowledge from unpromising
material. Havelock’s combination of talents was indeed unusual, but was happily
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228 THOMAS HENRY HAVELOCK

fully recognised in his lifetime. He was knighted in 1951 for his work in naval
hydrodynamics. Other honours included (1956) the award of the first William Froude
Gold Medal of the Royal Institution of Naval Architects (RINA), election (1945) to
an Honorary Fellowship of St. John’s College Cambridge, and (1943) the unusual
distinction of Honorary Membership of the RINA; the only scientists who have
been similarly recognised are Kelvin (1892) and Rayleigh (1911). He also became
an associate member of the council of the RINA, and the 1967 volume of its Trans-
actions contains a tribute to him. Durham University conferred an honorary D.C L.
on him in 1958, and Hamburg University an honorary D.Sc. in 1960. In 1947, the
French Academy of Sciences elected him Corresponding Member for geography and
navigation. The Third Symposium of Naval Hydrodynamics, held at the Hague in
1960, dedicated its activities to him. His work was widely appreciated in the United
States. He was the featured guest at a special meeting of The Society of Naval
Architects and Marine Engineers in 1950 (see [78]), and in 1963 the U.S. Office of
Naval Research published a collection of his papers on hydrodynamics (Wigley, 1963).

He maintained an active interest in the running of his University, taking his
positions on Senate, Council, Court and the Boards of Faculty very seriously. When
Jessop retired in 1928, Havelock became the Head of both Pure and Applied Mathe-
matics Departments which were then merged. From 1933 to 1937 he acted as Vice-
Principal of the College and played a leading role in the deliberations leading to its
coalescence in 1937 with the College of Medicine to form King’s College (of which
he became first sub-Rector) in a newly reorganised University of Durham. In
addition to these numerous administrative chores and to regular teaching and research
in his department, Havelock became in 1943 for three years Honorary Acting Head
of the Department of Naval Architecture in succession to Dr. F. H. Todd, who had
been seconded from the National Physical Laboratory to the department after
Westcott Abell’s retirement in 1941.  Although Havelock too reached retiring age
in 1942, he was invited to remain on the staff for a further three years, and even after
1945 he continued to give special lectures on ship hydrodynamics to Honours students
of Naval Architecture.

Although, perhaps because of his early injury, Havelock was ever shy and retiring,
he was not a recluse, and as a young man was not above the occasional game of
billiards. His interest in music was lifelong. He is said to have run the Mathematics
Department at Néwcastle with unobtrusive efficiency, and with a sympathetic under-
standing of his students and younger colleagues. As a mathematician he clearly
enjoyed his mastery of nineteenth century analysis. Dr. Mitchell of the department
recalls a colloquium given by Havelock in which the argument had apparently reached
an unsuperable hurdle, * but,” said Havelock triumphantly, * recalling a result
given on page N of Watson . . .”! Despite this technical expertise, students of
naval architecture found him, as Dr. Muckle remembers, ““ a very great teacher of
what to us engineers was very difficult mathematics ”. Dr. Townsin of the same
department who also as a student received lectures from Havelock recalls him “ as
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THOMAS HENRY HAVELOCK 229

a kindly person, tolerant of youth, and as an outstanding teacher lucid in exposition
and an authority without doubt; yet withall a man of humility. He was an inspiring
academic and an example of what I think we might all strive for. He would have
been a good model for us even if he had not such a high international academic status. ™
His colleagues in both departments clearly regarded him with great awe and affection,
although perhaps the former a little outweighed the latter, for it is otherwise remark-
able that, apart from the elementary text-book on mechanics [15] already mentioned,
none of his work was co-authored. His over-eighty research papers, published mainly
by the Royal Society in their Proceedings, were all solo efforts.

Although Havelock’s manner was quiet, he was a shrewd judge of human nature,
on which his commentary was often humorous, occasionally pungent, but never
malicious. As a University Statesman his influence was almost invariably beneficial,
and this was recognised when, after King’s College became in 1963 the University of
Newcastle upon Tyne, it was decided in 1968 to name a new Hall of Residence after
him. Havelock did not marry; he lived with a sister to whose devoted care his
longevity must have been due, and who survived his death on 1 August, 1968, by
only a few weeks.

References

Born, M. and Huang, K., Dynamical theory of crystal lattices (Oxford: Clarendon Press, 1954).

Kelvin, Lord (W. Thomson), Popular lectures and addresses, 3, 482 (London: Macmillan, 1891).

, Proc. Roy. Soc. Edinburgh, 25 (1905), 1060-1084.

Le Bel, J. A., Bull. Soc. Chim., 22 (1874), 337.

Levi-Civita, T., Proc. Fifth Int. Congr. Math., 1 (1912), 217-220 (appendix to paper by J. J. Larmor).

Lorentz, H. A., Wied. Ann., 9 (1880), 641.

Lorenz, L., Wied. Ann., 11 (1880), 70.

Love, A. E. H., Proc. London Math. Soc. (2), 1 (1903), 37-62.

Michell, J. H., Phil. Mag. (5), 45 (1898), 106-123.

Rayleigh, Lord (J. W. Strutt), Philos. Mag. (4), 41 (1871), 107-120, 274-279; (Scientific Papers,
1, 87-103).

————, Philos. Mag. (4), 41 (1871), 447-454; (Scientific Papers, 1, 104-110).

, Philos. Mag. (5), 34 (1892), 481-502; (Scientific Papers, 4, 19-38).

“——, Philos. Mag. (6), 33 (1917), 381-389; (Scientific Papers, 6, 478-491).

, Philos. Mag. (6), 35 (1918), 373-381; (Scientific Papers, 6, 540-546).

Ursell, F., J. Fluid Mech., 8 (1960), 418-431.

Van’t Hoff, J. H., Arch. Néer, 9 (1874), 445.

Wigley, C. (Ed.), The collected papers of Sir Thomas Havelock on hydrodynamics (U.S. Office of
Naval Research Publ. ONR/ACR-103, 1963).

Bibliography

1. “ On the continuous spectrum,” Proc. Cambridge Philos. Soc., 12 (1903), 175-178.

2. “ On the pressure of radiation,” Philos. Mag. (6), 6 (1903), 156-165.

3. “ The mathematical analysis of wave propagation in isotropic space of p dimensions,” Proc.
London Math. Soc. (2), 2 (1904), 122-137.

4. * Wave fronts considered as the characteristics of partial differential equations,” Proc. London
Math. Soc. (2), 2 (1904), 297-315.

a ‘C '0L6T ‘02T2Z69YT

wouy

IPUCO PUE SULS L U} 395 *[SZ0Z/0T/0E ] UO ARAGITAUIUO /51 ‘S0UBIBIXE 9120 PUE UIEOH 10§ 3INJISUI FRUOTIEN “ZOIN Ad T22 2 ZAWIG/ZTTT OT/I0p/Lo0 oI

ol

L

965U901 SUOLLILIOD 9B 3|Geo1 dde 5 A PaUBAOB 212 SIPILE YO B8N J0 SN 10§ AIRIqIT BUIIUO /B UO (SUONIpU



230 THOMAS HENRY HAVELOCK

5.

10.

11.

12.

13.
14.

15.
16.

17.

18.

19.

20.

21.

22.

23.
24
25.

26.
27.

29.

30.
31.
32,

33.

3s.

36.
37

* Surfaces of discontinuity in a rotationally elastic medium,” Philos. Mag. (6), 10 (1905),
603-613.

. ‘*“ The pressure of radiation on a clear glass vane,” Nature, 72 (1905), 269.
. *“ Artificial double refraction due to aeolotropic distribution,” Proc. Roy. Soc. A, 77 (1906),

170-182.

., * The electrical theory of mass,” Proc. Univ. Durham Phil. Soc., 3 (1907), 15-20.

“ The electric or magnetic polarisation of a thin cylinder by a uniform field of force,” Proc.
Roy. Soc. A, 719 (1907), 31-42.

* The dispersion of double refraction in relation to crystal structure,” Proc. Roy. Soc. A, 80
(1907), 28-42,

* The propagation of groups of waves in dispersive media, with application to waves on water
produced by a travelling disturbance,” Proc. Roy. Soc. A, 81 (1908), 398-430.

“ On certain Bessel integrals and the coefficients of mutual induction of co-axial coils,” Philos.
Mag. (6), 15 (1908), 332-345.
*“ The dispersion of electric double refraction,” Phys. Rev. (1), 28 (1909), 136-139.

* The wave making resistance of ships: a theoretical and practical analysis,” Proc. Roy. Soc. A,
82 (1909), 276-300.

Elementary mechanics (with C. M. Jessop), viii+ 277 pages (Bell, 1909).

*“ On the instantaneous propagation of a disturbance in a dispersive medium,”’ Philos. Mag. (6),
19 (1910), 160-168.

 Ship resistance; a numerical analysis of the distribution of effective horse-power,” Proc. Univ.
Durham Phil. Soc., 3 (1910), 215-224.

“ The wave-making resistance of ships: a study of certain series of model experiments,” Proc-
Roy. Soc. A, 84 (1910), 197-208.

“ Optical dispersion: an analysis of its actual dependence upon physical conditions,” Proc.
Roy. Soc. A, 84 (1910), 492-523.

* The displacement of the particles in a case of fluid motion,” Proc. Univ. Durham Phil. Soc.,
4 (1911), 62-79.

* Optical dispersion: a comparison of the maxima of absorption and selective reflection for
certain substances,”” Proc. Roy. Soc. A, 86 (1911), 1-14.

‘ The influence of the solvent on the position of absorption bands in solutions,” Proc. Roy.
Soc. A, 86 (1911), 15-20.

*“ The pressure displacement of spectral lines,” Astrophys. J., 35 (1912), 304-314.
* The propagation of disturbances in a dispersive medium,” Cambridge Math. Tract No. 17, 1914,

* Ship resistance: the wave-making properties of certain travelling pressure disturbances,”
Proc. Roy. Soc. A, 89 (1914), 489-499.

* The initial wave resistance of a moving surface pressure,” Proc. Roy. Soc. A, 93 (1917), 240-253.

““ Some cases of wave motion due to a submerged obstacle,” Proc. Roy. Soc. A, 93 (1917),
520-532.

. ““ Periodic irrotational wave of finite height,” Proc. Roy. Soc. A, 95 (1918), 38-51.

‘“ Wave resistance: some cases of three-dimensional fluid motion,” Proc. Roy. Soc. 4, 95 (1919),
354-365.

* Turbulent fluid motion and skin friction,” Trans. Inst. Nav. Arch., 62 (1920), 175-184.

‘“ The stability of fluid motion,” Proc. Roy. Soc. A, 98 (1921), 428-437.

“ The solution of an integral equation occurring in certain problems of viscous fluid motion,”
Philos. Mag. (6), 42 (1921), 620-628.

“ On the decay of oscillation of a solid body in a viscous fluid,” Philos. Mag. (6), 42 (1921),
628-634.

. * The effect of shallow water on wave resistance,” Proc. Roy. Soc. A, 100 (1922), 499-505.

* Dispersion formulae and the polarisation of scattered light. Applications to hydrogen,”
Proc. Roy. Soc. A, 101 (1922), 154-164.

‘“ Magnetic rotary dispersion in gases,” Philos. Mag. (6), 45 (1923), 560-576.

* Studies in wave resistance; influence of the form of the water-plane section of the ship,”
Proc. Roy. Soc. A, 103 (1923), 571-585.

a ‘C '0L6T ‘02T2Z69YT

wouy

IPUOD PU. SR L 3L 89S *[520Z/0T/0€] U ARiq118UIIUO 43I ‘20UB|[20XT 8180 PUE LRESH JoJaimiisu| UOTEN ‘3DIN Ad T22'ZZ/SWIA/ZTTT OT/I0pAU0D™ A | N

ol

L

965U901 SUOLLILIOD 9B 3|Geo1 dde 5 A PaUBAOB 212 SIPILE YO B8N J0 SN 10§ AIRIqIT BUIIUO /B UO (SUONIpU



38.

39,

40.

41.
42.
43.

4s.
46.
47.
48.
49.
50.

51.
52.
53.
54.
5S.

56.
57.

S8.
59.

61.
62.
63.

65.

66.

67.
68.
69
70.

B

.

72.
73.
74.

75.

THOMAS HENRY HAVELOCK 231

“ Some dynamical illustrations of the pressure of radiation and of adiabatic invariance,” Philos.
Mag. (6), 47 (1924), 754-771.

 Optical dispersion and selective reflection with application to infra-red natural frequencies,”
Proc. Roy. Soc. A, 105 (1924), 488-499.

“ Studies in wave resistance: the effect of parallel middle body,” Proc. Roy. Soc. 4, 108 (1925),
77-92.

““ Wave resistance: the effect of varying draught,” Proc. Roy. Soc. A, 108 (1925), 582-591.
“ Wave resistance: some cases of unsymmetrical forms,” Proc. Roy. Soc. A, 110 (1926), 233-241.

‘ Some aspects of the theory of ship waves and wave resistance,” Trans. N.E. Coast Inst. Engrs.
Shipbrs., 42 (1926), 71-86.

. “ The method of images in some problems of surface waves,” Proc. Roy. Soc. A, 115 (1927),

268-280.
“ Tonic refractivity and the scattering of light by gases,” Philos. Mag. (7), 3 (1927), 158-176.
‘ The refractivity of some anisotropic molecules,” Philos. Mag. (7), 3 (1927), 433-448.
*“ The dispersion of methane,” Philos. Mag. (7), 4 (1927), 721-725.
“ Wave resistance,” Proc. Roy. Soc. A, 118 (1928), 24-33.
* The wave pattern of a doublet in a stream,” Proc. Roy. Soc. A, 121 (1928), 515-523.

* The vertical force on a cylinder submerged in a uniform stream,” Proc. Roy. Soc. 4, 122 (1929),
387-393.

“ The dispersion of double refraction in quartz,” Proc. Roy. Soc. A, 124 (1929), 46-49.

‘ Forced surface waves on water,” Philos. Mag. (7), 8 (1929), 569-576.

*“ The wave resistance of a spheroid,”” Proc. Roy. Soc. A, 131 (1931), 275-285.

*“ The wave resistance of an ellipsoid,” Proc. Roy. Soc. A, 132 (1931), 480-486.

*“ The stability of motion of rectilinear vortices in ring formation,”” Philos. Mag. (7), 11 (1931),
617-633.

“ Ship waves: the calculation of wave profiles,” Proc. Roy. Soc. A, 135 (1932), 1-13.

“ Ship waves: their variation with certain systematic changes of form,” Proc. Roy. Soc. 4, 136
(1932), 465-471.

*“ The theory of wave resistance,”” Proc. Roy. Soc. A, 138 (1932), 339-348.
“ Wave patterns and wave resistance,”” Trans. Inst. Nav. Arch., 76 (1934), 430-443.

. “ The calculation of wave resistance,”” Proc. Roy. Soc. A, 144 (1934), 514-521.

““ Ship waves: the relative efficiency of bow and stern,” Proc. Roy. Soc. A, 148 (1935), 417-426.
“ Wave resistance: the mutual action of two bodies,” Proc. Roy. Soc. 4, 155 (1936), 460-471.

*“ The forces on a circular cylinder submerged in a uniform stream,” Proc. Roy. Soc. A, 157
(1936), 526-534.

. “ The resistance of a ship among waves,” Proc. Roy. Soc. A, 161 (1937), 299-308.

““ The lift and moment on a flat plate in a stream of finite width,”” Proc. Roy. Soc. A, 166 (1938),
178-196.

““ Note on the surface sinkage of a ship at low speed,” Zeit. fiir Ang. Math. Mech., 19 (1939),
202-205.

‘“ Waves produced by the rolling of a ship,” Philos. Mag. (7), 29 (1940), 407-414.
‘“ The pressure of water waves upon a fixed obstacle,” Proc. Roy. Soc. A, 175 (1940), 409-421.
“ The drifting force on a ship among waves,” Philos. Mag. (7), 33 (1942), 467475.

‘“ The damping of the heaving and pitching motion of a ship,” Philos. Mag. (7), 33 (1942),
666-673.

*“ The approximate calculation of wave resistance at high speeds,” Trans. N.E. Coast Inst. Engrs.
Shipbrs., 60 (1943), 47-58.

*“ Notes on the theory of heaving and pitching,” Trans. Inst. Nav. Arch., 87 (1945), 109-116.

‘“ Some calculations of ship trim at high speeds,” Intl. Cong. App. Mech., (Paris, 1946).

‘ Calculations illustrating the effect of boundary layer on wave resistance,” Trans. Inst. Nav.
Arch., 90 (1948), 259-266.

*“ The wave resistance of a cylinder started from rest,” Quart. J. Mech. App. Math., 2 (1949),
325-334,

a ‘C '0L6T ‘02T2Z69YT

wouy

IPUOD PU. SR L 3L 89S *[520Z/0T/0€] U ARiq118UIIUO 43I ‘20UB|[20XT 8180 PUE LRESH JoJaimiisu| UOTEN ‘3DIN Ad T22'ZZ/SWIA/ZTTT OT/I0pAU0D™ A | N

ol

L

965U901 SUOLLILIOD 9B 3|Geo1 dde 5 A PaUBAOB 212 SIPILE YO B8N J0 SN 10§ AIRIqIT BUIIUO /B UO (SUONIpU



232

76.
71.
78.
79.
80.
81.
82.
83.

84.
85.

86.

87.

THOMAS HENRY HAVELOCK

* The resistance of a submerged cylinder in accelerated motion,” Quart. J. Mech. Appl. Math.,
2 (1949), 419-427.

*“ The forces on a submerged spheroid moving in a circular path,” Proc. Roy. Soc. A4, 201 (1950),
297-305.

“ Wave resistance theory and its application to ship problems,” Trans. Soc. Nav. Arch. Mar. Eng.,
59 (1951), 13-24.

““ The moment on a submerged solid of revolution moving horizontally,” Quart. J. Mech. Appl.
Math., 5 (1952), 129-136.

* Ship vibrations: the virtual inertia of a spheroid in shallow water,” Trans. Inst. Nav. Arch.,
95 (1952), 1-9.

* The7 7fogcz;es on a submerged body moving under waves,” Trans. Inst. Nav. Arch., 97 (1954),

‘“ The coupling of heave and pitch due to speed of advance,” Trans. Inst. Nav. Arch., 98 (1955),
464-468.

*“ Waves due to a floating sphere making heaving oscillations,” Proc. Roy. Soc. A, 231 (1955),
1-7.

‘ A note on form friction and tank boundary effect,” Schiffstechnik, 3 (1956), 6-7.

*“ The damping of heave and pitch: a comparison of two-dimensional and three-dimensional
calculations,” Trans. Inst. Nav. Arch., 98 (1956), 464-469.

‘“ A note on wave resistance theory: transverse and diverging waves,” Schiffstechnik, 4 (1957),
64-65.

*“ The influence of speed of advance upon the damping of heave and pitch,” Trans. Inst. Nav.
Arch., 100 (1958), 131-135.

a ‘C '0L6T ‘02T2Z69YT

wouy

IpUOD pUe SLLB | 81385 *[5202/0T/08] Uo AkiqiTauliuo AB|1M ‘90US|OXT 8120 PUe Ul esH Joj aiminsul euolieN ‘301N Aq 1222 ZAWIA/ZTTT OT/I0pA00 A8 I

ol

L

965U901 SUOLLILIOD 9B 3|Geo1 dde 5 A PaUBAOB 212 SIPILE YO B8N J0 SN 10§ AIRIqIT BUIIUO /B UO (SUONIpU



