
PERCY JOHN HEAWOOD
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Percy John Heawood died in Durham on 24 January, 1955, at the
age of 93. He played a decisive part in re-establishing in their proper
places the four colour problem and Durham Castle, which may be regarded
as the two great and fitting monuments of his noteworthy activities as a
mathematician and as an administrator.

P. J. Heawood was born in September 1861 at Newport, Shropshire,
the eldest of four sons of the Reverend J. R. Heawood, who was rector of
a church near Ipswich. He was educated at Queen Elizabeth's Grammar
School, in Ipswich. In 1880 he went up to Oxford with an Open Scholar-
ship from Exeter College. He stayed in Oxford until 1887, when he
became lecturer in mathematics at the Durham Colleges.

In Heawood's time the most distinguished mathematicians at Oxford
were Henry Smith, Savilian Professor of Geometry, who died in 1883, and
his successor, J. J. Sylvester. Mathematical teaching was by lectures and
tutorials. The lectures were given by the professors and lecturers, some
of the latter taught on a college basis, others on an inter-collegiate basis.
Each student was assigned to a tutor (i.e. supervisor of studies or coach),
with whom he had a private hour at least once a week. The function of
tutor was performed by mathematics professors and lecturers, for example,
Henry Smith was Tutor of Balliol College as well as Savilian Professor.

The following account of the attitude on teaching, which prevailed
among the mathematicians at Oxford at the time when Heawood studied
there, is taken from Professor E. B. Elliott's address delivered at the
200th meeting of the Oxford Mathematical and Physical Society, on
16 May, 1925 :—

" We thought, too exclusively probably, but I still hold soundly, that
our great business as teachers in a University was to educate, to assist
young men, many of whom had no too strong a sense of responsibility,
or care about the application of what mind they possessed, to learn how
to make the best use of their powers. Those of mediocre capacity were
as important to us, or we thought they ought to be, as the clever ones who
gave us the greatest intellectual satisfaction. To encourage effort, and
secure concentration of powers, we thought all-important. We should
have repudiated indignantly the notion, now not unpopular, that high
honours in the Mathematical Schools should be reserved for those who
prove inclination and the right sort of capacity to extend mathematical
knowledge, and were in no hurry as teachers to encourage specialisation.
What we said was, ' Slur nothing. Be precise. Be thorough. Face little
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264 PERCY JOHN HEAWOOD

difficulties, and rest not till you conquer them.' The man who can turn
from one problem to another, from prevailing once to grappling again,
is qualifying for success in the battle of life. . . .

" Accordingly we laid great stress on elements, tried to secure adequate
attention to a sufficient variety of subjects in the common ground of
mathematicians, to Algebra, Geometry, the older analysis—we had not
heard of the newer—the Mechanics of Solids and Fluids, Optics and
Astronomy, fixing the range examined on in a subject (except perhaps in
Geometry) rather low, but demanding a thoroughness of knowledge
which was decidedly high. . . .

"Bu t how about original work . . .? It had not yet occurred to
people that systematic training for it was possible. Even the Senior
Mathematical Scholarship was not given for an original or learned disserta-
tion. . . . When we had graduated, Henry Smith and others saw that
we were elected into the London Mathematical Society, and our ambition
was stimulated, but it was ambition for the future, and we needed more
encouragement in the present. The little things which were beginning to
accumulate in our note-books could not compare with the massive works
in the Proceedings, and if we ever attended a meeting we were rather
dismayed than otherwise by the unintelligibility of papers as read."

There were two honours examinations in mathematics: " Modera-
tions ", taken at the end of a student's first year, and " Greats " or
" Finals ", taken at the end of his third year, and qualifying him for the
B.A. degree. There was no public order of merit for these examinations.
The " blue ribbon " was conferred by the Junior Mathematical Scholar-
ship, awarded to the winner in a written examination held in January
which the students could attempt in their first and in their second year.
Students in their fourth year could compete for the Senior Mathematical
Scholarship in a written examination held in January. There was also
a periodic graduate award on an astronomical subject, called the Lady
Herschell's Prize.

Heawood's mathematical career at Oxford was extremely distin-
guished. He obtained a First Class in Mathematical Moderations in 1881
and a First Class in Mathematical Finals in 1883. He was awarded the
Junior Mathematical Scholarship of the University in 1882 and the Senior
Mathematical Scholarship of the University and the Lady Herschell's
Prize in 1886. In addition, he obtained a Second Class in Classics in 1885.
He became a B.A. in 1883 and an M.A. in 1887. He once told his colleague
Professor J. R. Burchnall that he belonged to the school of Henry Smith
at its height in his undergraduate days. Henry Smith was the leading
mathematician at Oxford until his death in February 1883. His lectures
on Modern Geometry were widely attended. He and Esson, C. J. Faulkner
and C. J. C. Price, were the first to coordinate their lectures on an inter-
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PERCY JOHN HEAWOOD 265

collegiate basis; their association was called the Mathematical Combina-
tion, and Heawood's remark to Professor Burchnall suggests that he was
probably enrolled with the Combination.

In 1887 Heawood became Lecturer in Mathematics at the Durham
Colleges—later Durham University—where at that time R. A. Sampson
(afterwards Astronomer Royal for Scotland) was Professor. He remained
in Durham for the rest of his life. The University was until 1937 con-
trolled by the Dean and Chapter of Durham Cathedral. This status was
probably congenial to Heawood from the start: he was a devout Anglican
layman, an excellent Hebrew scholar, and well versed in classics and
theology.

In 1890 he published his celebrated paper " Map colour theorems ",
which is undoubtedly the greatest contribution so far made to the mathe-
matical theory of the colouring of maps. How he was led to the subject
is not known.

In the same year he married Christiana, daughter of Canon H. B.
Tristram, of Durham, a distinguished naturalist and traveller. She was
a lady of great character and evangelical piety. The marriage was a long
and happy one.

Heawood was appointed to the Chair of Mathematics at Durham in
1911; he retired in 1939 at the age of 78. By the time of his appointment
he had already shown great capacity and liking for administrative and
committee work, and he had an established reputation as a mathematician.

His later career at Durham University was spectacularly prominent.
He occupied in turn a number of responsible administrative posts,
including those of Censor and of Proctor, and finally of Vice-Chancellor
from 1926 till 1928. He also became the first chairman of the University
of Durham Schools Examination Board, and remained for many years.
He maintained a lively interest in the cultivation of good relations between
schools and the University, often taking long journeys to attend
Governors' meetings.

Outside the University his strongest loyalty was for Durham, and here
Durham Castle is his great memorial. The historically important castle
dates back at least as far as the 10th century, from the 11th century until
1837 it was one of the palaces of the Bishops of Durham, and today it is
one of the great historic monuments of England. In 1928 it was discovered
that the foundations of the castle were insecure and the castle was
gradually sliding down the cliff. The University exhausted all its avail-
able means, and despaired of raising the vastly greater sums needed to
save the castle from destruction. Heawood alone would not give up. He
assumed the secretaryship of the Durham Castle Restoration Fund, and
attempted to collect the enormous amounts needed, toiling on year after
year practically single-handed. His heroic efforts were finally crowned
with success, the newly founded Pilgrim Trust came to the rescue with a
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266 PERCY JOHN HEAWOOD

very large grant, and after prolonged works the castle was permanently
rescued. Heawood's devotion was rewarded by an Honorary D.C.L.
conferred by Durham University in 1931, and his success was recognised
by the award of the O.B.E. in 1939.

Heawood's religious devotion and Greek and Hebrew scholarship
found their expression in numerous articles contributed to a number of
theological journals. The last one appeared in 1951, when he was 90, in
an American journal: its subject was the date of the Last Supper. Like
his wife, he was interested in the work of the Church Missionary Society;
he acted as Diocesan Treasurer almost until his death, and for many
years he represented the diocese as a layman on the Church of England
Assembly.

In his appearance, manners and habits of thought, Heawood was an
extravagantly unusual man. He had an immense moustache and a
meagre, slightly stooping figure. He usually wore an Inverness cape of
strange pattern and manifest antiquity, and carried an ancient handbag.
His walk was delicate and hasty, and he was often accompanied by a dog,
which was admitted to his lectures. He had a very loud voice singularly
lacking in modulation; he detested and was impossible on the telephone.
But strangers who presumed that the inner man corresponded to outward
appearances were often rudely shocked. For example, during his early
days at Durham while he was teaching a class of divinity students mathe-
matics, one of them asked " You have taught us to cast out the nines, can
you cast out devils? " "Yes, I can," replied Heawood, "get out at
once ! " He set his watch once a year, on Christmas Day. " No, it's not
two hours fast, it's ten hours slow." All his life was organised on equally
logical but fantastic lines. He was a precisionist even in small matters.
Soon after he appeared in Durham legends began to collect and cluster
thick around him. He did not cultivate his reputation as a character,
he just went his way and did not care whether people laughed. His
transparent sincerity, piety and goodness of heart, and his eccentricity and
extraordinary blend of naivite" and shrewdness secured for him not only
the fascinated interest, but also the regard and respect of his colleagues.
He was acute and competent in the transaction of business, and conserva-
tive in his views and politics. He had some prejudices and limitations of
sympathy where he was not open to conviction, but he was fair-minded
in his judgment and tolerant of others.

There was one professor of and two lecturers in mathematics at
Durham up to 1939. The professor was primus inter pares, and Heawood
regarded himself as such. His lectures were considered good, the chief
criticism being that he paid much more attention to what was on the
blackboard than to his audience. Right up to his retirement from his
professorship in 1939 at the age of 78 he took his full share in the teaching.

The University was founded and, until 1937, controlled by the Dean
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PERCY JOHN HEAWOOD 267

and Chapter of Durham Cathedral, and the main tension in the University
during the period 1900-1937 was between those who wished to maintain
the ecclesiastical ethos and those who wished to make the University more
modern. Heawood, with his strong religious connections, was generally
numbered with the former. He was, for instance, reluctant to make the
initial application for a Government grant in 1921, and was unsympathetic
to the introduction of science teaching a little later. He did, of course,
loyally accept the changes. It seems that while on everyday matters of
administration and in the resolving of difficulties his judgment and advice
eminently sound and wise, and his energy and patience very great, his
attitude to major questions of policy was backward rather than forward
looking.

Towards the end of his long life he was indeed a Nestor in Durham.
He had been teaching there for some years before the oldest member of
the contemporary University Senate was born. He wrote a noteworthy
mathematical paper when almost 90, an astounding achievement. He
conducted correspondence with mathematicians up to 1954, and his fine
intellect remained to the end.

His wife died a few months before him. Their two children had distin-
guished careers as headmaster and headmistress respectively. His son
Geoffrey survives him.

Heawood published papers on the colouring of maps, continued frac-
tions, the theory of approximations, quadratic residues and reciprocity,
the theory of functions and geometry, and he made numerous contribu-
tions to the Mathematical Gazette. His most prominent contributions to
mathematics were those concerned with the colouring of maps; he was
the chief architect of this branch, the central subject of which is the Four
Colour Problem.

In 1852 De Morgan, in a latter to Hamilton, wrote that a student had
noticed, while colouring a political map of England, that using a stock
of four colours the counties of England could be coloured in such a way
that each county had one of the four colours, and no two neighbouring
counties—that is to say counties with a common line of frontier—were
coloured alike; he (De Morgan) was asked whether all maps could be
coloured with four colours in this way, and he thought that they could be
but he was unable to discover a proof. Hamilton replied that this was a
quaternion which he did not wish to work on.

During the decades that followed this four colour problem appears to
have attracted increasing attention among mathematicians. In 1879
Kempe published a paper " On the geographical problem of the four
colours " (American Journal of Mathematics, vol. 2 (1879), pp. 193-200),
which purported to contain a proof of the four-colour theorem. This
proof appears to have been accepted as valid by all concerned until it was
refuted by Heawood in his first paper [1].
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268 PERCY JOHN HEAWOOD

Before going on with the account of Heawood's work on the colouring
of maps it will be helpful to have the following brief explanatory remarks.

1. The term colouring of a map will mean a colouring of the divisions of the
map in which no two divisions with a common line of frontier (neigh-
bouring divisions) have the same colour; two divisions without a
common line of frontier but with one or more common frontier points
may be coloured alike.

2. Heawood and his contemporaries were exclusively concerned with
maps containing only a finite number of divisions. Today we know
that if the four colour theorem is true for all such maps then it is true
also for all maps containing infinitely many divisions. In all that
follows all maps are assumed to contain only a finite number of divisions.

3. The four colour conjecture is true for all maps if it is true for all maps
on the sphere in which all the divisions are simply connected and any
two divisions either meet in one frontier line only or in one frontier
point only or not at all (the reader can easily verify this), such maps
may be called simple.

4. A map need not cover the whole sphere, and all its divisions together
need not form a simply connected region.

Kempe's fallacious proof was in essence as follows : If the answer to
the four colour problem is in the negative then there exists a simple map
on the sphere with the property that five colours are needed for its colour-
ing and that if any one of its divisions is ignored, then the remainder can
be coloured with four colours. Let M denote such a map. It follows from
Euler's equation for polyhedra that any map contains divisions with
fewer than six neighbours; let z denote such a division of M. It follows
at once from the minimal property of M that z has at least four neigh-
bours. Suppose first that z has four neighbours a, 6, c, d, and that they
occur around z in this cyclic order. The divisions of M different from z
can be coloured with four colours, but there is no colouring with four
colours in which two or more of a, b, c, d are coloured alike. Let it be
assumed that in some colouring C of the divisions of M other than z
with four colours, the colours of a, b, c, d are red, blue, green and yellow,
respectively. Consider the map formed by all the red and all the green
divisions; this map covers one or more connected regions, and the
divisions of M comprising such a connected region are called a red-green
Kempe chain with respect to C. If the colours red and green are inter-
changed for the divisions comprising a red-green Kempe chain, and the
colours of all the other divisions are left unchanged, then a new satis-
factory colouring of the divisions of M different from z is obtained. If
red and green are interchanged in the red-green chain to which a belongs
then the colour of c is changed from green to red, for otherwise M could
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PERCY JOHN HEAWOOD 269

be coloured with four colours by giving z the red colour. Therefore
a and c belong to the same red-green chain. This chain and z together
separate 6 from d, therefore 6 and d do not belong to the same blue-yellow
chain. Consequently a four-colouring of M is obtained by interchanging
the colours blue and yellow in the blue-yellow chain to which b belongs
and colouring z blue. But this contradicts the hypothesis that M is not
four-colourable, therefore M contains no division with fewer than five
neighbours. It follows that M contains a division with exactly five
neighbours, z' say. Suppose that z' has the five neighbours a', b', c', d', e'
and that they occur around z' in this cyclic order. The divisions of M
other than z' can be coloured with four colours, but only in such a way
that each of these colours occurs around z' at least once. Hence it may
be assumed that the divisions of M other than z' have been coloured with
four colours so that the colours of a', b', c', d', e' are respectively blue, red,
green, yellow, red. If a' and c' belong to different blue-green chains,
interchanging the colours in either, a' and c' become both green or both
blue, afterwards z' can be coloured blue or green. If a' and c' belong to
the same blue-green chain, see if a' and d' belong to different blue-yellow

It

\ _

g

i,

g

y

/

*

IY

/

y (X

-9 y

y

FIG. 1

 14697750, 1963, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/jlm
s/s1-38.1.263 by U

niversity O
f St A

ndrew
s U

niversity, W
iley O

nline L
ibrary on [28/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



270 PERCY JOHN HEAWOOD

chains; if they do, interchanging the colours in either chain, a' and d'
become both yellow or both blue. If a' and c' belong to the same blue-
green chain, and a' and d' belong to the same blue-yellow chain, the two
chains cut off b' from e', so that the red-yellow chain to which b' belongs
includes neither d' nor e', and the red-green chain to which e' belong -
includes neither b' nor c'. " Thus, interchanging the colours in the reds
yellow chain to which b' belongs, and in the red-green chain to which
e' belongs, b' becomes yellow and e' green, a', c! and d' remaining
unchanged." Afterwards z' can be coloured red, and so M is four-
colourable. This contradiction proves the four colour theorem.

Kempe's proof seems to have been accepted for over ten years ; for
example, Cayley proposed the problem to the London Mathematical
Society in 1878 and did not subsequently raise it again, and Heawood in
the preface of his paper of 1890 wrote : " . . . . The present article does
not profess to give a proof of this original Theorem; in fact its aims are
so far rather destructive than constructive, for it will be shown that
there is a defect in the now apparently recognised proof. . . . " In
order to appreciate this example of Heawood's penetration and ingenuity,
the reader should pause here and try to discover the defect in Kempe's
argument, which is contained in the sentence in quotation marks.

Heawood first explains Kempe's argument and then writes : " But,
unfortunately, it is conceivable that though either transposition would
remove a red, both may not remove both reds. Fig. 1 is an actual exempli-
fication of this possibility, where either transposition prevents the other
from being of any avail, by bringing the red and the other division into
the same chain, so that Mr. Kempe's proof does not hold. . . . "

Besides the four colour problem the following topics were treated in
Heawood's first paper.

1. The five colour theorem. Heawood proved rigorously that any map
drawn on the plane or on the sphere can be coloured with at most five
colours. His proof does not assume that the maps considered are simple.
It goes as follows : Suppose that there exist maps on the plane or on the
sphere which cannot be coloured with five colours. Let M denote one
of them containing a minimal number of divisions : M is not assumed
to be simple. All divisions of M clearly have at least five neighbours,
and it follows from Euler's equation that some have exactly five. Let z
denote a division of M having the divisions a, b, c, d, e as neighbours.
Two neighbours of z can be selected which have no common frontier line,
because it is impossible to draw a map with five divisions each a neighbour
of the other four. Suppose that a and c are not neighbours. Let i/ : ' :

denote the map obtained from M by uniting a, c and z into one division.
By the minimal property of M, M* can be coloured with five colours.
Any five colouring of M* automatically furnishes a five-colouring of the
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PERCY JOHN HEAWOOD 271

divisions of M different from z in which a and c have the same colour.
But z is then adjacent to at most four different colours, therefore M can
be coloured with five colours. This contradiction proves the five colour
theorem.

Heawood's invention of reducing the number of divisions by deleting
separating frontier lines has been applied inter alia by G. D. Birkhoff,
Franklin and Winn. Their work has established the truth of the four
colour theorem for all maps with at most 35 divisions.

2. The number of colours required for maps on higher surfaces.
Heawood proved that for all h ^ 2 any map drawn on any surface of
connectivity h can be coloured with at most [3|-f~iV(24^—23)] colours-
He also showed that a map consisting of seven divisions, each a neighbour
of all the others, can be drawn on the torus (h = 3, see Fig. 2). In the
case of the other surfaces he left open the question whether there exist
maps on them requiring the full number of [3|+|-\/(24&—-23)] colours,
he conjectured that this was the case. It has since been proved (princi-
pally by G. Ringel) that Heawood's guess is correct for unorientable
surfaces for all h except h = 3 (Mobius strip and Klein bottle) and for
orientable surfaces for the majority of values of h. The phrasing of
Heawood's remarks indicates that he may have believed that all the maps
requiring the full number of [Z\-\-\-\/{2^h—23)] colours contain this

FIG. 2
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272 PERCY JOHN HEAWOOD

many mutually neighbouring divisions, and it has since been proved
that this is actually the case for all h except possibly h = 2 and h = 4.

3. The problem of the " colonies ". In actual maps a country sometimes
consists of several detached portions which all have to have the same
colour; the same is the case for a country and its colonies and for seas
and lakes. Heawood proved that if r is the maximum number of detached
portions of a country or an empire, then for h ^ 1 the map drawn on
any surface of connectivity h can be coloured with at most

colours, except possibly when h = r = 1. For h = 1 and r = 2, i.e.
the plane or the sphere and each country consisting of at most two
detached portions, this gives* 12 colours. Heawood discovered the
ingenious example of a map consisting of 12 countries, each in two
portions, which needs 12 colours for its colouring shown in Fig. 3.

" Map-colour theorems " was an epoch-making contribution to the
theory of map colouring and the starting impulse for subsequent investiga-
tions up to the present because it introduced new aspects, namely maps
on the higher surfaces and maps with colonies, and because it settled
many of the new and at first sight more difficult questions, while the
four colour conjecture emerged as the central unsolved problem.

FIG. 3
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PERCY JOHN HEAWOOD 273

" On the four-colour map theorem " [4] is a sequel to " Map-colour
theorem " and is concerned with the four colour problem exclusively.
The maps are supposed to be drawn on a sphere, and it is assumed that
they are simple, and that at most three divisions concur at a point.
If the four colour theorem were true for all such so-called ' standard'
maps then it would be true for all maps because any simple map can be
made standard, if necessary, e.g. by adding hew small circular divisions
where more than three divisions concur, and if the new map can be
coloured with four colours then so can the original map. Most of the
assertions stated in [4] are not actually proved, only made plausible,
but they have since been proved rigorously by other writers, which
indicates that Heawood was in possession of all the necessary proofs
but did not choose to include them.

The following map-colour theorems are stated in [4]:—

1. If each division of a standard map has an even number of neighbours,
then the map can be coloured with three colours.

2. / / the number of neighbours of each division of a standard map is a
multiple of 3, then the map can be coloured with four colours.

Further, each of the following two properties is stated to be a necessary
and sufficient condition for a standard map to be four-colourable :—

I. The frontier lines can be partitioned into three mutually disjoint
classes in such a way that no two in the same class meet at a point.

II. The numbers + 1 , - 1 can be so distributed among the corner points
of the map (points of concourse of three frontier lines or points of

concurrence of three divisions) that each corner point is assigned one
of the two numbers, and around each division the sum of the numbers
assigned to the corner points is a multiple of 3.

I. was first discovered by Tait. Such a partitioning of the frontier
lines is nowadays called a factorisation into three 1-factors. II. was not
known before Heawood's paper. Such distributions of two signs or
numbers among the corner points are nowadays called " Heawood's
congruences ". They have been used in investigations of the four colour
problem with the help of computing machines. Most of the paper is
devoted to pursuing a proof of the four colour theorem along the lines
indicated by 2., I. and II. The problem is ingeniously illuminated from
different directions in this way, but it is of course recognised to remain
unsolved.

Heawood's remaining papers on the four colour problem [8, 9, 10,
11, 12] appeared between 1932 and 1950; during the 35 years between
[4] and [8] he published three papers on other subjects.

It is easily proved that the four colour theorem is true for all maps,
if it is true for all standard maps which cover the sphere completely and

JOUR. 151 T
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274 PEKCY JOHN HEAWOOD

in which each division has at least five neighbours; Heawood calls such
maps " normal ". [8] to [12] are concerned with proving that II. holds
for normal maps; they represent successive steps in this direction made
with great tenacity, inventiveness and penetration.

If the corner points of a map are labelled xv x2, . . , xn then II. is
equivalent to the solution of a system of congruences of the form

xp-\-xq-\-xr-{-... = 0 (mod 3)

in which there is one congruence corresponding to each division—the
variables occurring in it are the corner points adjacent to the division—
with Xij^O (mod 3) for i = 1, ..., n. Each of the variables occurs in
exactly three of the congruences. "But this particular set of con-
gruences is only one of a greatly extended system, differing from the
above only in having on the right 0 or 1 or 2, and not necessarily zero.
Moreover any distribution of + 1 an<i —1 at the corner points of the map
will necessarily correspond to the solution of one such system."

In [8] it is " shown in typical instances, how few are the cases out
of the immense number of such systems related to a given map in which
solution is impossible; and some grounds are shown for believing that,
when there are more than a very limited number of divisions, such
exceptions do not occur at all." For the dodecahedron it is shown that
all but 8 of the 1835 essentially different congruence systems, obtainable
by assigning one of 0, 1, 2 to each division, have solutions. For the
normal map covering the sphere and consisting of two hexagons opposite
to each other, each surrounded by six pentagons, the number of essen-
tially different congruence systems is 68,369, and the number of failures
out of these is shown to be 11. The proportion of failures is shown to
diminish if one of the hexagons in this map is divided into two adjacent
pentagons, and to diminish still further if both the hexagons are so
divided.

In [9] it is proved that if the numbers 1 and 2 are assigned to two
adjacent divisions of a normal map and 0 to all the remaining divisions,
then the system of congruences has no solution with xi f£ 0 (mod 3)
for i = 1, ..., n. The persistence of some of the failures registered in [8]
was thus inevitable. The proof of failure with this assignment is based
on Heawood's famous " doctrine of residuals " developed in this paper.

A closed circuit (closed Jordan curve) made up of frontier lines
divides the map into two parts. " For convenience one of these parts is
spoken of as the outside and the other as the inside of this circuit. Let
one of the values + 1 , —1 be assigned to each corner point of the circuit
(i.e. corner point of the map lying on the circuit). Let mx, ra2, m3, ...
be the amounts (mod 3) contributed to the successive congruence-sums
for divisions adjacent to the circuit on the inside, by the variables
associated with points along its course; nx, n2, n3,... the like for those
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PERCY JOHN HEAWOOD 275

on the outside. Suppose that (either for the m's or the n'&) we have a
sequence of ' digits ', such as 0 1 1 2 1 2 2 2 0 0 1 0 taken cyclically, and
that we ' reduce ' them according to the following rules :

(a) a ' 2 ' may be cancelled and 1 added to the adjacent digits;

(b) a ' 1 ' may be cancelled and 2 added to the adjacent digits;

(c) a ' 0 ' and the two digits adjacent to it may be replaced by their
sum.
[3 is, of course, to be replaced by 0 and 4 by 1, in anj' such result.]

" After (a) or (b) the sequence will include one digit fewer, after (c)
two digits fewer; but after any of the three, their sum will be congruent
to the same value as before, i.e., in the case with which we propose to deal,
congruent to zero. After a succession of such steps, then, we necessarily
arrive finally either at two digits 0 0 or 2 1 or 1 2 or at a single digit 0.
We regard the essential alternatives for ' residuals' as being 0 0 on the
one hand, and 2 1 or 1 2 or 0 on the other, the last three being treated
as equivalent. On this understanding, we are prepared to show (1) that,
for any given sequence whose sum is congruent to zero, the residuals
will be the same, whatever the order of the steps of ' reduction ' may be;
and (2) that the residuals for the m's and the n'a are necessarily the same."

The significance of this is that if one circuit G encloses another circuit
C and -\-\, —1 have been distributed among the corner points in such
a way that the sums around the divisions on the same side of C as C
are all = 0 (mod 3), then if the sum of the inside m's for C is zero, the
sum of the inside m's for C is zero.

The doctrine of residuals is the basis of the investigations in [10],
[11] and [12]; in these papers Heawood attempts to prove the four
colour conjecture by showing, with the help of the doctrine of residuals,
that if a suitable pentagonal division and its five neighbours are first
ignored, then at least one of the solutions of the system of congruences
related to the remaining map, with zero assigned to each division, can
be extended to give a solution of the system of congruences for the whole
map with zero assigned to each division. In [10] and in [11] the geo-
metrical aspect is kept in the foreground, in [12] the spatial relations
involved recede; at the end of this last paper, which he completed in
1947 at the age of 85, Heawood wrote :—

" It cannot be pretended that the above analysis covers all possible
cases . . . and it is fitting that the author should content himself with
the claim that he has shown how the map-colour theorem may be made
to depend on the persistence of a form of arithmetical sequence, based
on a matrix-operator whose structure is independent of all spatial rela-
tions and whose laws are sufficiently remarkable. Further that the more
obvious ways in which such a sequence might be terminated fail to
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276 PERCY JOHN HEAWOOD

achieve this result. And if the analysis has not been carried to the point
of demonstrating that in all possible cases such persistence is assured,
he is content to leave it as a challenge to others to show exactly where
the analysis fails and if possible to complete it."

Seventy-two years have elapsed since the publication of Heawood's
first paper on the colouring of maps. Since then some advances have
been made; for example, the four colour theorem has been proved to
hold for certain kinds of maps, and several problems concerning the
colouring of maps on the higher surfaces have been settled. But Heawood's
first two papers on the subject contain the most important contributions
up to now, his discoveries are more substantial than all later ones by all
others put together. The four colour problem, which has defied all the
many efforts made to solve it, is Heawood's great mathematical
monument.
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