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Nigel John Kalton, 1946-2010
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1. Family and early life

Nigel Kalton was born in Bromley, Kent, on 20 June 1946. He was the third and last child of
Gordon Edelbert Kalton (1903-1971) and Stella Vickery (1911-1981), 12 years younger than
his sister Pam (who died of cancer at the early age of 38) and ten years younger than his
brother Graham. His paternal grandfather was Gordon Edelbert Kaltenbach (1879-1955), a
photographic dealer living in Birmingham. The family changed its name to Kalton at the time
of the First World War, when anti-German feeling was extreme, but never did it legally, and
hence Nigel’s birth certificate bears both names. Both Stella and Gordon Kalton had only
limited schooling, although it seems that Nigel’s father was good at performing numerical
calculations. But Gordon Kalton left school at a young age to help in the family business,
which consisted of photographic shops in major cities in England. He met his wife Stella when
he was running the London shop, and they married in June 1932.

The family business prospered before World War II; however, it was of course hard hit by
shortages during and after the war, and the London shop was destroyed during the bombing
of the capital. A few years after the war, Gordon Kalton gave up his stake in the business and
relied thereafter on a modest income from stocks and shares. Nigel grew up in Bromley, on the
outskirts of London, in a small, semi-detached house. His family did not have a telephone, a
car, or a television until Nigel was a teenager.
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Gordon Kalton was a recluse, being extremely hard of hearing. He was also very frugal.
However, he did attach a great deal of importance to his children’s education. As a result,
Nigel, and Graham before him, commuted by train to Dulwich College rather than attend
a local grammar school. Dulwich, an extremely well-endowed school (founded in 1619) with
extensive playing fields, good science laboratories, and good teachers, had become a magnet
school for bright students. Both Graham and Nigel went on to university at a time when only
about five per cent of school-leavers did so. They were in fact the first members of their family
to obtain higher education. Their sister Pam resisted attempts to persuade her to apply to
university. Graham went to the London School of Economics to study mathematical statistics,
before engaging in an academic career which led him to a full professorship in Great Britain
and then to a distinguished career, continuing to this day, in the United States of America.
Nigel’s path took him to Cambridge to study mathematics, as described later.

When Nigel was very young, Pam and Graham were sometimes given the task of taking
their baby brother in his pushchair for walks in the neighbourhood. On one such walk, when
Nigel was about two years old, they taught him some lines based on Shakespeare’s ‘As You
Like It’, with a change made to reflect Gordon’s taste for whisky. When they returned home
Nigel recited to his father ‘Oh good old man how well in thee appears the ancient vintage of
the antique world’. But it was Nigel’s unusual mathematical abilities that most distinguished
him at an early age. An example of this occurred while Graham was a graduate student at LSE
but still living at home for financial reasons. He was working through Kendall and Stuart’s
two-volume The Advanced Theory of Statistics, and would leave one or other volume at home
when going to London. Nigel would read the volume left behind. One evening, Nigel, then
around 13 years old, showed Graham a neat, simple derivation of the Poisson distribution as
a limiting case of the binomial distribution that he had devised, resulting from his reading of
Kendall and Stuart. Shortly after, and while still at Dulwich, Nigel completed his first refereed
paper published in the Cambridge Mathematical Gazette, ‘Quadratic forms that are perfect
squares’ [1].

As a teenager, Nigel did not have much interest in the usual sports of the public school
tradition such as rugby, football, or cricket, but he certainly was an intense chess player, and
a member of the Dulwich College chess club, which came second in the nation in the Sunday
Times competition in 1964. But then came the time to leave Dulwich College for Cambridge,
the right place for an outstanding boy who explained once that ‘from a young age, I was very
good at mental arithmetic, and somehow math was my subject. I never really thought to do
anything else’.

2. Cambridge

Nigel Kalton entered Trinity College, Cambridge, in 1964. More precisely, he chose to miss
out the first year (Mathematical Tripos Part I) and moved directly into the second year. This
daring move was certainly appropriate, since Nigel quickly impressed his fellow students by
his problem-solving abilities, even in the Cambridge environment, where such talents are not
unknown. Peter Goddard, former director of the Institute for Advanced Studies at Princeton,
had entered Trinity College in 1963 and thus took the same examinations as Nigel between 1964
and 1966. According to his testimony: ‘Also marked was his ability to absorb new mathematics
easily and quickly. He was cheerful and modest without being falsely so: he knew his abilities
but he saw no need to base his whole persona on them; rather the reverse. His ability to
absorb mathematics and solve difficult problems quickly suited him ideally to the formal Tripos
examinations as they were then. Thus, unsurprisingly, he came first by a clear margin in the
unofficial orders of merit for the Preliminary Examination (1965) and the Mathematical Tripos
Part II (1966)’. It is plain that these mathematical and personal qualities remained Nigel’s
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features throughout his life. Fortunately, his abilities were recognized and he was awarded
the G. F. A. Osborn Prize, awarded to the most distinguished second-year mathematician at
Trinity College, in 1965.

Besides Peter Goddard, contemporary students of Nigel Kalton included Garth Dales,
Alexander Davie, Peter Dixon, and lan Stewart. In Cambridge, Nigel had also met Jennifer
Bursey. Jennifer’s family tree has been rooted in England for a millennium, since her ancestry
goes back to a companion of William the Conqueror named Sirloin de Burcy. The author
of these lines had the chance to escort Jenny and Nigel to the church of Dives-sur-Mer
(Normandy), where the names of the known companions of William are carved on the wall,
and to check that Sirloin de Burcy’s name was there. Jenny and Nigel were married in 1969,
and they had two children, Neil (born in 1973) and Helen (born in 1976); later there were four
grandchildren.

Even the most demanding studies allow for some amount of socializing. Most of Nigel’s
social life was devoted to chess, and a number of recorded games that he played at the time
with Raymond Keene (who won the British Chess Championship in 1971) demonstrate that
they were of comparable level. Nigel himself tied for the sixth place in the Eastbourne Open
in 1966, he represented Cambridge University in the matches against Oxford University in
1967 and 1968, and he won the Major Open in Warwick in 1970. This qualified him for the
British Championship in 1971 at Blackpool, won by Ray Keene, where Nigel scored 5/11
(one win, two losses, eight draws) and was ranked 26th among 36 participants, the very best
players in the country. This result is impressive enough, given the fact that at that time he
was a full-time mathematician. Nigel could have considered a professional career as a chess
player, but mathematics remained his first passion. He retired from over-the-board play in
1976, although he played a number of games with the International Email Chess Group between
1993 and 1996.

The course ‘Analysis 4’ is one that was offered to second-year students at Cambridge. This
course was taught by D. G. H. ‘Ben’ Garling, and was based on a book by Jean Dieudonné
called Treatise on Analysis. It probably contributed to Nigel’s choice of functional analysis, a
subject that was at the time attracting a large number of graduate students at Cambridge,
about fifteen, according to Garth Dales’ testimony, with strong weekly seminars. Nigel became
a student of Ben Garling in 1967, and wrote under his supervision the thesis entitled ‘Schauder
decompositions in locally convex spaces’; this was approved on 11 November 1970. The thesis
earned Nigel the Raleigh Prize from Cambridge University.

Nigel’s mathematical genealogy includes Ben Garling’s advisor Frank Smithies, who had
introduced functional analysis to Cambridge after studying the distribution theory of Laurent
Schwartz. This new functional analysis was sometimes called ‘soft analysis’ as opposed to
the ‘hard analysis’ of Hardy and Littlewood, although Frank Smithies was himself a student of
Hardy. A propos, it should be recalled that John Littlewood, the senior Wrangler at Cambridge
in 1905, was still active during Nigel’s student years, and they sometimes met, although to the
best of my knowledge they never had a mathematical conversation together.

Ben Garling spent the academic year 1969-1970 at Lehigh University in Bethlehem,
Pennsylvania, and Nigel Kalton accompanied him there as a visiting lecturer. This first contact
with an American Department made a very positive impression on Nigel. In his own words:
‘At Lehigh during a talk, people would chime in with no air about them. Questions were asked
and discussed. No one tried to score off a speaker, and ultimately people had fun talking about
mathematics’. This would have looked relaxing after the fiercely competitive atmosphere of
Cambridge, and the remainder of Nigel’s career confirms that this new-world attitude had a
lasting influence on his choices. Also in 1970, Nigel’s first papers appeared (if we rule out his
promising early bird from the 1966 Mathematical Gazette); this launched a powerful flow of
publications which only death broke off.
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3. From England to the United States

After returning from the United States, Nigel Kalton spent the year 1970-1971 as a Science
Research Council Fellow at Warwick University in Coventry. One of his good friends and
collaborators there was Robert Elliott, whose wife Ann had taught Nigel’s future wife Jenny at
high school in 1962, and the two families became close friends. In 1971, Nigel was appointed as
a lecturer at the University College of Swansea, part of the University of Wales. He was to stay
there for eight years, until 1979. The Kaltons lived there with two young children on a modest
lecturer’s salary, and Nigel had no access to funds to allow him to travel to conferences. As
a consequence of this relative isolation, he focused in part on somewhat unfashionable topics
such as non-locally convex spaces. In this pre-internet era, his reasoning was that the risk was
less that such topics would suddenly experience a dramatic overhaul that he would not know
of, which would mean his working on a problem that someone had already solved. Anyhow
Nigel’s talent was so great that his research record quickly became impressive, but despite very
strong support from the Department, the University of Swansea failed to promote him to a
Readership.

Meanwhile, Nigel had been invited to the United States as a Visiting Associate Professor
at the University of Illinois in Urbana-Champaign (by N. Tenney Peck, in 1977) and then at
Michigan State University, East Lansing (by Joel H. Shapiro, in 1978). Several universities in
the United States were interested in offering him a position, and the first to do so was the
University of Missouri-Columbia through Dennis Sentilles; Nigel accepted this offer. When the
Kaltons settled in Columbia in 1979, the place was still quite provincial, and during his first year
there Nigel had the only NSF Grant of the Department. However, according to his testimony,
he had ‘jumped at the chance of a job at Missouri-Columbia, because the conditions were so
much better and allowed me to pursue my research without impediment’. Nigel was to spend
the rest of his life in Columbia, which thanks to his influence would become a major centre
in functional analysis, not to mention other fields which also benefited from the Department’s
rise. He clearly preferred the quiet surroundings provided by a midwest college town to the
buzzing and steaming of large cities, and Columbia was a place where he could work in peace
and welcome collaborators, such as the author of these lines, who was privileged to share five
academic years with him between 1985 and 1997. Hence Nigel Kalton fully became an American
faculty member. It should, however, be mentioned that he kept his British citizenship to the
end, without ever bothering to seek an American passport.

4. Living and working in Missouri

The University of Missouri at Columbia was prompt to realize what a catch Nigel Kalton
was: several awards were bestowed upon him, such as the Chancellor’s award for outstanding
research in the physical and mathematical sciences in 1984 and the Weldon Springs presidential
award for research and creativity in 1987. Nigel was named Houchins Professor of Mathematics
in 1985 and became a Curator’s Professor, the highest position that the University of Missouri
can provide, in 1995. However, the Banach Medal awarded to him by the Polish Academy of
Sciences in 2004 is surely his most prestigious award.

Public recognition is definitively of importance, but maybe not as important as the freedom
to ‘pursue research without impediment’. Nigel was left in peace by a wise Department, which
valued his research as it deserved. He usually taught graduate courses in functional analysis,
and his legendary finals were simply a gathering with the students over a beer in the nearby
Heidelberg Pub. I attended some of these finals, where Nigel was sharing ideas and opinions
with his students in his usual unassuming way. I suspect that some of these students remained
unaware of the true stature of their professor. Fortunately, some of them understood who Nigel
was. Adam Bowers, when a post-doctoral fellow in Columbia, attended the last course taught

a9 '¥10C '02T269rT

jo|//:sdny wiosy

TTT'0T/10p/wo A3 I A:

85U8017 SUOWWOD dANERID 3|qedtjdde auyy g peusenoB a2 s3ole VO ‘8 J0 S3|N1 10} AfeiqiT 8UlUO A3]1M UO (SUONIPUOD-pUE-SLLIBI WD A3 1M ARe g1 joul|UO//SdNY) SUONIPUOD Pue SIS | 84} 885 *[520Z/0T/0E] U0 Akeiqi auluo A3|1M ‘80Us|[BOX3 212D PUe L3[EaH 10 aimiisu| feuolieN ‘IDIN Ag Ggo!



1296 NIGEL JOHN KALTON, 1946-2010

in 2009-2010 and the notes he took will be published shortly as a joint work by Nigel and
himself [271].

Nigel Kalton worked extremely fast both to establish his results and to write them down.
He typed his articles at high speed with no scrap paper around him, however complex the
arguments were. He did not write much on paper, except for some explicit computations, and
the whole work took place in his brain. I can actually testify to the quite amazing fact that he
was able to solve highly non-trivial problems while talking about a completely different topic.
And although he was entirely self-sufficient, he would listen to all those, students or colleagues,
who approached him with sensible questions, and his attention would soon induce a drastic
change in their mathematical landscape. Nigel seldom read articles or books, and would rather
rebuild by himself what he needed in his work. It was indeed his way of saving time. This did
not prevent him, however, from being very careful about references: he knew that work had
been done by such and such, and he would quote the relevant articles. But the whole theory
was in Nigel’s mind anyhow. Let me call this a mystery for lack of a better word. Nigel also had
a unique ability to use mathematical objects which are sometimes considered marginal, such as
non-locally convex spaces or quasi-linear maps, not for their own sake, but as tools for showing
spectacular results in main-stream analysis. His problem-solving power was famous and went
much beyond answering open questions; he would build the proper framework in which the
original problem was to be understood inside out with a collection of related results, and hence
would prepare the ground for further work. He usually wrote down his theorems in the greatest
generality, certainly not out of pedantry, but simply because his proofs reached this level and
he trusted, maybe exceedingly, his reader’s ability to find out what the applications were. As a
rule, he submitted his articles to relatively modest journals and never attempted to publish in
the most famous ones, although his work deserved the best. But it seems that his desire was to
make things simple and be left in peace rather than to strive for fame. Vanity was foreign to him.

Of course, Nigel Kalton accepted a number of invitations to various universities, including
Paris, although that big city was not among his favourite places, and turned down a few,
sometimes half-jokingly claiming that unfortunately he had to stay at home since his cats
needed him. He attended scores of conferences in North America, Europe, and Australia.
However, after being hired by the University of Missouri, he never stayed away from Columbia
for more than a semester at a time. Nigel lived a quite well-regulated life there; he was not a
morning person, and his routine was rather to work at home in the evening, and frequently
well into the night. He would usually come to the Department around lunch time, happily
explaining, for example to me, that all of yesterday’s questions were solved, and much more.
My contribution was to sit down and listen, but Nigel’s generosity was such that this invariably
resulted in a joint paper.

Nigel’s working power was impressive, but he also knew how to relax, if not to rest.
Racquetball is a popular sport in Columbia and Nigel played it on a regular basis, in his
usual rather competitive way. And although his mind was constantly in gear, he was also
excellent company, a man of taste who knew how to enjoy good food and fine wine, and
besides mathematics a man of culture with a definite interest in historical matters. Hence
sharing time with such a friend was both pleasant and instructive. Above all, he was a family
man, Jenny’s husband for 41 years and a proud father and grandfather.

Working under the supervision of a generous first-class mathematician is a PhD student’s
dream. A steady flow of students found their way to Columbia to turn this dream into reality,
namely David Trautman (defense in 1983), Carolyn Eoff (1988), Camino Leranoz (1990), Beata
Randrianantoanina (1993), Sik-Chung Tam (1994), Dan Cazacu (1997), Roman Vershynin
(1999), Roman Shvidkoy (2002), Mark Hoffman (2003), Jakub Duda (2004), Pierre Portal
(2004, joint supervision with Gilles Lancien from Besangon, France), Tamara Kucherenko
(2005), Mikhail Ganichev (2006), Simon Cowell (2009). Daniel Fresen, who was Nigel’s student
in 2010, continued his PhD (defended in 2012) under the supervision of Alexander Koldobsky
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and Mark Rudelson. In my opinion, it would be fair to augment this list by the crowd of
colleagues who benefited from Nigel Kalton’s mathematical power, insight, and vision. Some
among them gathered to celebrate Nigel’s sixtieth birthday at the meeting organized in his
honour by Beata and Narcisse Randrianantoanina in Oxford (Ohio).

Nigel Kalton suffered a devastating stroke on Sunday, 29 August 2010. He passed away
peacefully in his sleep two days later in University Hospital, Columbia, in the presence of his
wife Jennifer and his children Neil and Helen. A gathering in his honour was organized on 1
October 2010 in Columbia, to which his family, friends, and colleagues were invited to honour
his memory, and following Jenny’s wish to celebrate his life. The Notices of the American
Mathematical Society devoted an obituary article (11) to Nigel Kalton with Peter Casazza
as Coordinating Editor. Fritz Gesztesy has set up a website to honour Nigel’s memory and
achievements; this contains, in particular (with the publishers’ permission), his publications
(http://kaltonmemorial.missouri.edu). A selection of his articles, with for each one extensive
comments by an expert of the field, edited by Fritz Gesztesy, Loukas Grafakos, Igor Verbitzky,
and myself, is presently under completion and will be published by Birkh&duser under the title
‘Kalton Selecta’ (24).

Nomne of those who were privileged to know Nigel Kalton will ever forget him. But Nigel
was an achiever who always tried and never gave up. He left us his spirited example and his
inspiring mathematics, and his will clearly was that research should go on, no matter what.
Commenting now on some of his works is a modest attempt to fulfill this wish. Before doing so,
I should make it clear that to present every item of Nigel’s formidable list of publications is way
beyond my abilities, and I apologize to any reader who is unhappy about the lack of comments
on his/her favourite among Nigel’s theorems. I will simply choose some fields with which I
am relatively familiar, and in which his influence is especially important. These selected items
should, I hope, give some idea of the width, depth, and scope of Nigel Kalton’s contribution
to mathematics.

5. The Kalton zone: 0 < p < 1

Hahn—Banach theorems are cornerstones of functional analysis. But it turns out that non-
locally convex spaces show up very naturally in many cases when there is no reason to ‘stop at
p = 1" and actually what happens when p < 1 provides precious information on the somewhat
more classical locally convex setting. This is an invitation to visit what I suggest we call the
Kalton zone: 0 < p < 1. This terminology is amply justified by the fact that Nigel Kalton is
the undisputed leader on non-locally convex analysis and its uses.

We recall that metrizable complete topological vector spaces (over K =R or C) are called
F-spaces. An F-space X is locally bounded if and only if its topology can be generated by a
quasi-norm || - ||, namely a map || - || : X — RT such that:

(i) [J]| > 0 if 2 7 0;
(ii) ||ez| = |a|||z|| for all z € Xand o € K;
(i) [l + yll < C(llz]l + llyll) for all (z,y) € X2,

Here C > 1 is the modulus of concavity of the quasi-norm. A locally bounded F-space is
called a quasi-Banach space. We refer to [97] for an authoritative book on F-spaces. It is clear
that the Hahn—Banach theorem is sensitive to local convexity assumptions, to the point where
it leads to a characterization [31]: a quasi-Banach space X is locally convex (that is, it is a
Banach space) if and only if every continuous linear functional defined on a closed subspace
of X has an extension to a continuous linear functional on X. In other words, a quasi-Banach
space is a Banach space if and only if the weak and quasi-norm topologies have the same closed
subspaces.

a9 '¥10C '02T269rT

jo|//:sdny wiosy

TTT'0T/10p/wo A3 I A:

85U8017 SUOWWOD dANERID 3|qedtjdde auyy g peusenoB a2 s3ole VO ‘8 J0 S3|N1 10} AfeiqiT 8UlUO A3]1M UO (SUONIPUOD-pUE-SLLIBI WD A3 1M ARe g1 joul|UO//SdNY) SUONIPUOD Pue SIS | 84} 885 *[520Z/0T/0E] U0 Akeiqi auluo A3|1M ‘80Us|[BOX3 212D PUe L3[EaH 10 aimiisu| feuolieN ‘IDIN Ag Ggo!


http://kaltonmemorial.missouri.edu

1298 NIGEL JOHN KALTON, 1946-2010

The proof of this theorem relies on the construction of Markushevich basic sequences (see
[203, Propositon 3.4]), obtained by refining Mazur’s classical argument. To be able to do this,
one needs, however, a weaker topology, even if it is not ‘weak’ in the classical sense. A quasi-
Banach space is minimal if it does not have any weaker Hausdorff vector topology. As suggested
by Mazur’s technique, a separable quasi-Banach space is minimal exactly when it contains no
basic sequence. On the other hand, it is shown in [39] that an F-space satisfies the restricted
Hahn—Banach extension property (that is, if L is an infinite-dimensional, closed subspace and
0 # x € L, then there exists an infinite-dimensional, closed subspace M of L such that ¢ M)
if and only if every infinite-dimensional, closed subspace contains a basic sequence. It turns out
that quite general assumptions, such as the existence of an equivalent pluri-subharmonic quasi-
norm, force the existence of basic sequences. This applies to subspaces of LP for 0 < p < 1 and
more generally to all natural quasi-Banach spaces, where ‘natural’ means ‘subspace of a lattice-
convex quasi-Banach lattice’. Along these lines, we refer to the articles [200, 216] devoted to
quasi-Banach sequence spaces such as 1, (1) and I1(I,) (with 0 < p < 1), which have a unique
unconditional basis up to permutation.

However, minimal quasi-Banach spaces do exist, and the following is shown in [151]: there is
a quasi-Banach space M which contains a one-dimensional subspace E such that every infinite-
dimensional, closed subspace Y of M contains E. In particular, M contains no basic sequence.
Indeed, a basic sequence would provide a decreasing sequence of infinite-dimensional, closed
subspaces with intersection equal to {0}, and this cannot be the case if they all contain E.
Thus M is minimal. The reader may find it amusing to think of that space as a book: it has
many pages but they all meet on the one-dimensional binding.

The proof of this theorem is the culmination of several works, which we now outline. Suppose
that X and Y are quasi-Banach spaces. Then Y is an extension of X by E if Y/FE ~ X; when
FE is one-dimensional this extension is said to be Minimal. The reader should be warned that
the word ‘minimal’ is used here with two different meanings, and to prevent confusion we shall
use an initial capital letter to denote extensions by a one-dimensional space F. A Minimal
extension is usually not a minimal quasi-Banach space, but the above theorem asserts that
this may happen. A Minimal extension is said to be trivial if it splits, that is, if Y ~ X & E.
The case where X is actually a Banach space is important, and indeed Kalton [55], Ribe (51),
and Roberts (53) independently constructed non-trivial Minimal extensions of X = ¢1, thus
solving negatively the three-space problem for local convex spaces.

All Minimal extensions can be obtained in the following way [53]. Let X be a quasi-Banach
space over the field K, and let X be a dense linear subspace of X. A map F': Xy — K is quasi-
linear if: (i) F(ax) = aF(z) for z € X and « € K; (ii) there is C > 0 such that |F(z +y) —
F(x) — F(y)| < C(||z|| + ||y|)) for all (x,y) € X?2. Then one can define a quasi-norm on K & X
by

e, 2)llp =l = Fz)] + [lz]] (e €K, € Xo),

and the completion of K @ X for this quasi-norm is a Minimal extension of X, denoted by
K &r X. Conversely, any Minimal extension of X is obtained in this way, and K &r X splits
if and only if there is a linear map G : Xy — K such that

|F(z) = G(2)| < |zl (x € Xo). (5.1)

This approximation is related to Hyers—Ulam functional stability, for which we refer to (6,
Chapter 15). The Ribe space is then obtained by considering the quasi-linear functional

F(z) = ka log |zg| — (Z xk> log ka
k=1 k=1 k=1

on the dense subspace cgg of finitely-supported sequences in ¢;. Ribe’s function F' is closely
related to Shannon’s entropy function from information theory. This suggests the following
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terminology. Let X be a Banach sequence space. Then the quasi-linear map ® x defined on cf{o

by

o0
Px(x) = sup Zfﬂk log [t|
<13
and extended to coo by setting ®x(x) = Px(xt) — ®x(z7) is called the entropy function of
X (43). We shall see later that this entropy function can be understood as the logarithm of
the sequence space X. For instance,

= T 1
Dy, (z) = Zxk log|:$”| and @y, =~y .
1 1 p

In order to construct a Minimal extension M of ¢; with no basic sequence and such that
M/FE ~ {1, it suffices that every infinite-dimensional, closed subspace of M contains E. This
is reminiscent of the Gowers—Maurey construction (30) of a Banach space Xy without any
unconditional basic sequence, which is such that, for any infinite-dimensional subspaces U and
V of Xanr, we have

inf{llu— ol : wel, veV, ful = ol =1} =0.

Indeed, this condition means that any two such subspaces U and V' almost meet. The point is
now to push the construction to a stage which is impossible to reach in normed spaces, namely
that any pair of infinite-dimensional, closed subspaces actually meet (on the same line E). And
it turns out that Gowers’ modification (28) of the original construction, namely a space X
with an unconditional basis and not isomorphic to its hyperplanes, gives an entropy function
® x which provides a Minimal extension K @¢, ¢; = M with this intersection property [151].
Thus M is a minimal quasi-Banach space. Note that the function ® x = F fails to satisfy (5.1)
when restricted to any infinite-dimensional subspace J of c¢yg or, equivalently,

sup{|F(2)] : x € J, [[z]| <1} = oo,

and hence ®x = F is distorted in the sense of (42).

A minimal quasi-Banach space M is a rather strange object, since every one-to-one
continuous linear map from M into a Hausdorff topological vector space is actually an
isomorphism onto its range. However, existing examples are ‘non-isotropic’, in the sense that
they contain a distinguished line, namely the orthogonal complement of the dual space. It
in not known whether an even stranger example exists which would exhibit this behaviour
everywhere, that is, is there a quasi-Banach space which contains no infinite-dimensional,
proper closed subspace? Note that an algebraic complement of F in Kalton’s space M is a
quasi-normed space with the Hahn—Banach extension property that is not locally convex, and
hence the characterization from [31] requires completeness.

The Ribe space, for instance, is a non-trivial Minimal extension of ¢;. However, there exist
infinite-dimensional quasi-Banach spaces X which are such that every Minimal extension of X
is trivial. Such spaces are called K-spaces in [59], and it is shown in [55] that, for 0 < p < 1, the
spaces ¢, and L,, are K-spaces, from which it follows, in particular, that L,/E is not isomorphic
to L, [59], whenever E is a one-dimensional subspace of L,.

Some Banach spaces are K-spaces: it is shown in [84] that every quotient space of an
Lo-space is a K-space, and in [55] that a Banach space with non-trivial type is a K-space.
In fact, Kalton conjectured that a Banach space is a K-space exactly when its dual space has
non-trivial cotype.

Minimal extensions of L..-spaces are trivial, in other words, all quasi-linear maps on ‘cubes’
are close to linear ones. This creates a link between this field and the Maharam problem,
explored by Nigel Kalton and Jim Roberts, who showed, in particular, that the existence of
a control measure is equivalent to the uniform exhaustivity of the given sub-measure. The
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1300 NIGEL JOHN KALTON, 19462010

Maharam problem has been solved negatively in (59); this shows, in particular, that the
Kalton—Roberts theorem is optimal. For sake of brevity, we simply state the following from [84].

THEOREM 5.1. There is a universal constant K such that, if ¥ is an algebra of subsets of
some set ) and ¢ : ¥ — R is a set function such that

lp(AUB) —¢(A) —p(B)| <1 whenever A,Be¥ and ANB=0,
then there is an additive set function A on X such that |p(A) — M(A)| < K for all A € ¥.

The best value of K belongs to the interval [3/2,45], but its precise value seems to be
unknown.

Let us conclude this section with Nigel’s investigations on the fundamental theorem of
calculus for functions which take values in F-spaces. He shows in [73] that, if X is an
F-space with trivial dual and = € X, then there exists an X-valued dyadic martingale (u,,) with
ug = x which converges uniformly to 0. It follows that, under these assumptions on X, there
exists a non-constant Lipschitz function from [0, 1] to X whose derivative vanishes identically
[73]. This result is used in [157], where Nigel, answering a question of Popov (47), shows that,
if X is a quasi-Banach space with trivial dual, every continuous function from [0, 1] to X has a
primitive. This result contrasts with (2), where it is proved that, if X is a non-locally convex
quasi-Banach space with separating dual, then there is an X-valued continuous function which
fails to have a primitive.

6. Non-linear geometry of Banach spaces

The subject ‘non-linear geometry of Banach spaces’ consists of consideration of a Banach
space as a metric space, and checking how much of its linear structure is determined by the
metric data. In other words, linear isomorphisms are replaced by weaker notions (bi-Lipschitz
or merely uniform isomorphisms), and the question is to determine which properties are stable
under such isomorphisms. Nigel Kalton’s contribution to this subject began in 1998, with the
proof [176] that the class of subspaces of ¢y is stable under Lipschitz isomorphisms, from which
it follows that a space which is Lipschitz-isomorphic to ¢y is already linearly isomorphic to it.
Shortly thereafter came [182], where the results of the first article are significantly deepened,
since it is shown, for instance, that the class of spaces whose Szlenk index is the smallest
possible (namely wp) is stable under uniform homeomorphisms, although it was known since
Ribe’s work (52) that the property of being an Asplund space is not uniformly stable. This
second article leads to a simple and useful idea: asymptotic notions, such as the Szlenk index
or moduli of asymptotic convexity or smoothness, provide natural invariants for non-linear
isomorphisms. In this direction, the best results have again been shown by Nigel. Let us call a
coarse embedding a map f between two metric spaces (M, d) and (N, d) such that

pi(d(z,y)) <6(f(x), f(y) < p2(d(z,y))  ((z,y) € M?),

where p; and p2 are two real-valued functions such that lim; o p1(t) = c0. The map f is
coarse-Lipschitz if there is § > 0 such that py(¢) > At and po(t) < Bt for t > 6. In other words,
a coarse-Lipschitz embedding is a map which is bi-Lipschitz for large distances; such maps
describe the shape of a metric space at a large scale. It is shown in [267] that, if a Banach space
X coarse-Lipschitz embeds into a Banach space Y, then the norms of the spreading models of
X are controlled from below by the modulus of asymptotic convexity of Y, and from above by
the modulus of asymptotic smoothness (provided that Y is reflexive). It follows for instance
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OBITUARY 1301

that, if 1 < p < 00, a Banach space which coarse-Lipschitz embeds into [, is linearly isomorphic
to a subspace of {,,. However, Nigel also constructed two subspaces of [, (for 1 < p # 2 < 00)
which are uniformly (in particular, coarse-Lipschitz) isomorphic, but not linearly isomorphic
[268], in sharp contrast to the Lipschitz case. We refer to (27) for a recent survey on non-linear
geometry of Banach spaces; it focuses on Nigel’s works.

An important feature of Nigel’s contribution to non-linear geometry concerns embeddings
of special metric graphs into Banach spaces and ‘concentration results’ when the target space
satisfies certain properties. Such investigations were motivated, in particular, by attempts to
attack the Novikov conjecture by relating the geometry of groups with coarse embeddings
into Hilbert spaces or super-reflexive spaces (67, 34). Such embedding results are found in
[240], where the Kalton-Randrianarivony graphs Gj(M) (increasing sequences of integers
of length k equipped with a weighted Hamming distance) are used to show that the space
lp, ®lp, ®--- DI, is determined by its nets (in particular, by its uniform structure) provided
that 1 < p; < oo for all i. Nigel also used these graphs (equipped this time with the graph
distance, where two sequences are adjacent if they interlace) to show that, if ¢y coarsely embeds
into a Banach space X, then one of the iterated duals is non-separable, and, in particular, X
is not reflexive [229], although ¢y embeds uniformly and coarsely into a Banach space with the
Schur property [213]. On the other hand, any stable metric space (where ‘stable’ means that
the order of limits can be permuted in limy, lim,, d(xg, y,,) whenever both limits exist) can be
coarsely embedded into a reflexive space [229]. The line of thought that was opened in [229]
leads to the property denoted Q by Kalton, a necessary condition for coarse embeddability
into a reflexive space that could possibly be sufficient as well. The interlacing distance was also
used in [262], being defined this time on increasing sequences of length k of countable ordinals,
in order to obtain non-separable results. And indeed, Kalton shows in [262] that [, /¢y cannot
be uniformly embedded into I, and uses this result to show the existence of a (non-separable)
Banach space which is not a uniform retract (in particular, not a Lipschitz retract) of its bidual;
it is still not known whether such a separable example exists. Along different lines, it is shown
in [256] that, if X is reflexive, then the Szlenk indices of both X and X* are equal to wy if
and only if the tree of finite sequences of integers equipped with the hyperbolic distance does
not Lipschitz embed into X. It follows that this class of spaces, which strictly contains the
super-reflexive spaces, is stable under coarse-Lipschitz embeddings.

We now recall an important open question: let X and Y be two Lipschitz-isomorphic
separable Banach spaces. Are X and Y linearly isomorphic? This problem is open even if
X =¢1(N), or if X and Y are assumed to be super-reflexive. Counter-examples are available
in the non-separable case (1), and the relevance of separability is displayed in [209]. Let
Lipy(X) be the space of real-valued Lipschitz functions on a Banach space X which vanish at
0, and let §(X) be the subspace of Lip,(X)* generated by the evaluation functionals at points
of X. The Dirac map 0 : X — F(X), defined by (g,d(z)) = g(x), has a linear left inverse,
namely the barycentre map (§: F(X) — X, such that 2*(8(n)) = (u,z*) for all 2* € X* and
€ F(X). This setting provides canonical examples of Lipschitz-isomorphic spaces. Indeed, if
we let Zx = Ker 3, then it follows easily from the fact that 3§ = Idx that Zx & X = &(X) is
Lipschitz-isomorphic to F(X).

Following [209], let us say that a Banach space X has the lifting property if, whenever Y and
Z are Banach spaces and S: Z — Y and T : X — Y are continuous linear maps, the existence
of a Lipschitz map £ such that T'= SL implies the existence of a continuous linear operator
L such that T = SL. A diagram-chasing argument shows that &(X) is linearly isomorphic to
F(X) if and only if X has the lifting property.

It turns out that non-separable reflexive spaces, and also the spaces £ (N) and ¢o(T") when
I' is uncountable, fail the lifting property, and this provides canonical examples of pairs of
Lipschitz-isomorphic, but not linearly isomorphic, spaces. In the already quoted article [262],
Nigel, inspired by (9), uses the pull-back operation applied to the exact sequence which defines
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1302 NIGEL JOHN KALTON, 1946-2010

the Johnson-Lindenstrauss space JL, to produce a Banach space which is Lipschitz-isomorphic
to loo @ ¢ without being linearly isomorphic to it. It is still an open question whether [, is
determined by its metric structure. Another use of this technique allowed Nigel to show that,
if X is a non-separable WLD space which contains a subspace isomorphic to cg, then X fails
to have unique Lipschitz structure [262].

On the other hand, every separable space X has the lifting property: to prove this, one can
pick a Gaussian probability measure v whose support is dense in X and use the fact that £
is Gateaux-differentiable. Then L = (£ )’ (0) satisfies the equation T' = SL.

The lifting property for separable spaces forbids the existence of canonical pairs of Lipschitz-
isomorphic, but not linearly isomorphic, separable spaces. However, on the other hand it leads
to positive results: for instance, if X is a separable Banach space and there exists an isometric
embedding from X into a Banach space Y, then Y contains a linear subspace which is isometric
to X [209].

Free spaces constitute the proper framework for showing the gap which separates Holder
maps from Lipschitz ones. This is done in [213]. Suppose that (X, | -]|) is a Banach space
and that w : [0,00) — [0,00) is a sub-additive function such that lim; o w(t) = w(0) = 0 and
w(t) =t for t > 1. Then the space Lip,(X) of (w o d)-Lipschitz functions on X which vanish
at 0 has a natural predual, denoted by F,(X), and the barycentric map 3, : F,(X) — X
(whose adjoint is the canonical embedding from X* to F, (X)) is still a linear quotient map
such that 3,0 = Idx. However, the Dirac map § : X — F,(X) is now uniformly continuous
with modulus w, for example, a-Holder when w(t) = max(t*,t) with 0 < o < 1. Uniformly
continuous functions fail the differentiability properties that Lipschitz functions enjoy, and
thus one can expect that this part of the theory is more ‘distant’ from the linear theory than
the Lipschitz one. It is indeed so, and Kalton showed [213, Theorem 4.6] that, if w satisfies
lim; o w(t)/t = oo, then F,(X) is a Schur space, that is, weakly convergent sequences in
F.(X) are norm-convergent. It follows from this theorem that the uniform analogue of the
lifting property fails unless X has the (quite restrictive) Schur property. Moreover, F,(X)
is (3w)-uniformly homeomorphic to X & Ker f3,,, and, as soon as lim; _,ow(t)/t = co and X
fails the Schur property, we obtain canonical pairs of uniformly (even Hélder) homeomorphic
separable Banach spaces which are not linearly isomorphic. We refer to (52, 33) for other
examples of such pairs.

Along with Hoélder maps between Banach spaces, one may also consider Lipschitz maps
between quasi-Banach spaces, and this is done in [252], where similar methods provide
examples of separable quasi-Banach spaces which are Lipschitz, but not linearly, isomorphic.

7. Interpolation, twisted sums, and the Kalton calculus

The Banach—Mazur functional dgj; is a classical tool for estimating the ‘distance’ between two
isomorphic Banach spaces, and similar functionals such as the Lipschitz distance dj can be
defined when more general notions of isomorphisms are taken into consideration. But in [172]
‘distances’ are defined between spaces which are not isomorphic, but are somewhat similar,
such as £, and ¢, when p and ¢ are close to each other. Indeed, if X and Y are two subspaces
of a Banach space Z, let A(X,Y) denote the Hausdorff distance between the closed unit balls
Bx and By, that is

A(X,Y) =maxq sup inf |x— sup inf —xl ¢
() =mac{ swp inf oyl sup int ]|
The Kadets distance dg (X,Y’) is the infimum of A(X,Y) over all Banach spaces Z containing
isometric copies X and Y of X and Y, respectively. The Kadets distance is a pseudo-metric
which is controlled from above by dgas, but there are non-isomorphic Banach spaces X and
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OBITUARY 1303

Y such that dg(X,Y) = 0. The Gromov-Hausdorff distance dgp is the non-linear analogue
of the Kadets distance, defined along the same lines, except that the infimum is taken over
all metric spaces containing isometric copies of X and Y. Of course, dgy < dx and, for
instance, dgg (p, 1) — 0 as p — 1, while dk (¢, ¢1) = 1 for all p > 1. However, if X is a K-
space, then dgy(X,,X) — 0 implies that dx(X,,X) — 0. This can again be understood as
an ‘approximation by linear maps’ on K-spaces.

Interpolation theory provides families of Banach spaces which are not isomorphic, but
tightly related, and the Kadets distance will make this remark precise, and usable. Moreover,
interpolation leads to a ‘differential calculus’ on the ‘manifold’ of Banach spaces. We shall
outline how Nigel Kalton’s vision created links between this calculus, twisted sums, and
quasi-linear maps.

Complex interpolation studies analytic families of Banach spaces. Let us restrict our
discussion to a very important special case. Let W be some complex Banach space, and let
Xo and X; be two closed subspaces of W. We set S ={z¢€ C:0< Rz < 1} and write § for
the space of analytic functions F : S — W which extend continuously to S and are such that
{F(it) : t € R} is a bounded subset of Xy and {F (1 +it): ¢t € R} is a bounded subset of Xj.
The space § is normed by

1Flls = max sup{| P +it)x, st € R},

For 6 € (0,1) and x € W, we define |z|/p = inf{||F||z : F(0) = z} and
Xo={z e W:|z|p < oo}

Set Wy = span{Xyp : 0 € (0,1)}. A linear map T : Wy — Wy is interpolating if F'+—— T o F' is
defined and bounded on §. If T' is interpolating, then T'(Xy) C Xy for all 6 € (0, 1).

The above space Xy = [Xo, X1]p is said to be obtained from X, and X; by the complex

interpolation method. It turns out that the Kadets distance is the right tool for discussing con-
tinuity properties of interpolation. Indeed, the following is shown in [172]: for 0 < 6 < ¢ < 1,
we have
sin(r(p — 6)/2)
sin(m(e +6)/2)
This continuity of the interpolation method with respect to the Kadets distance permits us to
apply connectedness arguments. Indeed, let us call a property (P) stable if there exists a > 0
so that Y has (P), whenever X has (P) and dx(X,Y’) < a. For instance, each of the following
properties (P) is stable: separability, reflexivity, X D ¢y, super-reflexivity, and type(X) > 1.
Connectedness thus shows that, if 0 < § < 1 and Xy = [Xo, X1]p has (P), then X, has (P) for
every ¢ € (0,1).

This line of thought opens an exciting field of research. It can be shown that the connected
component of any separable Banach space X contains all isomorphic copies of X. It follows
from (45) that the connected component of /o contains all super-reflexive Banach lattices,
but it is not known whether it contains all super-reflexive spaces. It is conjectured that the
component of ¢y consists of all spaces isomorphic to a subspace of ¢g. These concepts are also
relevant to non-linear isomorphisms: it follows from instance from Sobczyk’s theorem that,
if dgp(Xn,co) — 0, then we have not only that dx (X,,,co) — 0 (since ¢y is a K-space), but
actually that dpar(Xp,co) — 0 [172]. This implies for instance that, if the uniform distance
between X and ¢ is small, then X is linearly isomorphic to ¢y [182, Theorem 5.7]. It is not
known whether a space which is uniformly homeomorphic to ¢ is linearly isomorphic to cg.

The Kadets and Gromov—Hausdorff distances are clearly topological notions, but interpola-
tion points to some kind of differential structure, which we shall now briefly describe. Minimal
extensions have been discussed in §5. Let us say more generally that, if X, Y, and Z are
quasi-Banach spaces, then Z is an extension of X by Y if Z/Y ~ X. An extension Z is also

dr (X9, X,) <2
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called a twisted sum of X and Y (a non-trivial twisted sum if Y is not complemented in 7).
We refer to (12) for a comprehensive survey of this matter.

Quasi-linear maps 2 : X — Y were defined in §5. The extension X Gq Y of X by Y is the
space X @Y equipped with the quasi-norm given by ||(z,y)| = ||z] + |ly — Qz||. Even when
X and Y are Banach spaces, X @®q Y is not necessarily a Banach space: it is a Banach space
if there exists C' > 0 such that

Z Q(zr) — Q2 (Z l“k)
k=1 k=1

for all sequences all (x)) in X. The latter condition always holds when X is a K-space [55].
Indeed, every extension can actually be obtained with such an Q: if ¢ : Z — X is the quotient
map, take Q = S — R, where ¢S = qR = Idx, the map S is homogenous (but not necessarily
linear) such that ||Sz|| < 2|z||, and R is linear (but not necessarily continuous). As in the case
of Minimal extensions, the existence of a bounded linear projection from X @©q Y onto Y is
equivalent to the existence of C' > 0 and a linear map L : X — Y such that |[|Qx — Lz|| < C||z]]
for all x € X.

When X =Y, the space X @ X is called a self-extension of X; this space is denoted by
X P X =doX. When X = /5, a non-trivial self-extension of ¢5 is called a twisted Hilbert
space. It was shown in (20) that such spaces exist. An alternative example, the Kalton—Peck
space Zs, is constructed in [60] with the help of the Ribe functional (see §5). Indeed, let

Q : 4y — RN be defined by
- cru(8)),
n>1

The space Zs = dgls is therefore the space of pairs (£,7) = ((£), (nn)) of sequences such that

N 12 - o\ 1/2
|(§,n)ll=<2|fn|2> +<Z "n“fnlog(ETQ)) -

n=1 n=1

Of course, Z5 is a Banach space since ¢5 is a K-space. This Kalton—Peck space Zs exhibits
remarkable features, which are not yet fully understood. It is plain that Zs has an unconditional
finite dimensional decomposition (F.D.D.) consisting of two-dimensional spaces; however, it has
no unconditional basis and no local unconditional structure (32). Actually, an unconditional
F.D.D. with spaces of bounded dimension provides an unconditional basis which can be chosen
from the subspaces if the space has local unconditional structure [154]. It is unknown, however,
whether a twisted Hilbert space can have local unconditional structure; the best result so far
is that it has no unconditional basis in full generality [202]. The space Z5 is also an example
of a symplectic Banach space which is not the direct sum of two isotropic subspaces [80]. In
fact, intuition suggests that the space Zs is ‘even-dimensional’, and thus that it should not
be isomorphic to its hyperplanes: this 40-year-old conjecture is still open, although examples
of infinite-dimensional Banach spaces which are not isomorphic to their hyperplanes are now
known (28). In fact, there are (non-separable) C(K) spaces which are indecomposable and not
isomorphic to their hyperplanes (37, 46), and even with a minimality property (4). We note
along these lines that spaces with two-dimensional unconditional F.D.D., but no unconditional
bases, show up in the classification results shown in (35), which play a crucial role in Gowers’
homogeneous space theorem (29).

As so often in Nigel Kalton’s work, the conceptual framework in which the construction
is completed provides flexibility, and leads to more results. Suppose that F: R — C is any
Lipschitz map and that F is a Banach sequence space. Set

Qr(€) = (snF <1og |||§ﬁE

<OY el (n=1)
k=1

)) and dQFEZEEBQF FE.
n>1
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Taking E = f5 and F(t) = t'7® (a # 0) provides a complex Banach space Z(a) which is not
complex-isomorphic to its conjugate space Z(a) = Z(—a) [147]. The existence of such spaces
had been shown in (8, 58) by probabilistic methods. We refer to (21) for work on this topic
and the existence of Banach spaces with exactly n complex structures for any given integer n,
and also to (22).

The notation doX is reminiscent of differential calculus, and this is not by chance. With the
above notation of the complex interpolation method, and following (55), we define a subspace
dXp (called the derived space) of W x W by dXg = {(x1,22) : |[(z1,22)|lax, < o0}, where

(1, 22)llax, = mE{|[Fllg = F(9) = 21, F'(6) = x2}.

The space Y = {(x1,22) € dXp : x; = 0} is isometric to Xy, and so is dXp/Y. Hence dXy
is a self-extension of Xy. By the above, one has dXy = dy Xy for some quasi-linear map
Q: Xy — W; actually, Q(z) = F'(0), where F € § is such that | F||z < C||z|ls and F(0) = =z,
does the work. Now, if T' is an interpolating operator, then (21, z2) — (Tz1, Tx2) is bounded
on dXy, and this yields the Rochberg—Weiss commutator estimate:

IT(Qx) = Q(Tx)llo < Cllzlle  (z € Xp).

The sequence spaces £, where 1 < p < oo, provide first examples of interpolation lines,
and the above calculations applied to Xg = ¢; and X; =/, provide the Kalton—Peck space
Z3 = dXy5, and more generally the spaces Z, (which are twisted self-extensions of [,) are
the derived spaces to this interpolation line. Similar calculations are possible for the function
spaces L,(T). For this interpolation scale, the Hilbert transform H is a very important example
of an interpolating operator, and in this case the commutator estimate becomes

IH(flog|f]) = H(f)log [H(lllp < Collfllp  (f € Lyp(T))

for 1 < p < 0o and some C), < oo.

Following [111, 130], we now relate this differential calculus with the entropy functions
defined in §5. If Xy and X; are separable sequence spaces, then the interpolation spaces Xy
are given by the Calderén formula Xy = X0176X19, that is,

. _0 _
lzllo = inf{llzollo™"llz1 ]I+ |a| = |wol*~?|a1]"}.

The entropy function ®x can conveniently be described as the logarithm of the sequence space
X. Indeed one has ®x, = (1 — 0)Px, + 0Px,, and, by the Lozanovskii factorization theorem,
Ox + &x- = &y, where &y, is the Ribe functional, whilst one also has ®, = (1/p)®y,, as
in §5, and ®,_ = 0. It now becomes natural to see the Hilbert space as the geometric mean
between any sequence space X and its dual X*. The map ‘X +— ®x’ is logarithmic-like, but
in order to complete the picture we need conversely an exponential function which maps a
quasi-linear map ® to a Banach space. Suppose that ® : ca'o — R is any functional. Then there
exists a Banach sequence space X such that ®x = ® if and only if ® and ®,, — ® are both
convex functions and ® is positively homogeneous [130], and this space X has closed unit ball

(o)
Bx = {(xk) : Zuk log |zk| < ®(u) for all u > 0} .
k=1

This exponential map leads to what I suggest be called the Kalton calculus. It bears an
uncanny resemblance to the exponentiation map from a Lie algebra to its Lie group, and
creates ‘lines’ from infinitesimals; in other words, it yields extrapolation. For instance, if X is
p-convex for some p € (1,2) and also p*-concave, then X = Y/P for some sequence space Y,
and so (1/p)®y, — Px is convex. Similarly, p*-concavity means that (1/p)®y, — P x~ is convex.
Now the equation

Dx = (1—0)® + 0D, = (1— 0)® + g%
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1306 NIGEL JOHN KALTON, 19462010

provides a convex function ® such that ®,, — ® is also convex, and thus ® = ®, for some Z.
Exponentiating, we find that X = Z'=949, a result from (45).

To close the circle of ideas relating the entropy functions with derived spaces, we note that,
if Xg = Xg_gXl‘g7 then dXy = do Xy = Xg ®q Xy, where the quasi-linear map €2 satisfies

(2%, Q) — B(zz”)| < Cllzlx, |27 || x; -

Here ® = &x, — ®x, and xx* denotes the pointwise product of the sequences x and z*.

Special properties of the derived space do Xy can ‘spread out’ by exponentiation to a segment
{X,: | —0] <e}. Indeed, if Xy and X; are acceptable function spaces on T and if R is
the vector-valued Riesz transform, then R is bounded on X, for |§ — 6| < § if and only if
[RQ — QR x, < oo. It follows that there exist twisted Hilbert spaces which are not UMD
[130], although Z5 is UMD [104].

We note at this point that higher-order derivatives can be considered, and this has been
done, for example, in (10, 54).

As seen before, differentiating interpolation lines yields quasi-linear maps 2 with dXy =
doXyg. If for instance X is obtained from X, through a change of weight, then the map
enjoys a commutation property, namely

[92(az) — aQ(z)[|x, < Cllalloo||#]|x,-

These special maps are called centralizers in [111], and the corresponding space doXp is a
lattice twisted sum. Note that the Kalton calculus, which we displayed here (following [204])
for sequences, is designed for function spaces, and this is what is done in [111, 130]. Centralizers
yield to extrapolation results: if, for instance, X is a super-reflexive sequence space and {2 is a
real centralizer on X, then there exist super-reflexive Banach sequence spaces Xy and X such
that X = X(}/2X11/2 = Xy/2 and moreover dX;/; =~ doX. The Rochberg—Weiss commutator
estimates now state that, if Xy = Xé_eXf and dXy = do Xy, then

IT(Qz) = Tz)||x, < Cllzllx,

for interpolating operators T. When, for instance, (2 is a centralizer, this estimate says that
nearly commutes not only with multiplication operators, but with all interpolating operators.

At this point, the extrapolation technique allows a change of perspective: starting from
an operator 7' on X, Kalton considers all pairs (X, X;) such that X = Xé_eXf and T is
interpolating between X and X, and he obtains a whole family of estimates on 7. Doing this
for X =/, yields the family of quasi-linear maps

D(u) = unG(log |unl),
n=1

where G runs through the family G of 1-Lipschitz maps with compactly supported derivative
from R to R. This leads to consideration of the quasi-Banach space h}"™ consisting of sequences
& such that

€]

pym = k| + sup @5 (§) < oo.
! ,; Geg

This ‘tangent space’ h¥™ is conveniently described as the space of all sequence (&) in ¢; such
that

oo

Z%|€1+§2+-~-+£n|<oo.

n=1
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OBITUARY 1307

The same construction applied to function spaces leads to the symmetric Hardy function space
HL  (u) of all functions f € L'(u) such that

sym

1|1z,

sym

— {11+ sup [ 171610g 1) dis < o
Geg

Commutator estimates on interpolating operators are then used in [111] to show that, if
l<po<p<p<oocandp '+q¢gt=1andif T: Ly, — Ly, is a bounded linear operator for
7 =0,1, then the bilinear form

BT:(fvg)'—’f'T*g_g'Tfa LpXLq_>H1

sym?

is bounded (where the above dot denotes the pointwise product of functions).
The above theorem can be applied to a variety of interpolating operators. When applied to
the Riesz projection onto L?(T), it gives the inequality

< CO|fl2llgll2 - (f,9 € H'(T) with g(0) = 0).

Since H} = H? - HZ, one obtains the inequality |7l 3, < Cllh]l1 for every function h € H!
with /(0) = 0; this was first shown in (13, 14). h

The ideas developed above have non-commutative analogues, and the bridge which brings
us to the non-commutative world is the concept of trace. If X is a symmetric Banach sequence
space, then we denote by Cx the space of all operators T on ¢ whose sequence ($,(T"))n>1 of
singular numbers belongs to X. When Xy and X; are reflexive, we have

1/ gl ez

sym

Ol = Cgooxg = Co

and interpolation tools apply to the spaces Cx.

Let C;, = Cy be the ideal of trace-class (or nuclear) operators on ¢3. A trace on C; is a
linear map 7 such that 7(AB) = 7(BA) for all A€ C; and all bounded operators B. We
write Comm(Cy) for the linear span of all commutators [A, B] = AB — BA with A € C; and B
bounded. Clearly, if S € Cy, then S € Comm(Cy) if and only if 7(S) = 0 for every trace 7. It
was shown in (64) that Comm(C) is strictly contained in {T" € C; : 7(T') = 0}, or, equivalently,
that there exist discontinuous traces on Cy. The precise description of Comm(C;) was obtained
in [117] by interpolation arguments, and reads as follows:

THEOREM 7.1. Let T € C; be a trace-class operator. Then T' € Comm(C;) if and only if
its eigenvalue sequence (A, (T))n>1 belongs to hl .

It was shown in [117] that every T € Comm(C;) is the sum of 6 commutators, but this
number has now been reduced to 3, and the case of general ideals of operators is also treated in
(17) and [165, 166]. We refer to [120] for characteristic determinants of trace-class operators
and their use in this context. Alain Connes’ trace theorem is extended in [269], and it is shown
there that pseudo-differential operators of order (—d) on R% do not have a unique trace.

8. Multipliers, and some of their uses

Bases are valuable tools for computing in linear spaces and for representing (or defining) linear
operators. Nigel Kalton’s experience of all the subtle properties of bases allowed him to attack
successfully a number of problems through original constructions of ‘diagonal’ operators.

We shall begin with Hilbertian theory. A linear operator 7' on a complex Hilbert space H
is power bounded if sup, oy ||[T"|| < co. A classical theorem of Rota (56) shows that power-
bounded operators are similar to operators of norm close to 1. A stronger requirement would
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1308 NIGEL JOHN KALTON, 19462010

be to show that a power-bounded operator T is similar to an operator such that sup, oy || 17|
is close to 1; whether this is always possible is a question that was asked by Peller (44). Basis
theory joined forces with harmonic analysis to provide a negative answer to Peller’s question
in [195].

A weight w on T is a non-zero function from L*(T) with w > 0. We denote by L?(w) the
corresponding weighted L2-space, and set

H?(w) = span{e™ :n >0} C L*(w).
The Riesz projection is formally defined on L?(w) by
R: Y fmemt — 3 fm)e, 13 (w) — H(w),
ne”Z n=0
and w is called an Ap-weight if R is a bounded projection, with norm || R||,,. Take ¢ € [0,7/2).
Then [195, Proposition 2.2] proves the following Helson-Szegd estimate: ||R||,, < (cosp)™t if

and only if there exists h € H*(T) with |w — h| < wsing. In the case where o € (0,1) and
w(e?) = |0]* for § € (—m, 7], this estimate leads to the formula

1
cos(ma/2)’
where v ~ w means that w/v and v/w both belong to L>(T).

We consider a basis (en)n>0 of a separable Hilbert space H, and call T : H — H a fast
monotone multiplier (with respect to (e, )) if

T (Z akek> = Z )\kakek
k=0 k=0

for an increasing sequence (M) in (0, 1) such that

1— X
lim — =0.
kLH;o 1— A1

inf{||R||, : v~w}=

Easy computations then show that sup,,>, [|7"| is at most equal to the basis constant b of (e, ).
If we now consider the (usually conditional!) basis (ex)r>0 of H?(w), where w is an As-weight,
and we set ex(0) = e**? for k > 0, then this basis constant is b = || R||,.

The main result of [195] implies, in particular, the following theorem.

THEOREM 8.1. Let a € (0,1), and set wy(e?) = |0|* for § € (—m,n]. Let T be a fast
monotone multiplier with respect to the basis (e, )n>0 of H*(w,). Then T is power bounded,

and
1

. -1 n = 5
1gf {:lelgu(A TA) H} ~ cos(ra/2)’

where the infimum is taken over all invertible operators A.

Therefore, a negative answer to Peller’s question is obtained with fast monotone multipliers
with respect to Babenko’s conditional bases of H (5). More general weights are also considered
in [195], which show that the infimum is usually not attained in Theorem 8.1.

Multipliers can also be unbounded, and such objects provide a negative answer to another
important open question. We consider the following Cauchy problem:

u'(t) + Bu(t) = f(1),

with the initial condition w(0) = 0. Here ¢ € [0,T"), —B is the closed, densely-defined infinites-
imal generator of a bounded analytic semi-group on a complex Banach space X, and u and f
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OBITUARY 1309

are X-valued functions on [0, 7). One says that B satisfies maximal regularity if v’ € L*(X) as
soon as f € L?(X). Hence maximal regularity refers to a property of linear partial differential
equations of the form Oyu = Lu+ f, and states that the time derivative of the solution u
belongs to the same space as the forcing term f. Such a regularity is useful for solving related
non-linear problems. When X is a Hilbert space, every such B has maximal regularity (57),
and the question of the converse occurs, in particular when X = LP with 1 < p < co. A quite
general answer is obtained in [177].

THEOREM 8.2. Let X be a Banach space with an unconditional basis. Then every closed,
densely-defined operator B such that —B generates a bounded analytic semi-group on X has
maximal regularity if and only if X is isomorphic to a Hilbert space.

The proof goes as follows. Suppose that B satisfies maximal regularity. Then solving the
Cauchy problem for well-chosen functions f € L?(X) shows that, for every X-valued trigo-
nometric polynomial g(t) = 3 §(n)e’™?, one has

Z in(in + B) " g(n)e™?
nez

< Cligllza(x)-
12(x)

This is applied to closed, densely-defined operators B of the form

S )
B: E An€n 4 g apbpen,
n=1 n=1

where (e,,) is an unconditional basis of X and (b,,) is an increasing sequence of positive real
numbers. Any such multiplier B = M((b,,)) is sectorial of type w for each w € (0,7) and, in
particular, — B generates a bounded analytic semigroup. Note that when the sequence (§(n))
is unconditional, we have

gl = |3 o) -

Then the maximal regularity inequality applied with a proper choice of the scalar sequence
(b,,) shows after some work that, for any block basis (u;) of any permutation (e ,)) of (e,),
the space span{u;} is complemented in X. It then follows from (41) that (e;) is equivalent to
the canonical basis of ¢ or £, for some p € [1,00). Since £, ~ (3_, -, %), has non-equivalent
unconditional bases whenever 1 < p < oo and p # 2, it follows that X is ¢g, 1, or £5. Finally,
¢o and ¢ can be discarded with the help of a multiplier relative to the (conditional) summing
basis of ¢y.

Since the Haar system is an unconditional basis of LP, Theorem 8.2 answers negatively
the maximal regularity problem for LP when 1 < p < oo and p # 2. The case of L' had been
covered in (39). The unconditionality assumption in Theorem 8.2 can be weakened, but it is not
known whether the conclusion holds for every space X with a basis (see [193]). The discrete-
time analogue of the maximal regularity problem, which presents some specific difficulties, has
been investigated in (7, 48, 49, 249).

9. Differential equations

The maximal regularity problem can be phrased more generally as follows: When can we ‘solve’
an equation

Au+ Bu=f
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1310 NIGEL JOHN KALTON, 1946-2010

for commuting sectorial (unbounded) operators A and B on a Banach space X by the ‘formal’
solution’ u = (A + B)~1 f? For this, we must be sure that u € D(A) N D(B) and, moreover,
that

[Au]l + [|Bul| < [|Au + Bul. (9-1)

We recall that an operator A is sectorial of angle w if the spectrum o(A) is contained
in a sector £, = {A € C: Jarg \| <w} U {0} and further satisfies the resolvent estimate that
(A=A <A for A ¢ 2. Let w(A) be the infimum over all such w. The special case
where —A generates an analytic semigroup e ** on a Banach space Y and B is the time
derivative 9; on X = LP([0,T],Y) is precisely the ‘maximal regularity property’ of A.

The maximal regularity property for operators in UMD spaces X was characterized in (63) in
terms of R-sectoriality. A set 7 of bounded operators on X is R-bounded if, for all Ty, ..., T, € T
and z1,...,2, € X, we have

E Z Ejﬂxj
Jj=1

where (¢;) is a sequence of Rademacher functions or, equivalently, an independent sequence of
Bernoulli random variables. A sectorial operator A is R-sectorial if, for some v > w(A), the set
{AR(N\,A) : A ¢ ¥, } is not just bounded, but an R-bounded set. Again wgr(A) is the infimum
over all such v. Lutz Weis showed in (63) that, if A is the generator of a bounded analytic
semigroup on a UMD space X, then maximal regularity of A is equivalent to its R-sectoriality.

This characterization of maximal regularity hinted at the following theorem for operator
sums [187]: if A and B are resolvent commuting operators on a Banach space X, if B has a
bounded H°-calculus on %, and A is R-sectorial with wr(A) 4w < 7, then A + B is closed
on D(A)N D(B) and (9.1) holds. The strength of this theorem lies in the asymmetry of the
assumptions on A and B; in applications, B is usually a ‘standard’ operator such as a partial
derivative or the Laplace operator for which the boundedness of the H°°-calculus is well known,
whereas A may be a differential operator with rough coefficients.

Here, as well as in results on maximal regularity and Fourier multiplier theorems on Bochner
spaces (see, for example, (15, 38)), R-sectorial operators ‘behave’ like Hilbert space operators.
So, when extending Hilbert space results to a Banach space setting, one can often ‘replace’ the
missing Hilbert space structure by assuming R-boundedness instead of norm-boundedness for
the relevant set of operators. This phenomenon is explained by the following theorem, taken
from [272].

n
SE E ijj ,
j=1

X X

THEOREM 9.1. Let X be a Banach space of finite cotype, and suppose that T C B(X) is
an R-bounded set. Denote by T the closure of absco(T) in the strong operator topology, and
define ||T|| = inf{\ > 0: A™1T € 7} on the linear span B, of 7 in B(X). Then there exists a
subalgebra B of B(H) for some (abstract) Hilbert space H, a bounded linear map o : B, — B,
and a continuous algebra homomorphism p : B — B(X) such that (poo)(T)=T (T € B,),
lpll < 2. and o] < 4R(r).

So R-boundedness is a rather strong property for a set 7 of operators because it implies
that 7 is closely related to a set of Hilbert space operators. At the same time large classes of
operators central to spectral theory, evolution equations, and harmonic analysis are known to
be R-bounded. We refer in particular, to [201, 226, 231, 235, 272, 273] for the articles which
followed [187].

It should be mentioned that much earlier in his career, Nigel Kalton had met differential
equations in a quite different context. Optimal control considers a system of ordinary differential

a9 '¥10C '02T269rT

jo|//:sdny wiosy

TTT'0T/10p/wo A3 I A:

85U8017 SUOWWOD dANERID 3|qedtjdde auyy g peusenoB a2 s3ole VO ‘8 J0 S3|N1 10} AfeiqiT 8UlUO A3]1M UO (SUONIPUOD-pUE-SLLIBI WD A3 1M ARe g1 joul|UO//SdNY) SUONIPUOD Pue SIS | 84} 885 *[520Z/0T/0E] U0 Akeiqi auluo A3|1M ‘80Us|[BOX3 212D PUe L3[EaH 10 aimiisu| feuolieN ‘IDIN Ag Ggo!



OBITUARY 1311

equations over a time interval I = [0, 1]:

— = [tz y(t)). (9:2)

Here x e R™ and f: I xR™ x Y — R™ is a continuous function which is Lipschitz in z. At
each time t € I a controller chooses measurably y(t) from a compact metric space Y. Given
xo € R™, there is a trajectory z(-) satisfying (9.2) for any such ‘control’ y(-). We assume that
there is an associated total ‘reward’:

1

<Xw=g@UD+Lh@x®w@D&,

where the functions g and h are assumed to satisfy suitable continuity conditions. Control
theory discusses how the control y(-) should be chosen at each time ¢ € I to maximize C(y).

A chess player such as Nigel was bound to get involved in game theory. And indeed, the
articles [11, 13| investigate problems which links control theory with non-discrete extensions
of von Neumann’s game theory and his saddle-point result. In a two-person, zero-sum
deterministic differential game, there are two controllers, or players, J; and Jo. At each time
t € I, player J; chooses an element y(t) from a compact metric space Y and Jy chooses an
element z(t) from a similar space Z. The dynamics are now given by

— = f({t,z,y(t), 2(1))- (9-3)

The ‘reward’ for player J; is given by
1

H%@zmmm+Lhmﬂmmmdmw.

The game is zero-sum, and so what is gained by Jj is lost by Jo, and vice versa. Therefore, J;
will choose the control y(-) to maximize P(y, z), whilst Jo will choose z(+) to minimize P(y, z).
An initial problem is how to model dynamically the choice of control values by J; and Js as
time evolves. The players do not know in advance the control values chosen by their opponent.
However, each player should react to the other’s choice as time evolves.

Nigel Kalton and Robert Elliott proceed as follows. Let M; (respectively, Ms) be the set of
measurable functions y : I — Y, (respectively, z : [ — Z). A function « : My — M is a pseudo-
strategy for Jp. It produces a ‘reply’ in M; to any control function z(-) chosen by Jy from M.
A pseudo-strategy « has a value

ue) = inf Plaz,2),

which is the worst outcome for J; if « is used. However, o does not know future values of z(+),
and so « : My — M is a strategy if, whenever 0 < T < 1 and 21 (t) = 25(¢) for 0 < t < T, then
(az1)(t) = (vz2)(t). Similar definitions are given for strategies 8 : My — My for Jo. Writing T
(respectively, A) for the set of strategies for J; (respectively, for J3), the value of the game to
Ji is U = sup,cp u(). Similarly, the value of the game to Js is

4 522@(@ Juf sup P(y, By).
These strategies are now called Elliott—Kalton strategies in the literature (see (23)).

If U =V, then the differential game is said to have a value. Rather than considering the
dynamics (9.3) starting at time ¢ =0 and location zy € R™, we can consider games with
dynamics starting at ¢ € [0, 1] at position 2 € R™. This gives rise to similar quantities U (¢, x)
and V (¢, z). It turns out (see (18)) that V (¢, z) is a viscosity solution of the equation

OV/ot + minmax((VV - f)+h) =0
=y
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1312 NIGEL JOHN KALTON, 1946-2010

with V(1,2) = g(x) and, similarly, U(t, z) is a viscosity solution of
oU /ot + mjxmzin((VU -f)+h)=0
with U(1,x) = g(«). The Isaacs (saddle point) condition holds if
minmax((p- ) + h) = masmin((p - f) + 1) (p €R™)

It is shown in [13] that, if the Isaacs condition holds, then U(t,x) = V (¢, z) and the game has
a value. More generally, the domains of f and h can be extended to the sets of probability
measures on Y and Z, respectively, and [13] then shows that, if the players J; and Js use such
relaxed controls, then the Isaacs condition always holds and the game has a value.

We refer to [16, 19, 22, 27, 28, 29, 30, 32, 35, 36| for subsequent articles on differential
games, most of these being joint works with Robert Elliott.

10. Greedy bases

When Banach spaces are used in applied mathematics, coordinate systems are usually needed.
Schauder bases constitute the primary way for providing such coordinates, and this leads to
many theoretical as well as practical problems. Nigel Kalton contributed very significantly to
every subfield of the study and use of Schauder bases, as can be checked throughout this survey
of some of his works. In this respect, one should single out the article [192] and its links to
Casazza’s fundamental contributions to frame theory. We focus in this section on a part of
Nigel’s work which is clearly directed towards numerical analysis and concrete applications.

Let (e;) be a normalized Schauder basis for a Banach space X with dual basis (e]). For
x € X, the error in the best n-term approximation to x is given by

xr — E a;€;

€A

on(x) = inf{

ta; €R, |A|<n}.

The Thresholding Greedy Algorithm (TGA) was introduced by Temlyakov (60) for the
trigonometric system and extended to the Banach space setting by Konyagin and Temlyakov
(36). See (61) and the recent monograph (62) for a history of the problem and for background
information on greedy approximation. The TGA is defined as follows. For z € X and n € N,
let A, (2) C N be the set of indices corresponding to a choice of the n largest basis coefficients
of = in absolute value, that is, A, (z) satisfies

min{lej (z)]: i € An(2)} > max{lej(z)[: i ¢ An(2)}.

We call G, (z) := ZieAn(x) ef(x)e; an nth greedy approximant to x, and say that the TGA
converges if G,,(x) — x. Note that these operators G,, are not linear, and that G,,(z) is well-
defined only if the above inequality is strict.

In (66), it was proved for the multi-variate Haar system, normalized in L]0, 1]d, with d > 1
and 1 < p < oo, that there is a constant C' > 0 such that

lz = Gu(@)]l < Con(z) (z € Ly[0,1]%).

The case where d = 2 is especially interesting for its applications to image compression. A
basis is said to be greedy (or C-greedy) if it satisfies such an inequality. More generally,
basis (e;) is quasi-greedy if there exists K < oo such that, for all x € X and n > 1, we have
|G (z)]] < K|jz||. By a result of Wojtaszczyk (66, Theorem 1) a basis (e;) is quasi-greedy
if and only if the TGA converges for all target vectors z € X. Greedy bases are precisely the
bases for which the TGA essentially provides a best n-term approximation to any target vector
x (up to a factor of the greedy constant C').
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OBITUARY 1313

Konyagin and Temlyakov (36) showed that a basis is greedy if and only if it is unconditional
and democratic, where (e;) is democratic with constant A if, for all finite subsets A and B of
N with |A| = |B|, we have

Zei <A

i€A

S

i€B

It is clear that an unconditional basis is quasi-greedy, but the converse is false, even in a
Hilbert space (66).

The article [205] introduces a property that is intermediate between quasi-greedy and greedy.
A basis is almost greedy if there is a constant C' such that ||z — G, (2)| < C&,(x), where we

let
c A < n} .

A major theme of this work is the performance of the TGA in the case of an almost greedy
basis. In this direction, the main result, from [205], is the following important characterization
of almost greedy bases in the spirit of the characterization of greedy bases given by Konyagin
and Temlyakov.

x — Z ep(x)eg

keA

Fn(x) = inf {

THEOREM 10.1. Suppose that (e;) is a basis of a Banach space X. Then the following are
equivalent:

(a) (e;) is almost greedy;
(b) (e;) is quasi-greedy and democratic;
(¢c) for any (respectively, every) A > 1, there is a constant C = C such that

[ = Gpmy (@) < Cxom(z)  (x € X).

What matters now is that many classical Banach spaces which do not have an unconditional
basis (and thus have no greedy basis) can be shown to admit an almost greedy basis. For
instance, a space X with a basis such that X contains a complemented subspace with a
symmetric basis and has finite cotype has an almost greedy basis [208], and this applies, in
particular, to L;[0, 1] and to the Schatten ideals S,,. However, the Haar basis is not quasi-greedy
in L1[0, 1], and it seems to be an open problem to find a ‘natural’ quasi-greedy basis of that
space. Clause (c) of the above theorem is important because it implies that the TGA, while no
longer optimal (up to the greedy constant) for m-term approximation, nevertheless performs
very effectively. Setting for instance A\ =2, we see that the greedy approximant Ga,,(x)
provides an approximation which is essentially as good as the best m-term approximation.
The convergence of various greedy algorithms is also investigated in [207].

In the paper [208], Kalton and his collaborators also studied the thresholding operators
defined by

Golx) = Z ef(z)e; (a>0, xeX).

lej (z)[>a

The natural boundedness conditions imposed on these operators yield a corresponding class
of thresholding-bounded bases. It is shown in [208] that this class of bases coincides with the
class of nearly unconditional bases introduced by Elton (19), and that it strictly contains the
class of quasi-greedy bases. We recall that a normalized basis (e,) in a Banach space X is
nearly unconditional if, for every 0 < a < 1, there exists a constant ¢(a) such that, for every
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1314 NIGEL JOHN KALTON, 1946-2010

r=> 7" e (x)e, € X and A C {n € N: |e}(z)| > a}, we have

n=1n
E An€n

neA

< p(a)l2]l.

With this notation, a basis (e,) is unconditional if and only if sup,. ¢(a) < co.

Elton proved that every normalized, weakly null sequence in a Banach space admits a
nearly unconditional subsequence. It is now known (30) that some Banach spaces contain
no unconditional basic sequence, but the question whether every infinite-dimensional Banach
space contains a quasi-greedy basic sequence is still open. In this direction, it was shown in
[208] that, if (e,) is a semi-normalized, democratic, weakly null basic sequence in a Banach
space, then (e,) has an almost greedy subsequence. In particular, if X is a Banach space
which does not have ¢y as a spreading model (for example, if X has finite cotype), then every
semi-normalized, weakly null sequence in X has an almost greedy subsequence. A further
generalization of Elton’s theorem was given by Dilworth, Odell, Schlumprecht, and Zsék (16).
Their techniques could be also used to prove other partial unconditionality results. On the other
hand, we refer to [175] for quantitative results on the approximation of smooth functions by
polynomials of a given degree on bounded, convex domains of R".

11. Isometric theory

It is sometimes useful to work with special norms on Banach spaces: they might be canonical
or easy to compute, or they can be tightly related with the structure of operators of the space,
or they can provide isomorphic information on the space. All this motivates us to investigate
isometric theory, that is, the study of Banach spaces equipped with a given norm. We refer to
(65) for a very useful survey on Nigel Kalton’s work in isometric theory.

It should be pointed out that the real and complex isometric theories are quite different.

On a complex Banach space X, one can define the notion of an Hermitian linear operator T’
by: [|e®T|| = 1 for all s € R. Let us say that x € X is Hermitian if there exists 2* € X* such that
x* ® x is an Hermitian operator. It is not difficult to check that a projection P is Hermitian if
and only if ||P 4+ A(I — P)|| = 1 for all A € C with |\| = 1. In other words, Hermitian projections
are ‘orthogonal’. It follows that a complex Banach space with a 1-unconditional basis is the
closed linear span of its Hermitian elements. A remarkable result of Kalton and Wood [43]
states the converse.

THEOREM 11.1. A complex Banach space X which is the closed linear span of its Hermitian
elements has a 1-unconditional basis.

An important corollary of Theorem 11.1 is that, if X is a l-complemented subspace of a
complex Banach space Y with a 1-unconditional basis, then X has a 1-unconditional basis.
It is still unknown, however, whether a contractively complemented subspace of a separable,
complex, order-continuous Banach lattice is isometric to an order-continuous complex Banach
lattice. Note that, in this same paper, Kalton and Wood show that the space C([0,1]) of
complex-valued, continuous functions on the unit interval has a maximal norm, that is, there
is no equivalent norm with a strictly larger group of isometries. Such results are motivated by
the (still open) Banach—-Mazur problem: whether a separable Banach space whose invertible
isometries act transitively on the sphere is isometrically Hilbertian.

It should be noted that in the real case, the existence of l-unconditional bases does
not pass to l-complemented subspaces (40). We refer to (50) for important results on 1-
complemented subspaces of spaces with 1-unconditional bases. The Kalton—-Wood theorem is
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one of the few available positive results, whilst it is still not known whether a complemented
subspace of a space Y with an unconditional basis has an unconditional basis. A negative
answer looks plausible, since for instance it is observed in [123, §4] that a space with the
bounded approximation property, but no F.D.D., as constructed by C. J. Read (unpublished)
is complemented in a space with an unconditional F.D.D.

The field of approximation properties in Banach spaces is filled with ingenious and deep
counter-examples. However, [123] contains a major positive result.

THEOREM 11.2. Let X be a separable Banach space having the metric approximation
property (M.A.P.). Then X has the commuting metric approximation property (C.M.A.P.).

In other words, if Idx is the uniform limit on compact sets of a sequence of finite-rank
linear contractions, then there is such an approximating sequence consisting of commuting
operators. Along these lines, it is shown in [159] that the unconditional M.A.P. is equivalent
to its commutative version for all separable spaces (with a simpler proof for complex spaces,
again using Hermitian operators). It is, however, still open whether every separable Banach
space with the bounded approximation property has the commuting bounded approximation
property.

An isometric concept which turned out to be very useful was defined by Alfsen and Effros
(3): a closed subspace X of a Banach space Y is an M-ideal in Y if there is a subspace V of
Y* such that Y* =V @; X', where @; means that

ly" + 271 =yl + 12" (y* eV, 2" € XH).

We refer to (31) for the theory as it was in 1993, immediately after Kalton’s breakthrough
[134].

Although the notion of an M-ideal is independent of any algebraic structure, it turns out to
be tightly related to the notion of ‘ideal’ from operator theory, and for instance ideals (X)
of compact operators in spaces B(X) of bounded operators provide a wealth of examples of
M-ideals (see Chapters V and VI in (31)). Following [134], let us say that a Banach space X
has Property (M) if, for any sequence (z,,) in X with w — lim,, o2, = 0, one has

for all (z,y) € X? with [|z|| = ||ly]| = 1. In other words, the norm of X is ‘asymptotically
isotropic’ and all vectors of the sphere ‘look the same’ when seen from infinity. Note that
Property (M) is clearly hereditary. It is shown in [134] that this property forbids distortion:
if X has (M), then there is some p € [1, oo] such that, for every e > 0, the space X contains a
subspace that is (1 + €)-isomorphic to £, when p < co and to ¢y when p = oc.

Note that it is obvious that ¢, spaces equipped with their natural norms have Property (M),
whilst L, spaces fail to have it. In fact, if X is a separable, order-continuous non-atomic Banach
lattice and X has an equivalent norm with Property (M), then X is lattice-isomorphic to Lo
[134]; this is, in particular, the case when X is isomorphic to a subspace of an Orlicz sequence
space hp. More generally, Fenchel-Orlicz spaces can be renormed to have Property (M) [163],
and this applies for instance to the Kalton—Peck spaces Z,.

The isotropy condition (M) implies that some unconditionality is available. Indeed [148,
Theorem 2.13] reads:

THEOREM 11.3. Let X be a separable Banach space. Then K(X) is an M-deal in B(X)
if and only if X does not contain a copy of ¢1, X has Property (M), and X has the metric
compact approximation property.
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It is also shown in [148] that, for 1 < p < co with p # 2 and X an infinite-dimensional, closed
subspace of L,, the closed unit ball Bx is || - [[1-compact if and only if, for each € > 0, there
is a subspace X, of ¢, such that dpp (X, X.) <1+ e. This theorem has been pushed to the
case where p = 1 in [156] to characterize subspaces of L1 which e-embed into ¢1; this requires
a visit to the Kalton zone 0 < p < 1. The main result of [156] states that, if X is a closed
subspace of L' with the approximation property, then Bx is L,-compact and locally convex
for some (equivalently, for all) p € [0,1) if and only if, for each £ > 0, there is a quotient space
E. of ¢ such that dpp (X, EX) < 1+e.

Following [123], we say that X C Y is a u-ideal in V" if

YV*=V@&X*t and ||y +2*|| = [ly" + A" (y"eY™, 2z e Xt [N =1).

The article [136] is devoted to this notion which, thanks again to Hermitian operators, is
rather nicer in the complex case. Let us denote by Ba(X) the subspace of X** consisting of
weak*-limits of weak*-convergent sequences of elements of X. With this notation, it follows
from [136, Theorem 6.5] that, if X is a separable, complex Banach space which is a u-ideal
in its bidual, then there exists an Hermitian projection from X** onto Ba(X). Moreover, X
has Pelczynski’s property (u). Hence, if one thinks of Ba(X) as the ‘band’ generated by X
in X** then one can say that the embedding of a u-ideal in its bidual looks very much like
the embedding of an order-continuous Banach lattice. However, u-ideals (such as IC(X') spaces,
with X reflexive and with the unconditional compact approximation property) in general bear
no usable order structure. We refer to [92] for (order) ideal properties of (algebraic) ideals of
operators between Banach lattices.

Nigel Kalton returned one last time to Hermitian operators in the article [266]. He had
completed this work a few days before passing away, and his draft manuscript was kindly
edited later on by Garth Dales. Nigel showed for instance in this last article the unexpected
theorem that, if F is a complex Banach lattice and T € B(E) is an Hermitian operator, then
T? is Hermitian; it was known that this property fails to hold in general for complex Banach
spaces. His results supplement earlier work from [43] for the special case of spaces with
l-unconditional bases. Another important result from this last paper is that, if F=F & G
and ||z +y|| = ||(Jz|? + |y[?)'/?|| for some p > 1 with p # 2 and all # € F and y € G, then this
direct sum is a band decomposition. The case p = 2 in the above equation holds true when the
decomposition is Hermitian.

12.  As you like it

Around 1948, a very young Nigel recited to his father a few lines from Shakespeare, or almost
so. Now that life is over, we should recall what these lines really are:

O good old man, how well in thee appears
The constant service of the antique world,
When service sweat for duty, not for meed!

Nigel has never been old. His life was, alas, too short for that, and moreover he kept to the
very end the mind and the abilities of his youth. But he certainly was a good man, dedicated
to constantly serving mathematics, and through mathematics all of us. And although he would
not have used such big words, his service was motivated by duty before being a quest for
recognition, fame, or wages. He gave us the outstanding example of a giant of mathematics
who bends as much as it is necessary to be understood, but never lower. His sleepless soul has
now come to rest. But his influence is stronger than ever.

I am thankful to the London Mathematical Society for bestowing upon me the daunting
honour of writing Nigel Kalton’s obituary. Special thanks are due to Professors Nick Bingham
and Garth Dales for their careful editing of the present text. I am very grateful to Professor
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Graham Kalton, who kindly shared with me his memories of Nigel’s early years. Mrs Jennifer
Kalton is a friend of thirty years, whose home has always been open to Nigel’s collaborators and
friends. She kindly edited this obituary: for this, and much more, I am truly thankful to her.

My deepest gratitude goes to Nigel Kalton, the generous genius to whom I owe more than I
can express. On behalf of all his colleagues, students, and collaborators, and in my own name,
let me simply say: thank you, Nigel. We all miss you.
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