ALBERT EDWARD INGHAM
J. C. BURKILL{}

Albert Edward Ingham was born at Northampton on April 3rd, 1900, and
educated at Northampton and King Edward VI's Grammar School, Stafford. His
father, also Albert Edward, was a boot-machine operator and designed the * veldt-
schoen ”’, for which his firm awarded him a very modest honorarium. (The son
wore boots until he was sixty.) There was an elder brother, Christopher, in the
family and three younger sisters.

It is recorded that, aged three, the boy showed his aptitude for numbers and
angles by learning to tell the time. He had an ear for music but had no training.
Christopher had piano lessons, but when his mother, hearing the piano played in
the next room, assumed that he was doing his musical homework, she found that
it was A.E. who was teaching himself. He won every prize that a brilliant schoolboy
could win and an open scholarship at Trinity College, Cambridge, in December 1917,
going into residence in January 1919 after a few months in the Army.

As an undergraduate he was handsome, with black hair and deep blue eyes,
slow-moving, seldom speaking unless spoken to, friendly if sparing of smiles. He
gave an impression of rock-like strength and integrity. He gained the highest honours
in the Mathematical Tripos, a Smith’s Prize and an 1851 Senior Exhibition. In
1922, at his first attempt, he was elected to a Prize Fellowship at Trinity for a disserta-
tion in which, according to him, he proved two lemmas. A friend who brought him
news of his election recalls that Ingham said “ Oh”, and went on working, perhaps
at a third lemma.

In the early 1920s young men who had escaped or survived the war found a market,
favourable to both buyers and sellers, in appointments at Cambridge or Oxford and
other Universities. G. H. Hardy had a large say in the placing of pure mathematicians.
Many years later, a letter of his written about 1923 was shown to me. I cannot
remember just what he wrote, but his assessment of the field was emphatic: that
though Ingham might be less adroit than some of his contemporaries in putting
Vice-Chancellors at their ease in interviews, the depth and maturity of his Trinity
dissertation marked him out as a leader of his generation in power and promise.
In the event, Ingham enjoyed four years (1922-6) of research without any commit-
ments to teach. He spent some months in Gottingen. In 1926 he was appointed
Reader in the University of Leeds. In 1930, on the sudden and untimely death of
F. P. Ramsey, he returned to Cambridge as fellow and director of studies at King’s
College, with a University lectureship. He was elected a fellow of the Royal Society
in 1945 and was appointed University Reader in Mathematical Analysis in 1953.

+ This notice is also to appear in Biographical Memoirs of Fellows of the Royal Society.

[BuLL. LoNDON MATH. Soc., 1 (1969), 109-124]



110 ALBERT EDWARD INGHAM

Hec was a member of the London Mathematical Society from 1922 and served on
the Council for the ten years 1927-32 and 1940-45.

In 1957 he retired from regular College teaching after twenty-seven years of
devoted labour. To a classical colleague his sufferings with a weak pupil seemed like
those of the Spartan boy with the fox gnawing at his vitals. Pupils, strong and less
strong alike, have testified to their gratitude for his gentle patience and the standards
of perfection towards which, to their lasting gain, he encouraged them.

Ingham’s lectures won higher praise from undergraduates and young graduates
than those of any other teacher in the faculty. They were superbly organised, no
detail was slurred over and yet the over-riding effect was one of simplicity with the
main ideas and theorems in a high light. More than one lecturer dates his resolve
to become a professional mathematician from hearing as a freshman Ingham’s
unfolding of analysis. Boys who had shown at school a preference for applied
mathematics told their masters after a term or two that their eyes had been opened
to analysis, which had become their favourite subject.

Not only in research and teaching but in all he did, Ingham was the embodiment
of meticulous accuracy. Nothing slipshod came from his hand, his tongue or his
pen. Throughout his life his colleagues were concerned at the time and energy
which he spent on unrewarding chores, to his own exasperation at the slackness of
others and to the detriment of his research. The duty of taking his share in the refereeing
of papers was accepted with wry resignation. Unless an author had standards
approaching Ingham’s, his paper was likely to be taken to pieces, partly rewritten,
and reassembled. Some of his friends ask whether, if he could have been more
summary with secondary activities, might not some of the intact problems of number
theory have been resolved by his magnificent analytical power? Others demur to
the thought, holding that his conscientiousness was an integral part of his intellectual
honesty.

From 1932 Ingham had the devoted support of his wife Jane (Rose Marie),
daughter of Canon A. D. Tupper-Carey. They were ideally complementary, the
one deliberate in all his actions, the other of surpassing quickness in thought, move-
ment and speech. They had two sons, Michael and Stephen. Friends and pupils
were always welcome to join the happy family circle at 14 Millington Road. It was
characteristic that the best room in the house was turned into ‘“the workshop™
where Ingham’s fine handiwork was a model for the next generation. A casual
caller at the home would be likely to find young children of friends and neighbours
in conversation or in play with the mathematician. The simplicity of their lives was
in tune with his own and their company seemed to be for him the happiest relief
from the depths of pure mathematics.

He was friendly and hospitable and would be lavish of his time to help a pupil
or a colleague. With his instinctive kindness he would notice if someone at a party

(perhaps a visitor to his College) was lonely and would draw him into a circle. He
called almost everyone by his surname. This was in part for better definition—John
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ALBERT EDWARD INGHAM 111

was more likely to be ambiguous than Williamson—but it was also formal courtesy.
One cannot conceive of him thinking of a Provost of King’s as Noel or Edmund,
nor would he address a young faculty secretary as Jill or Kay or Anne.

The simplicity of his life has already been mentioned. It did not occur to him to
want a car or a radio, let alone a television set. For forty years he used the Sunbeam
bicycle that he had won at school as a prize. He was an expert photographer; he
developed his own colour films and did everything from first principles. He had a
reading knowledge of Russian as well as of the more usual languages. He was a
good cricketer, as was his father—who would have been of minor county class if he
had been able to give the time. He was always eager for a friendly match between
the High Table and the College Staff or the Choir School. Like Hardy and Little-
wood, he was a devotee of cricket-watching at Fenner’s.

In a College conspicuous for the loyalty of its members, he was one of the most
loyal. The King’s Record relates that ““in college meetings he predictably put the
conservative view, sometimes with a melancholy irony that could not fail to amuse.
Impatient of any nonsense or fuss, he had complete integrity and was not afraid of
being in a minority of one”.  The link of the College with its Choir School had a
particular interest for him. He had the great happiness of seeing his elder son
Michael elected a Fellow of King’s in 1961 and join the staff of the University
Observatory at Oxford.

There were unexpected departures from the order and system which governed
nearly all his doings. The large table on whigh he worked was a chaos of books,
manuscripts, letters, notices, and a minute or two of search was often needed to
bring to light what he wanted. For many years he and his wife spent their summer
holiday walking (with rucksacks) among mountains. They asserted that no plans
were made in advance; they would go to Victoria Station (not to an airport!) and decide
there where to buy a ticket to. It was on such a holiday that he died. On
September 6th, 1967, on a high path near Chamonix, his heart failed. Fortunately
other walkers were within sight. He died almost without pain, conscious that every-
thing that could be done for him was being done.

The 1920s were exciting years for a young analyst, and one with Ingham’s ability
would have been encouraged to plunge at once into deep water. Hardy left for
Oxford in 1920, Littlewood stayed in Cambridge. Their collaboration suffered no
interruption. High among their interests at that prolific period were (1) the zeta
function and the analytic theory of numbers, (2) Tauberian theorems and the like.
It is significant that the two ““lemmas” of Ingham’s fellowship dissertation were
properties of the zeta function and that the first paper which he presented to the
London Mathematical Society arose out of Littlewood’s Tauberian theorem. These
two interests were to cover nearly all of his life’s work.

Research was not then organized under a “supervisor” as it has been in later
years and, though it is Jikely that Ingham needed little direct help, he must have
had boundless stimulus from Littlewood. Littlewood was happier solving problems
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112 ALBERT EDWARD INGHAM

than writing up the results for publication and he would toss a manuscript across
to a pupil, giving him ideas which he could develop. In particular there was a famous
Bohr-Littlewood manuscript on the zeta-function which was intended to be a Cam-
bridge tract but never was. The accessibility of Littlewood and a timely sentence
from him, perhaps ““ Work at a hard problem; you may not solve it but youw’ll solve
another one”’, would be enough to cheer Ingham on a sticky wicket.

It is now time to review in detail Ingham’s contributions to knowledge. His
one book, the Cambridge tract on The Distribution of Prime Numbers, was published
in 1932. Itis, and will remain, a classic. The roots of both this tract and Titchmarsh’s
on the Zeta Function were in the Bohr-Littlewood manuscript. Titchmarsh in 1951
expanded his tract into a substantial book (Oxford). When Ingham’s tract went
out of print he was urged to make a similar expansion or, at least, a revision. Such
a rewriting would have meant, with his standards, more toil than he could face.
The tract was ultimately reprinted, with minor changes, by Stechert-Hafner (New
York) in 1964.

The papers comprise two main groups. Professor Davenport has written the
following analysis of those on the theory of numbers, which form the larger group.
The references are to the bibliography at the end of the notice.

The Riemann zeta function and the theory of numbers

The papers on the zeta function and the distribution of primes are 4, 7, 9, 10,
15, 18, 20, 23. )

Other papers having their origin in problems of the analytic theory of numbers
are 21, 22, 24, 25, 29.

The first in time was 7, the main results of which were communicated to the
London Mathematical Society at its meeting on April 26th, 1923 (see Proceedings
(2), 22). This paper is concerned principally with the asymptotic behaviour of

T
J,(o, T) = f (o +it)|? dt 0

1

and T
Iio, T) = [ eto+it)dr @

1

as T — oo, though for technical reasons it is found desirable to consider a more
general form of the first. The most interesting and delicate case is when o = %.
Here the results proved are:

J2(4, T) = Tlog T+cT+0(Ttlog T), 3)

where ¢ is a certain numerical constant, and

1
J,3, T)= = Tlog* T+0(Tlog® T). €))
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ALBERT EDWARD INGHAM 113

Littlewood had obtained a less precise estimate for J, from the approximate
functional equation for {(s). To establish (3) Ingham had to carry out a refined
analysis of the remainder term in that functional equation.

The proof of (4) is more straightforward, but is based on the approximate func-
tional equation for {?(s), which had been placed at Ingham’s disposal by Hardy
and Littlewood, though it was not published by them until later.t

In the course of the proof of (4), Ingham found it necessary to estimate the sum

>::1 d(m)d(m+k),

where d(m) denotes the number of divisors of m. This no doubt suggested to him
the more detailed investigation of this sum, and of the analogous sum

'S d(md(1=m),

which is made in 4. His results on these two questions were substantially improved
upon later by Estermann.] For references to more recent work see an article by
Linnik.§

Paper 9 is of a quite different character from the two just discussed; it may be
described as concerned with a qualitative rather than a quantitative question. Until
this paper appeared, there was essentially only one proof that {(l +if) # 0, namely
that given in somewhat different forms by Hadamard and by de la Vallée Poussin
in 1896. The same proof covers the non-vanishing of Dirichlet’s L-functions at
1+it, except in the case when the character is real (and non-principal) and ¢ = 0.
For this latter result there were essentially two proofs, one arithmetical and due to
Dirichlet, the other analytical and due to de la Vallée Poussin. Neither of them is
similar to the proof for {(s). In 9, Ingham proved a general theorem which covers
both cases:

Let
g(s) = l;I (1-¢p™7,

where €, is a number (real or complex) of absolute value 1 or 0, and the product is over
all primes. Suppose that g(s), which is obviously regular for ¢ > 1, can be continued
along the real axis as far as the point s =%, this. point included. Then g(1) # 0.
In the application one takes ¢, = x(p) p~', where y is a character (which can be 1)
and ¢ is a real number (which can be 0).

t Proc. London Math. Soc. (2), 29 (1929), 81-97 or Hardy’s Collected Papers II (Oxford, 1967),
213-229.

t Journal fiir Math., 164 (1931), 173-182.

§ Proc. Internat. Congress of Mathematicians Edinburgh 1958 (Cambridge, 1960), 313-321.

BULL. 1 3
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114 ALBERT EDWARD INGHAM

In 10, Ingham considered the existence of
l T
lim — f (o +if)* dt,
Too T |

where 1 is a positive real number. With the help of general convexity theorems,
including Gabriel’s two-variable convexity theoremt, he proved that the limit exists
if o>% and 0 <1<4. A simpler but more special proof was given later by
Davenport.f

Paper 15 is the first which relates directly to the distribution of the primes. Let
n(x) denote the number of primes not exceeding x, and let

. du
lix= | —
logu

O

(where the Cauchy principal value is taken at u = 1). By the Prime Number
Theorem, =n(x) is asymptotically equal to lix as x — oo. Although numerical
evidence suggested that m(x) might be always less than lix, a famous theorem of
Littlewood (1914) states that the difference n(x)—li x in fact changes sign infinitely
often. An account of Littlewood’s proof was given by Ingham in Chapter 5 of his
Tract. There is no difficulty if one supposes that the Riemann Hypothesis is false.
But if it is true, the proof requires one to show that the oscillating terms in the
“explicit formula” for n(x)—Ilix sometimes add up to a large positive amount.
Littlewood’s proof was very delicate and complicated, and in the present paper
Ingham gave a simpler and more direct proof. He further showed that, on the
assumption of the Riemann Hypothesis, there exists a constant A > 1 such that
every interval (x, Ax), with x sufficiently large, contains both integers n for which
n(n) > lin and integers n" for which n(n’) < lin’. For references to later work on
these questions, see Ingham’s comments in Hardy’s Collected Papers 11, 98-99.
Some of the ideas underlying 15 emerge with greater generality and clarity in 23.

Of all Ingham’s papers, probably 18 is the one which is known to the widest
circle of mathematicians, since it concerns a problem of general interest, namely the
magnitude of p,., —p,, where p, denotes the nth prime. Hobheisel was the first to
prove, in 1930, that there is some constant § < I such that

Pny1—Pn < pno

for all sufficiently large n. His value of 8 was only slightly less than 1. Ingham
proved that the result holds with = §, and indeed with a slightly smaller value of 6
depending on whatever estimate may be proved for |{(3+if)| as ¢ - 0. The proof
depends on a new upper bound for N(a, T), the number of zeros of {(s) in the
rectangle « < o < 1, |t £ T. Two such upper bounds are established in the paper;

tJ. London Math. Soc., 2 (1927), 112-117.
t J. London Math. Soc., 10 (1935), 136-138.
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ALBERT EDWARD INGHAM 115

the first of these was improved later by Ingham in 20, and will be found as Theorem
9.19B in Titchmarsh’s The theory of the Riemann zeta-function (Oxford, 1951).
But it is the other which is more effective when o is near to 1, and which dominates
the problem of p,,,—p, Here no further progress has since been made.

The last paper of the group, 23, is one of fundamental importance. It has already
had many consequences, and probably its potentialities are still not exhausted. 1t
relates to two conjectures, one put forward by Mertens in 1897, the other by Polya
in 1919. Let A(n) denote +1 or —1 according as n has an even or odd number of
prime factors, repeated factors being counted with their multiplicities. Polya’s
conjecture was that

Lx) =T Mn) <0

nxx

for all x > 2. Numerical evidence confirms this up to x = 250,000, but the theory
of the {-function, and the analogy with Littlewood’s theorem on n(x)—1li x, suggested
that probably the conjecture was false.

By very ingenious reasoning, Ingham showed (in effect) that the conjecture
would be disproved if one could find particular values of T and u for which

A¥(T, u) > 0.
Here

¥ 1 ] i
AT = 7o + 28 3 (1- VT) 2 et

where 4+ iy, is the typical zero of {(s), and

L ta+2m)
"Gt (G i)
(It should be noted that in disproving Pdlya’s conjecture one is entitled to assume
the Riemann hypothesis and further to assume that all the zeros of {(s) are simple.)
Thus the way was opened to the possibility of disproving the conjecture by a
computation which used only a finite number of zeros of {(s). Note that {(}) is
negative, so that in order to succeed it is necessary to make the exponential sum
assume a positive value which is large enough to outweigh this negative constant
term. Thus the problem is not purely computational; having chosen a value for
T, one must restrict the search for a possible u to some carefully selected set of values
which will tend to produce a positive sum. Success was achieved by the late C. B.
Haselgrovet, a former research student of Ingham who was then director of the
Computing Laboratory at Manchester University. He found that A*(T,u) > 0
when T = 1000 and u = 831:847. This disproved Pdlya’s conjecture, but did not
in itself yield an explicit value of x for which L(x) > 0. Later R. S. Lehmanj
proved that

L(906180359)'= +1.

t Mathematika, 5 (1958), 141-145.
t Math. Comp., 14 (1960), 311-320.
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116 ALBERT EDWARD INGHAM

The second conjecture of the title, due to Mertens, has still not been disproved.
It is probable that Ingham’s method is adequate for the purpose, but it seems as yet
that the amount of computation that would be needed to give a reasonable chance
of success would be prohibitive.

Paper 21. The two classical lattice point problems in question are the circle
problem and Dirichlet’s divisor problem. The circle problem is concerned with the
number R(x) of integer pairs u, v satisfying

W +0? < x.
If we put
R(x) = nx+ P(x),

it is known that | P(x)| behaves like x* in mean square, and it was proved by Hardy
that there is a positive constant 4 such that

P(x) < —Ax*logtx

for some arbitrarily large values of x. Any inequality in the opposite direction
presents much greater difficulty, since its proof demands the use of Kronecker’s
theorem on Diophantine approximation in place of Dirichlet’s theorem. In the
paper under discussion, Ingham proves that for any C, however large,

P(x) > Cx?*

for some arbitrarily large values of x. He indicates at the end of the paper the
possibility of getting a more quantitative result. Work on these lines was carried
out by K. S. Gangadharanf, a research student of Ingham, who proved that

P(x) > Ax*(log log x)*(log log log x)*.
A further improvement has been effected recently by Katai and Corradi.
There is a similar situation with Dirichlet’s divisor problem, except that now
it is the negative values of the error term that present the greater difficulty.
Paper 22. In a famous paper, Hardy and Ramanujan} gave an asymptotic
expansion for p(n), the number of unrestricted partitions of #n. This was the first
instance of the use of the “circle method ”, afterwards developed in different direc-
tions by Hardy and by Hardy and Littlewood.

As Hardy and Ramanujan remarked, a Tauberian argument, based on the
behaviour of the generating function

Zpm)x"=TI(1-x")""

as x — 1 from the left through real values, can be used to prove that

logp(n) ~ = A/ (232) ,

t Proc. Cambridge Philos. Soc., 57 (1961), 699-721.
t Proc. London Math. Soc. (2), 17 (1918), 75-115, or Hardy, Collected Papers 1, 306~339.
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ALBERT EDWARD INGHAM 117

but appears to be incapable of giving the first term of the asymptotic expansion, i.e.

o= s

In the present paper Ingham shows that this can be proved by a more elaborate
Tauberian argument, using the behaviour of the generating function as x — 1 in an
angle inside the unit circle.

The advantage of the Tauberian method is that it does not make use of the more
profound properties of the generating function (derived from the theory of the
elliptic modular functions), and is therefore applicable to a wider range of partition
problems. Theorem 2 of the present paper gives an asymptotic formula for the
number of partitions of n into given parts A, 4,, ..., under conditions of some
generality.

For later work on this question, see a paper of Roth and Szekeres.t

Paper 24. This paper is concerned primarily with what Hardy called ¢ Ingham
summability >’ and discussed in Appendix IV of his Divergent series (Oxford 1949).
A series is said to be summable (I), with sum s, if

n X
> —|—la,—>s
n<x X n

as x — oo, where [f] denotes the largest integer not exceeding ¢. The method is
not “regular ’, that is, a convergent series is not always summable by the method.

In Theorem 2 of the paper, Ingham proves the satisfying result that the usual
one-sided Tauberian condition

a, > —K/n,

where K is a positive constant, suffices to ensure that a series summable (I) shall be
convergent, with the same sum. This theorem is deduced from the more general
Theorem 1, which is concerned with the following question. Suppose we know
that a positive function f(x), defined for x > 1, satisfies

> f(x/n) = axlog x+bx+o(x),

n<x
where a, b are constants. Under what conditions can we infer that f(x) ~ ax as
x— c0? It is proved that it suffices if f(x) is increasing in the wide sense. The
proof employs Wiener’s Tauberian theory, but a further essential ingredient is the
non-vanishing of {(s) on %s = 1.

Further results about summability (I) are given at the end of the paper; from these

it emerges in particular that (I) implies (C, d) and is implied by (C, —9), for any
6>0.

t Quart. J. Math. (2), 5 (1954), 241-259.
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118 ALBERT EDWARD INGHAM

Paper 25. In spite of its title, this is a sequel to 24, and like that paper is con-
nected indirectly (but essentially) with the prime number theorem.

Suppose ¢(t) is defined for 0 < ¢ < 1, and integrable in the sense of Riemann
in0<d<r<g 1 for each 6. Let

1
St =h ¥ . 16) = f $()dr.

Tt was proved by Wintner (and it follows also from one of the results of 24) that if
S(#) has a finite limit as #— 0, then I(h) has the same limit. The proof depends
in a surprising way on the absolute convergence of

-]

f Eﬁﬂ dv, where g(v) = f-(’—l)

v n

n<o

and u(n) is the Mobius function, arising in this context as the coefficient of n™° in
the Dirichlet series for 1/{(s).

In 25 Ingham shows that it is more illuminating to generalize the equally spaced
ordinates nh in the Riemann sum to I, , where d,, = I,—1,_; = o(l,). The necessary
and sufficient condition that the corresponding I(#) has the same limit as the sum S(/1)
involves “Mgbius functions” which appear as the coefficients in the Dirichlet
series for 1/Z(s), with Z(s) = X d, A, (.-, < 1, < 1,).

Paper 29. This paper, with its combination of delicate ideas from number
theory and analysis, could hardly have been written by any single mathematician,
or by any two mathematicians other than Erdds and Ingham.

The general question considered has some affinity with that of 24. But instead
of the hypothesis

3 f(%) = ax log x +bx +o(x),
nsx

there is the hypothesis that
f)+ X f(g-) = (14 A4) x+o(x),

where 1 < a, € a, < ... is a sequence of integers, and Y 1/a, converges with sum A.
The question is, whether this implies that

fx)~x

as x — oo. It is difficult to summarize the conclusions which depend very much on
whether A <1 or A=1 or A> 1. Generally speaking it may be said that the
elementary methods are successful only if A4 <1, unless special relations exist
among the numbers q,.
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ALBERT EDWARD INGHAM 119

Papers on the theory of series and Tauberian theorems

Professor Bosanquet has analysed this work, which is contained in the papers
numbered 1, 12, 13, 14, 17, 26, 28, 30.

1(b). This refers to a manuscript written in 1924 as part of Ingham’s report
to the Royal Commissioners for the Exhibition of 1851, from whom he held a Senior
Studentship. The story of it is characteristic of Ingham’s perfectionism. He sent
a copy to Hardy, who (on his own initiative) sent it to the London Mathematical
Society. It was accepted for publication, subject to some revision, and in particular
to the toning down of some destructive criticism of other writers, permissible in a
confidential report but unsuited to a journal.

In a pioneer paper on Tauberian theorems for Riesz’s typical means (Proc.
London Math. Soc. (2), 12 (1913), 174-180) Hardy had made two mistakes, (i) by
leaving a gap in the inductive proof of the O-theorem, and (ii) by neglecting a term
in the O -theorem that would be significant if the indices increased erratically.
Neither omission was trivial.

In 1918 Ananda-Rau filled the gap in (i). Ingham now gave an example to show
that the result in (ii) was incorrect without an extra condition. This was shown
independently by Ananda-Rau {1930). Ingham gave also a number of positive results.

Ingham later explained that he never revised the paper for publication, partly
because he ““ had the uneasy feeling that the proofs of the constructive part were
not in the best form, and that in any case a good deal of it was probably well enough
known to Hardy and Littlewood ™.

A full account of these Tauberian results is now in Hardy, Divergent Series,
Chapters 6 and 7. The notes at the ends of those chapters are relevant.

12. This paper is concerned with a remark of Wiener, quoted by Hardy, that
a function and its (complex) Fourier transform cannot both be very small at infinity
without being null. For example, if f(x) and F(x) are both O(e”***), then
f(x) = F(x) = Ce™*?; and if, further, one function is o(e”**"), then both are null.
Ingham remarks that if f(x) vanishes outside (— 4, A), then F(x) cannot be O(e™*")
without being null. He goes on to show that, if y(y) is any positive decreasing
function tending to zero, then there is a function vanishing outside (— A, 4), but

not null, such that F(x) = O(e™**®), if and only if waT(y) dy converges. This

gives information about the class of kernels K(x) defining transformations
T

%f K(t/T)g(r)dt, suitable for use in applications of Wiener’s method in
-T

Tauberian theorems.

13, 14 and 26. These papers are concerned with two analogous groups of
Tauberian theorems for a general Dirichlet series f(s) = Y a,e”"** =Y a,l,~"
A typical pair is: (4-type) Schnee’s extension of Tauber’s theorem, where the con-

vergence of Y a, follows from i,l,a,=o(l,,) and f(s)—» A as s— 04, and
1
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120 ALBERT EDWARD INGHAM

(I-type) M. Riesz’s extension of Fatou’s theorem, where the convergence of Y a,
follows from z": l.a, = o(l,) and f(s) regular at s =0. In some I-theorems, f(s)
1

satisfies a condition near a whole line #(s) = a. For example, in Ikehara’s theorem,
f(s) is regular on Z%(s) = a except for a pole at s =a. Heilbronn and Landau
extended Ikehara’s theorem, by only assuming a property of f(s) near a segment
6=a, —T<t< T, and obtaining a result involving bounds depending on T,
which becomes Ikehara’s theorem in the limit as T— oo.

In 13, Ingham re-examines Heilbronn and Landau’s results and obtains other
I-theorems with the Heilbronn-Landau refinement. His method is to use a trans-
formation, defined by a suitable kernel satisfying Wiener’s conditions. He also
formulates an I-version of the high indices theorem, which he refines successively
in 14 and 26. In the A-version, where A,/A,_, = 1+d (d > 0), the appropriate
Tauberian condition, a, = O(1) or o(l), is omitted, and the main step is to prove
that it is a consequence of the other hypothesis. In the I-version, where I,/l,_, = €’
(> 0), i.e. A,—4,_; =7, the function satisfies a condition on a segment ¢ = 0,
—T<t< T In the weakest form, stated in 13, this is assumed for all large T,
and is used to deduce that @, = o(1). In 14, Ingham, with the hypothesis

n+¢e T

sharpens his earlier analysis to obtain the inequalities

Sla? < S0 f R

2 < 52 f @)t

In 26 he succeeds in making the final refinement of the latter inequality to ¢ = 0
and C(0) = 2 (the best possible). An elegant treatment of the last inequality was
later given by Mordell (Illinois J. Math., 1 (1957), 214). L. Schwartz, Etude des
sommes d’exponentielles (Hermann 1959), Chapter 3, §3, relates Ingham’s results
to those of others.

17 and 30. In 17 Ingham introduces a new method for proving Tauberian
theorems, and applies it to a proof of the high indices theorem. In the original
method of Littlewood, a peak function was obtained by taking the kth derivative
of f(s) =X a,e *°, with a sufficiently large k. Thus Littlewood obtained
(=D*f®(s) = Y a, A,*e"*. Ingham observes that a peak function may also be
obtained by taking a k-th difference with increment 4, where 4 is sufficiently small
or (as in his proof of the high indices theorem) 4 is related to s. For example, we
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ALBERT EDWARD INGHAM 121

may take
k
My (—1)1‘( I; )f(ks+js) =3 a, M e~ *s — g™ 2hns)k,
j=o

where M is the maximum of e”*—e~2*. His proof of the theorem is simpler than
that of Hardy and Littlewood, in particular because the main step reduces it to an
o-Tauberian theorem instead of an O-theorem. In 30, in the volume of the Proceedings
published in honour of Professor Littlewood’s 80th birthday, Ingham returns again
to the topic to give ““a simplified version that has gradually evolved over a long
period of lecturing on the subject””. Here the emphasis is on the choice of peak
functions without the use of approximation theory, and (as he points out) differences
are nowhere explicitly mentioned.

28. This paper is concerned with extensions of Wiener’s well-known theorem
about the reciprocal of a function with an absolutely convergent Fourier series.
Ingham gives an elementary proof of a known extension, originally obtained by
functional analysis by Hewitt & Williamson and Edwards, for the case of a generalized
Dirichlet series in which the exponents do not necessarily increase. He also extends
this in the manner of Lévy and Zygmund.

Ingham’s other work and his influence
Comments have still to be made on the following papers in the bibliography:
2, 3,5, 6,8, 11, 16, 19, 27.

2. Soon after Ingham became a Fellow of Trinity, J. E. Jones (later Sir John
Lennard-Jones) arrived from Manchester as a research student in mathematical
physics. Jones consulted Ingham on problems about cubic crystals which were
directly expressible by the generalized zeta functions of Epstein. The look on
Ingham’s face as he turned the handle of a Brunsviga calculator was that of the
Spartan boy.

5 and 6 contain theorems of the Phragmén-Lindel6f type about mean values

y
1
5 f Lf (x+iw)|P dw,
-y

where f is regular in a vertical strip « < x < f. A necessary preliminary is a dis-
cussion of convexity theorems for

oy = [ 1f e+ inieay.

The results are applied in 10 to the zeta function.

3, 11, 16 are short notes, and 8 a longer paper, which are all good specimens of
Ingham’s analytical force.
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122 ALBERT EDWARD INGHAM

19 and 27 are two of Ingham’s longer reviews. His reviews were searching and
influential and were read by many mathematicians besides those immediately
interested. A list of his more important reviews is appended.

In summing up we must recall the high respect in which Ingham was held by
mathematicians, pure and applied alike. It was not easy to get an opinion out of
him—his first defence was a disclaimer of knowledge—but anything that he
ultimately said was based on all the relevant information and was impeccable. The
influence of his papers was greater by far than might be suggested by their modest
number or their modest style of presentation. They have been read and re-read by
mathematicians throughout the world. Anyone who was fortunate enough to make
a significant addition to their contents had made his mark. Among Ingham’s research
students were R. A. Rankin, C. Hooley and the late C. B. Haselgrove and W. B.
Pennington.

A tribute from Norbert Wiener is of interest. In 1926, when they were both in
Géttingen, Ingham pointed out the Tauberian aspect of the theorems at which
Wiener was working. Wiener records that “It is to Ingham that I owe a scientific
lead which carried me to much of my best work ** (I am a mathematician (New York,
1956), 115).

It will be plain to the reader that the hard core of this notice is the work of
Professors Davenport and Bosanquet. I invoke a prevalent phrase in saying that
it is ““for technical reasons” that I figure as the author, making acknowledgments
to them, instead of the other way round. The Provost and Fellows of King’s College,
Cambridge (among whom Mr. L. P. Wilkinson is to be named) have generously
allowed me to incorporate parts of a memoir in the Annual Report of their Council
(November 1967). Professor Littlewood and Dr. L. A. Pars have helped me to
reconstruct past events. Jane and Michael Ingham have been kind and helpful
in every way.
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