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KOLMOGOROV: THE MAN AND HIS WORK
D. G. KENDALL

The subject of this memoir (ANK in what follows) was born on 25 April 1903 in
Tambov during a journey from the Crimea to his mother’s home. He was the son of
parents not formally married ; ANK’s mother Mariya Yakovlevna Kolmogorova was
one of three sisters who have been described as independent women with lofty social
ideas. Mariya Yakovlevna died in childbirth at Tambov and her son Andrei
Nikolaevich was adopted and brought up in the village of Tunoshna (near to
Yaroslavl on the river Volga) by her sister Vera Yakovlevna Kolmogorova. To her
nephew Vera Yakovlevna gave all the love of a mother, and Andrei Nikolaevich
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32 ANDREI NIKOLAEVICH KOLMOGOROV

responded with all the love of a son. It is warming to record that Vera Yakovlevna
lived until 1950, so that she was to witness some of ANK’s greatest achievements.

Andrei Nikolaevich is always known to us by the family name of his maternal
grandfather Yakov Stepanovich Kolmogorov, a leading member of the Uglich
nobility. It was in the Kolmogorov home at Tunoshna that ANK spent his earliest
years. During his childhood this was a centre of clandestine printing, and family
traditions record that on occasion compromising documents were hidden under his
cradle.

Of ANK’’s father, Nikolai Kataev (I have not been able to find his patronymic),
we know that he was the son of a priest, that he became a professionally trained
agriculturalist, that he was exiled to Yaroslavl, that after the Revolution he became
a department head in the Agriculture Ministry, and that he perished on the southern
front during the offensive by Denikin in 1919.

In 1920 ANK went to Moscow University as a student of mathematics, but also
attended lectures in metallurgy. In addition to this he participated in Bakhrushin’s
seminar on Russian history, where he presented the results of his first piece of
research — on landholding in Novgorod in the 15th—16th century. We are told how
this was received by his teacher: ‘You have supplied one proof of your thesis, and in
the mathematics that you study this would perhaps suffice, but we historians prefer
to have at least ten proofs.’ This anecdote is usually told as a joke, but to those who
know something of the limitations of such archives it will seem a fair comment.
However that may be, it is on record that an expedition organised by P. S. Kuznetsov
later confirmed ANK'’s conjecture about the way in which the upper Pinega was
settled.

Aleksandrov, Luzin, Suslin, and Uryson all helped in various ways to stimulate
ANK's early mathematical researches, but it appears that his principal teacher at that
time was Stepanov. In 1922 he produced a synthesis of the French and Russian work
on the descriptive theory of sets of points. This was not published until 1928, and then
only in part [1928a]. The full text eventually appeared in his collected works. At about
the same time he was introduced to Fourier series (in Stepanov’s seminar) and in 1922
he discovered that there is no slowest rate of convergence to zero for the Fourier
cosine coefficients of a summable function [1923b]. In 1963 I gave a lecture in Tbilisi
in which I showed that in the transient aperiodic case the diagonal Markov transition
probabilities p{ form a sequence of Fourier cosine coefficients, and remarked that it
would be interesting to see what could be deduced from this about their rate of
convergence to zero as n tends to infinity. ANK offered the comment that ‘Il existe
une possibilité purement analytique...’, the gist of which escaped me at the time
because of language difficulties. It occurs to me now that he may have been thinking
of an application of his 1923 paper in this new context. To the best of my knowledge
that comment has not yet been followed up.

Plate I shows ANK (wearing spectacles, leaning over to his left) at the Thbilisi
conference. Also in the picture are Dynkin and Gnedenko (to ANK’s right) and many
other celebrated probabilists.

In 1922 ANK also constructed his famous example of a summable function whose
Fourier series diverges almost everywhere [1923a). ANK was 19 years old at the time,
but suddenly he had become an international celebrity, the more so after he had
sharpened this result from ‘almost everywhere’ to ‘everywhere’ [1925h]. For more
details of this and of ANK’s other principal achievements the reader must turn to the
accompanying articles by other writers. Here I will in the main chronicle only ANK’s
life. but mv account will be seasoned with remarks about a few of his discoveries and
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OBITUARY 33

their implications that do not fit so well into the scope of any of the more specialised
contributions. Let us note, however, one highly significant date: in 1925 there
appeared a paper [1925f], written jointly with Khinchin, that represents ANK’s first
involvement with probability theory. It contains a proof of the ‘ three series’ theorem,
as well as the Kolmogorov inequality involving the maxima of partial sums of
independent random variables (whence, ultimately, the martingale inequalities and
the stochastic calculus.)

ANK became a postgraduate student in 1925, supervised by Luzin. He emerged
from the postgraduate school of 1929 with 18 mathematical papers to his credit.
These included his versions of the strong law of large numbers and the law of the
iterated logarithm, some generalisations of the operations of differentiation and
integration, and a contribution to intuitionistic logic. His two papers [1925¢, 1932d]
on this last topic are regarded with awe by specialists in the field. The Russian
language edition of Kolmogorov’s collected works contains a retrospective
commentary on these papers which ANK evidently regarded as marking an
important development in his philosophical outlook.

From the summer of 1929 dates his lifelong friendship with Aleksandrov, which
started with a 21-day trip starting from Yaroslavl, first by boat down the Volga, then
on to Samara, the Caucasus, and Lake Sevan in Armenia. On the shores of the lake
Aleksandrov worked on chapters of his joint book with Hopf, while ANK brooded
over what was to be his paper [1931a] on Markov processes with continuous states
in continuous time. Modern diffusion theory dates from that work, though it is
analytical, and sample paths do not appear in it. We note in passing that path-
theoretic diffusion was to grow out of the earlier work by Bachelier and by Wiener,
to whom we owe the basic mathematics of brownian motion. (It is always relevant to
add that Wiener was directed to the study of brownian motion by Bertrand Russell.
Wiener had come to Cambridge with the intention of studying logic; Russell
discouraged this, and told him to read Einstein’s 1905 note [11] instead. While
Einstein predicted and described Brownian motion in quantitative detail, its precise
relationship to the observations made in 1827 by Robert Brown [5] was not at first
clear. Concerning this Einstein wrote ‘Es ist méglich, daB die hier zu behandelnden
Bewegungen mit der sogenannten ‘Brownschen Molekularbewegung™ identisch
sind; die mir erreichbaren Angaben iiber letztere sind jedoch so ungenau’.)

What was perhaps most significant about the 1931 paper by ANK was the link
with the theory of linear partial differential equations — here he was almost certainly
much influenced by Petrovskii. At the time this was a startling development. Today
the theory of parabolic and elliptic linear partial differential equations has been
merged with the theory of Markov processes, with each discipline lending strength to
the other.

A little before this ANK had published his first attempt [1929b] at a foundational
paper on probability itself. This was based on measure theory, and introduced
elementary events, random events as measurable sets of elementary events, and
random variables as measurable functions. There were no sigma-algebras, no
conditional expectations, and no stochastic processes.

These omissions were to be filled by ANK’s monograph [1933b] entitled
Grundbegriffe der Wahrscheinlichkeitsrechnung. This was written in the forest on the
banks of a small river, and was published in Berlin. In the Foreword he remarks that
his aim is to create an axiomatic foundation for probability theory, and he comments
that without Lebesgue measure and integration this task would have been hopeless.

He also stresses the necessity first to strip away from the Lebesgue theory those
2 BLM 22
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34 ANDREI NIKOLAEVICH KOLMOGOROV

elements that tie it too strictly to geometry, and acknowledges the role that Fréchet
played in bringing this about. He directs the reader to three particularly novel
developments presented in the book: the treatment of probability distributions in
infinite-dimensional spaces, the introduction of rules for integrating or differentiating
‘under the expectation sign’, and the construction of a mathematical theory of
conditional probabilities and expectations. The first and third of these topics are
methodologically closely allied, as was later made fully explicit by Ionescu Tulcea
[20]. ANK was careful to stress that the vital tool in the theory of conditioning is the
generalisation by Nikodym [28] of an earlier theorem in a more classical setting due
to Radon. Another treatment of infinite-dimensional distribution theory is to be
found in P. J. Daniell [6, 7], but his papers seem to have attracted little notice until
much later. The historically important point is that the proper development of
stochastic process theory had to wait for a general treatment of conditioning. This
Kolmogorov gave, and it would have been impossible without the Nikodym theorem.

The conditioning here is with respect to a g-algebra defined in terms of a family of
conditioning random variables. Filtrations of o-algebras necessarily occur implicitly
in the treatment of infinite-dimensional probability spaces, but it does not appear that
the purely information-theoretic view of random events, random variables, and o-
algebras had yet surfaced. That was to happen later, and it became fully explicit,
together with the related concept of separability, in Doob’s book [10].

I should like to record a remark made by ANK during the Amsterdam
International Congress of Mathematicians in 1954. A lunch for probabilists had been
organised in the Amsterdam Zoo by Jerzy Neyman, and a few apprentices like Harry
Reuter and myself were invited to represent the younger generation. During the meal
Kolmogorov leaned over and said to Doob ‘The whole of the theory of stochastic
processes will now be based on your work.’ I enjoyed watching Doob’s pleasure,
unsuccessfully concealed by embarrassment.

Some other anecdotes concerning ANK'’s respect for other mathematicians can
perhaps best be related here. I have already referred to ANK’s admiration for Fréchet.
Fréchet himself said to me ‘How curious it is; Lévy’s principal colleague among the
Russian probabilists is Khinchin, whereas for me it is Kolmogorov — we once spent
a vacation together on the Mediterranean coast.’ Years later I referred to this when
talking with ANK, and he said at once, ‘Pas exactement un collegue, plutét mon
maitre.’

On another occasion, in 1967, Hermann Dinges and I organised an Oberwolfach
meeting on the analytical theory of branching processes. We invited ANK, and to our
delight he accepted and brought several other Soviet mathematicians with him. At first
ANK said he just wanted to be a listener, but after several highly theoretical talks he
looked rather uncomfortable, and eventually told us that he would after all give a
lecture that would perhaps remind people of the biological background to the subject.
Inevitably he referred to The genetical theory of natural selection [14]- ‘das
wundervolle Buch von R. A. Fisher.” Two United States mathematicians sitting near
to me were overheard to whisper ‘It can’t be the R. A. Fisher we know’.

There is another half to that story. Will Feller used to say that if Kolmogorov had
not written his 1931 paper, the whole of stochastic diffusion theory would eventually
have been pieced together starting with the ideas in Fisher’s book.

But to return to the Grundbegriffe: ANK there illustrates his second ‘new feature’
by an application of it to geometrical probability, and refers to the interesting joint
paper with Leontovich [1933d] for a more detailed example. This is perhaps the first

2:2
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OBITUARY 35

occurrence in the literature of a careful treatment of the expectation of the
measure of a random set.

The ‘backwards’ and ‘forwards’ partial differential equations in the 1931 paper
can be thought of as differentiated versions of what is called the Chapman-
Kolmogorov equation encapsulating the semigroup property inherent in all
markovian situations. I once asked Sydney Chapman about ‘Chapman-—
Kolmogorov’, and was surprised to find that he did not know of that terminology.
Of course physicists have their own names for such equations. The original Chapman
reference seems to be to his 1928 paper in volume 119 of Series A of the Royal
Society’s Proceedings: ‘On the brownian displacements and thermal diffusion of
grains suspended in a non-uniform fluid’.

In 1931 ANK became a Professor in Moscow University. Just before this he and
Aleksandrov made a long scientific trip through Germany (Berlin, Gottingen and
Munich) and France (Paris, and the Mediterranean). In Paris there were long talks
with Lévy, and a month by the sea was spent with Fréchet, who later told me that they
stayed in a lodging house whose lady proprietor had recently installed modern
plumbing — unique in that township. Thus they found themselves invited to a party
for the whole community, to celebrate — with champagne — the first flush.

In the nineteen-thirties ANK’s work started to ramify. What we think of as
classical probability theory still occupied much of his time — this was the period
during which the stable laws, the infinitely divisible laws, and the theories related to
these were being studied by a now growing school of colleagues and pupils, but it also
saw ANK’s independent development of cohomology theory [1936f], his necessary
and sufficient condition for a topological vector space to be normable [1934b], his
numerous contributions to approximation theory, his contribution [1933e] to the
Kolmogorov—Smirnov test that is expressed in terms of the empirical distribution
function, his theory of the structure and limiting behaviour of homogeneous
countable Markov chains [1936g, 1936i], his theory of statistical reversibility [1937g],
his introduction [1935¢] of the characteristic functional (with an eye to applications
in non-linear quantum mechanics), his inequalities [19380] for the moduli of high
derivatives (linked to the theory of quasi-analytic functions), his work with Gel’fand
on rings of continuous functions defined over topological spaces [1939d], and much
else.

The ‘much else’ included contributions to queuing theory [1931b], to the
branching processes of Bienaymé, Watson and Galton and their generalisations
[1936q, 1938n], and to the stochastic geometry of the crystallisation process (and of
the growth of vegetation) [1937¢], as well as (with Piskunov and Petrovskii) the
analysis of the solitary waves associated with the spreading of the range of an
advantageous gene in a linear habitat [1937d]. This last was written within a year of
a similar but independent study by Fisher [15]). Both recognised that the range
inhabited by the favoured individuals would expand with an asymptotically constant
velocity, but the Soviet writers showed that in fact there is a half-infinite interval of
possible speeds with each of which there is associated a corresponding travelling
wave. This is now a subject in its own right called ‘reaction-diffusion theory’ (see
Britton [4]). The application to genetics with which the subject originated has since
been joined by applications to the spreading of epidemics [21], to the spreading of
cultural innovations, to the dynamics of advertising, to the spreading of rumours, and
to numerous physical, chemical, and other biological problems.

Another involvement of ANK with work in genetics is of some general interest.
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36 ANDREI NIKOLAEVICH KOLMOGOROV

It came about just after he was elected to the Academy of Sciences of the USSR in
1939 (shortly before this he had been appointed Head of the Probability Section in
the Steklov Institute). N. I. Ermolaeva [12] had reported the results of a botanical
experiment to test the claim that in a simple Mendelian situation the proportion r/n
of plants displaying the dominant phenotype would have an average value 3.
Apparently she had suggested that there were some discrepancies. ANK decided to
re-examine her data and to make use of the fact that Mendelian theory predicts not

only &(r/n) but also var(r/n) and indeed #(r/n). He therefore plotted the empirical

distribution for A (" N\ dy/n

N (E 4) V3
using her observed numbers, and obtained a good fit to the cumulative distribution
for #(0;1). ANK then wrote: ‘This material, despite Ermolaeva’s claims to the
contrary, has proved to be a new brilliant confirmation of Mendel’s laws’ [1940g].
And indeed, from ANK’s results it is clear that Ermolaeva’s experiments must have
been carried out with scrupulous care. ANK’s uncharacteristic use of the word
‘brilliant’ makes it plain that he intended his remarks to be taken as an exceptional
compliment.

But others did not think so. T. D. Lysenko [26] wrote ‘in this controversy between
Kolmogorov, Member of the Academy, and postgraduate Ermolaeva, it is Ermolaeva
who is in the right, and not Kolmogorov’. Lysenko’s brief note was followed by a
much longer communication from E. Kolman [24, communicated by Lysenko]. This
should be read in its entirety, for these few quotations may give a wrong impression.
If we omit an argument linking Kolmogorov with von Mises, and von Mises with
Mach, so that his ‘views on the relation of theory to reality are the same as those
which were subjected to destructive criticism by Lenin’, the key sentence is: ‘Now
while incompatibility of some material with a given theory disproves the latter,
compatibility neither proves nor confirms this theory, for the same material may
prove to be compatible also with other theories.” It will be recalled that ANK just
claimed °‘confirmation’. Kolman explicitly draws a distinction between proof and
confirmation, but seems to rule out the possibility of ever ‘confirming’ anything. This
however was in 1940, and the controversy seems to have petered out as the
protagonists, like others elsewhere, began to find themselves confronted with very
different tasks. The whole incident is rightly viewed as one throwing light on ANK’s
strong personality, and his determined pursuit of truth whatever the obstacles.

Two other novel topics interested ANK in the years before the war. The first was
the stochastic growth of the area swept out by a circle of fixed radius when its centre
follows a two-dimensional brownian motion. This was the joint study with Leontovich
[1933d] already mentioned above. The second [1934)] concerned Markov processes
describing a random system ‘with inertia’ whose state at time ¢ is described by all the
random variables . .

(915925 -+ 19415 G2s -+ 4>
that is, by the rates of change of the coordinates as well as by the coordinates
themselves. This can be seen as a broad generalisation of the Ornstein—Uhlenbeck
process.

ANK’s immensely influential work on the smoothing and prediction of stochastic
processes with stationary ordinates (or increments) started as early as 1938 with his
paper [1939¢] written against a background provided by Khinchin and Slutskii. The
topics proved later to be of great military importance, and so it is scarcely surprising
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OBITUARY 37

that another attack on the problem was mounted by Norbert Wiener in the USA.
(One should also mention distantly related work by Harald Cramér in Sweden and
by Michel Loéve in France.) Of course all such investigations were eventually to be
covered by a cloak of secrecy during World War II, but four more of ANK’s papers
[1940b, c, 1941a, b] were published openly in 1940-41.

In 1947 ANK delivered a comprehensive report on these topics to the General
Assembly of the Academy of Science, while in 1949 Wiener in the book Extrapolation,
interpolation, and smoothing of stationary time series [31] expounded his own secret
wartime researches in the same area. That book contains a footnote (on page 59)
giving Wiener’s own view of the historical relationship between the two investigations,
and concluding with Wiener’s interesting comment that ‘ the parallelism between {our
approaches) may be attributed to the simple fact that the theory of the stochastic
process had advanced to the point where the study of the prediction problem was the
next thing on the agenda’.

In fact the approaches by Kolmogorov and Wiener complement one another in
an interesting way (see the article by Whittle for further detail on this). Insofar as
priority in such a confused situation is important, there seems to be no doubt that it
was ANK who was first in the field.

In the UK the study of time-series had long been dominated by the periodogram,
and the use of this had become unpopular because of its tendency to indicate (as was
first thought) a bewilderingly large number of ‘periods’. This deflected attention
away from the spectrum to the correlation function, until P.J. Daniell in a
contribution to a Royal Statistical Society discussion [8] pointed out that this was
simply the response to the presence of a continuous spectrum, and that the spectrum
itself could be satisfactorily estimated by a smoothing procedure applied to the
periodogram. A suitable smoothing device was then introduced by M. S. Bartlett [2],
and the serious study of such problems in the UK seems to have begun at that point.

The work discussed in the last few paragraphs eventually brought about a
profound change in the relationships between probabilists and statisticians on the one
hand, and physicists and engineers on the other. No longer could statistics be
described (or dismissed) as ‘the arithmetic of the social sciences’. Indeed a whole new
branch of engineering technology had been created as it were overnight, and now
affects almost every aspect of our lives.

From stationary stochastic processes to stationary stochastic fields and thence to
the study of turbulence is a natural progression. ANK’s interest in turbulence dated
from the late thirties, and it was to lead to some of his greatest discoveries. In 1940
he wrote a famous paper [1941d] on the local structure of turbulence, and this was
later supplemented by his ‘two-thirds’ law. He remained much concerned with this
subject over a long period. In 1946 he became Head of the Turbulence Laboratory
in the Academy Institute of Theoretical Geophysics (to be succeeded in 1949 by his
pupil Obukhov), and in 1970-2 he sailed with the scientific research ship Dmitrii
Mendeleev as Scientific Supervisor of a study of oceanic turbulence. (Some readers
will recall a similar episode in the life of Halley.)

I am told by Professor G. I. Barenblatt (formerly one of ANK’s students) that
there was a substantial interaction between the Cambridge school of fluid dynamicists
and Kolmogorov’s own group long before there was any possibility of direct contact.
He says ‘Kolmogorov’s two papers on locally isotropic turbulence may now seem to
be absolutely transparent, but in the late forties even his own students found them
difficult to comprehend. Accordingly G. K. Batchelor’s paper on Kolmogorov’s
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38 ANDREI NIKOLAEVICH KOLMOGOROV

theory of locally isotropic turbulence (Proc. Cambridge Philos. Soc. 43 (1947)
533-559) came to play an extremely important role in disseminating Kolmogorov’s
ideas, not only in the West, but also in the USSR itself, and among ANK’s closest
associates. This happened despite the fact that ANK’s students were unable to read
English — they used a Russian translation of GKB’s paper that has been carefully
treasured ever since.’

Before leaving the war period one must mention some of ANK'’s contributions to
specifically military topics. Thus he wrote on theoretical aspects of the effectiveness
of fire-control systems, and on the advantages of artificially induced dispersion. It
would be interesting, if permitted, to compare his work [1945a,b] with comparable
developments made elsewhere.

On the personal side a very important event in his life was his marriage in 1942
to Anna Dmitrievna Egorova.

In the immediate post-war period we find ANK writing on mathematical geology,
on inferential statistics (unbiased estimates, quality control), on branching processes
(again, now with several types of particle and with a much broadened field of
application), and contributing 88 articles to the Soviet Encyclopaedia. It has been
suggested that these articles should be translated into English and published together,
and certainly this would give us a unique insight into his mathematical thinking that
would be extremely valuable. At the same time he was working with B. V. Gnedenko
on their book The limit distributions for the sums of independent random variables
[1949a], which immediately became a classic.

Most of Kolmogorov’s papers on probability theory announced and proved
major theorems that immediately took their place as foundation stones of the subject,
but [1951a] was quite different; it revealed bizarre phenomena (originally called
‘pathological’) and asked for their investigation. This paper appeared at about the
same time as a similar complementary one by Lévy [25], and the two works together
have had a great influence. Kolmogorov proved that at ¢ = 0 the right-handed Ist-
order derivatives g, of a standard Markov transition function p,(f) always exist
(finitely if i #j), and he constructed an example now called K1 to show that a
diagonal element, ¢,, say, of this g-matrix can be equal to — co. He also proved that

3 g < —q, for all i,
aki

and in a second example now called K2 he showed that this inequality sign can be
strict. He then asked: do the derivatives of all orders exist for all t > 0? To this
question Ornstein [29] (extending earlier work by Austin) gave an affirmative answer
for the first derivative, but Yushkevich [32] showed by an example that the answer can
be negative for the derivatives of the second and higher orders.

ANK’s examples K1 and K2 were studied by Kendall and Reuter [23] using
semigroup methods, and were later supplemented by others (including a particularly
elegant one given in Blackwell [3] for which g, = — oo for all i), and gradually it
became apparent that what was being called pathological behaviour was, in a sense,
the norm. Out of this grew a general theory of the sample-path behaviour of such
countable-state continuous-time Markov processes developed by Chung, Dobrushin,
Doob, Feller, Hou, Neveu, Reuter, D. Williams, and others. One major question in
this area, posed in [22], remains open, however.
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Suppose that p,(¢) and pj(r) are two standard Markov transition functions and
that for all i and j there exist numbers 7,, > 0 such that

p,(1) = pi(t) whenever 0 < ¢ < 7.

Does it follow that p,(r) = p}(z) for all i, j, and ¢? Recently affirmative answers have
been given in a few very special cases by a group of Chinese scholars (Di [9], Hou [19];
see also Reuter [30]), but the general problem remains open. It seems that an
approach using non-standard analysis might be fruitful, but a serious exploration of
that possibility has yet to be made.

From the 1950s onward ANK’s most important scientific work revolved around
the quartet of ideas: probability, dynamics, information, complexity. Some specialist
surveys of this area accompany the present memoir, and so I will not go into full detail
here, but I will try to comment on at least some of the philosophical implications. It
is important to stress that these investigations were indissolubly linked with ANK’s
profound contributions to mechanics, so that his enquiries were at one and the same
time concerned with how we perceive our environment, and how that environment
works. The work in mechanics started with his first contribution [1954b] to what has

become known as KAM theory (A for Arnold, M for Moser). This was presented at
the International Mathematical Congress in Amsterdam in 1954, and there created

such a sensation that he was invited to deliver the lecture twice, once in the French
and once in the German language (the text published in the ICM Proceedings is in
Russian).

Another component of the massive programme just mentioned is ANK’s work on
the 13th Hilbert problem. Incidentally it is often overlooked that ANK had already
solved another of Hilbert’s problems (one that asked for a mathematical formulation
of probability theory). As we shall see later, there is a sense in which he solved that
problem twice.

The 13th problem was concerned with the possibility of representing a real
continuous function of many variables by finite superpositions of continuous functions
of fewer variables — one might call it the generalised slide-rule problem. (Actually
Hilbert seems to have had in mind the rather different problem in which the functions
concerned are supposed to be analytic, or algebraic. The results are then rather
different. ANK worked on this ‘strict’ version of the 13th problem also, and the
reader will find more details in the accompanying article by Lorentz.) ANK began his
attack on the 13th problem by establishing a special seminar for its study, and later
remarked that he had done so without much hope of making progress. But in 1956
[1956f; see also 1955a, 1956d] he was able to announce that each continuous function
of any number of real variables can be represented by a finite superposition of
continuous functions of only three variables. In 1957 Arnold matched this by showing
that 3-variable continuous functions could always be constructed by superposing
continuous functions of two variables. (Together these two results settled the
‘continuous’ case of the original Hilbert problem.) Later in the same year [1957b]
ANK showed that every continuous function A(x,, x,, ..., x,) of a finite number n of
variables can be represented in the form

)

g=1 =1
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40 ANDREI NIKOLAEVICH KOLMOGOROV

where each fand g is continuous and where the collection of ‘inner’ functions g, can
be fixed once and for all. ANK is on record as saying that this was technically the
most difficult of all his achievements. Essentially it says that ‘generalised slide-rules
suffice’. Of course careful note must be taken of the fact that continuous functions
form a wide class, and can have horrendous properties from a practical point of view
(compare brownian paths).

Perhaps as a foil to his information-theoretic programme ANK was at the same
time pursuing statistical studies in philology, linguistics, prose- and verse-style, and
speech. This work of ANK is little known or appreciated outside the USSR, but was
to him a serious and important part of his work in applied mathematics. I remember
hearing him give a lecture on ‘ Applications of probability theory and mathematical
statistics to poetics’ at the Tbilisi meeting in 1963. The poetry was that of Pushkin,
and so it is interesting to recall here Markov’s work in 1913 on the sequence of vowels
and consonants in a poem by Pushkin in connexion with his development of what we
now call Markov chains.

A book on poetic style containing essays by Kolmogorov, the younger Prokhorov,
and many others has been published [17], and I tried to interest a UK publisher in the
possibility of an English translation. The representative of the august University Press
in question replied that the book would only interest professional students of Russian
literature, and that for them a translation would be unnecessary. As spoken and
written language is one of the most important things that we all have in common, and
as the joint study of what we hold in common is one of the most effective forms of
cooperation, I felt that this lack of interest was a very depressing indicator of the
current human condition, and hope that some enterprising publisher will now take up
the challenge and commission an English edition of ANK’s works [1962b, 1963e,
1963f, 1963g, 1964a, 1964b, 1965f, 1968j, 1968k, 1984c, 1985a] in this area. (The list
just given is believed to be complete.)

When one re-reads the Grundbegriffe of 1933 with proper attention to the
footnotes one is much struck by what Kolmogorov does not say. (Students of
the Sherlock Holmes archive will at once recall the curious incident of the dog in the
night-time.) He makes many interesting comments, but seems to shy away from any
detailed explanation of the relationship between his axioms and empirical practice,
referring the reader to the book by von Mises [27] (published in 1931) for this.

It is worth noticing that another recently published book by Hostinsky [18], and
the then forthcoming book by Fréchet [16] also occur among his references. Two
years before this ANK had spent a month with Fréchet shortly after the appearance
of the Hostinsky and von Mises books, and it is unthinkable that they did not discuss
them, especially as Hostinsky had there presented Poincaré’s ‘explication du hasard’
in terms of the inevitably discrete (if fantastically fine) partitioning of dynamical
phase spaces by a human observer. Years later ANK was to make essential use of that
idea in his information-theoretic approach to mechanics.

I do not propose to discuss Kolmogorov’s work on information theory, ergodic
theory, and mechanics because the reader will find expositions of this in the
accompanying articles by Razborov, Parry, and Moffatt. But I do want to give just a
sketch of ANK'’s re-formulation of both information theory and probability theory
in terms of complexity, because that re-formulation is indeed almost a cultural
revolution, turning both subjects inside out, and reversing the order in which they are
normally considered.

It will, I feel sure, be understood that my account is no more than an outline,
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OBITUARY 41

limited by the slightness of my knowledge and by the intrinsic difficulty of the subject.
But there are philosophical (and indeed practical) aspects of it with which we must
all become familiar, because it is already clear that the new point of view is likely to
percolate throughout the whole of science. For a detailed account the reader is
referred to the comprehensive and eloquent exposition by Kolmogorov and Uspenskii
[1987¢c], ANK’s own contribution to which may come to be regarded as his scientific
testament.

In order not to overburden this presentation I will omit detailed references, but
it must not be supposed that ANK carried through this massive programme on his
own. On the contrary, vitally important contributions were made by a number of

eminent mathematicians including G. Chaitin, A. Shen, R.J. Solomonoff, V. V.
Vijugin, and A. K. Zvonkin, as well as those explicitly mentioned below.

The theory is based on a consideration of finite objects and finite algorithmic
operations thereon. The spirit of the programme is summed up in the following
quotation from ANK’s article [1963d] in the Indian statistical journal Sankhya.

I have already expressed the view that the basis for the applicability of the
results of the mathematical theory of probability to real random phenomena
must depend on some form of the frequency concept of probability, the
unavoidable nature of which has been established by von Mises in a spirited
manner. However, for a long time I had the following views.

(1) The frequency concept based on the notion of limiting frequency as
the number of trials increases to infinity does not contribute anything to

substantiate the applicability of the results of probability theory to real
practical problems where we always have to deal with a finite number of
trials.

(2) The frequency concept applied to a large but finite number of trials
does not admit a rigorous formal exposition within the framework of pure
mathematics.

I still maintain the first of the two theses mentioned above. As regards
the second, however, I have come to realise that the concept of random
distribution of a property in a large finite population can have a strict
formal exposition. In fact, we can show in sufficiently large populations the
distribution of the property may be such that the frequency of its occurrence
will be almost the same for all sufficiently large sub-populations, when the
law of choosing these is sufficiently simple. Such a conception in its full
development requires the introduction of a measure of the complexity of an
algorithm. I propose to discuss this question in another article. In the present
article, however, I shall use the fact that there cannot be a very large number
of simple algorithms.

Six years later [1969a] he wrote

(1) The fundamental concepts of information theory can, and must, be
substantiated without recourse to probability theory, and in such a way that
the concepts of entropy and quantity of information are applicable to
individual objects;

(2) the concepts of information theory thus introduced may be the basis
for a new conception of the notion random corresponding to the natural
assumption that randomness is the absence of regularity.
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42 ANDREI NIKOLAEVICH KOLMOGOROV
To these it is proper to add another of ANK’s remarks [1983d]:

The applications of probability theory can be put on a uniform basis. It
is always a matter of consequences of hypotheses about the impossibility of
reducing in one way or another the complexity of the description of the
objects in question. Naturally, this approach to the matter does not prevent
the development of probability theory as a branch of mathematics being a
special case of the general measure theory.

Let us now try to catch the gist of ANK’s new approach, viewed here for the sake
of simplicity in a typical ‘context’, that of Lebesgue measure on the Borel subsets of
{0, 13*. (In the language of the Grundbegriffe we should -have said that we have in
mind an infinite sequence of Bernoulli trials with individual chance = }.) In fact it is
characteristic of the new theory, just as it was of the old, that we have to indicate what
we are trying to model by referring to a triple (Q, &, u), with 4(Q) = 1, in the usual
way. In what follows, reference to the model will be indicated by a reference to ‘the
context’.

The first step is to introduce four special sets of infinite (0, 1)-sequences w to be
called T, C, KS, and CS. For the precise definitions of these see [1987c]. The
‘definitions’ given here will be informal only, and they omit essential details that are
far beyond our present scope.

A given infinite (0, 1)-sequence @ = (@, @,, ...) will be a member of T (and is then
called a typical sequence) if and only if it belongs to every subset of {0, 1}® that
effectively has measure 1. It is a theorem of P. Martin-L6f that T, defined in this way,
has itself effectively measure 1 (that is, that it is the least such subset). Here ‘effective’
refers to the explicit algorithmic basis of the whole approach. I will not even attempt
to indicate the basis of that here.

A given infinite (0, 1)-sequence @ = (®@,, @,, ...) Will be a member of C (and is then
called a chaotic sequence) if and only if its initial #-segments w" = (wy, @, ..., ®,_;)
have a ‘complexity’ (or ‘entropy’) K(w") that grows, as n increases, at the fastest
possible rate. This definition presumes that we have given a prior definition of the
‘optimal monotone complexity’ K(6) (sometimes called KM(8)) of a fixed finite
object 6, again relative to the ‘context’. The basic idea is that this complexity is
essentially just the length of the shortest possible description of 6. Note that the word
‘shortest’ refers to the ‘context’, so that in our present example C, like T, is to be
viewed from the standpoint of one interested in the classical concept of Bernoulli trials
with individual probability p (here =3), and in minimising the length of the
description we are allowed to be influenced by this. I shall say no more about the
definition of ‘optimal monotone complexity’ than to remark that we can always
suppose the length of the description to be less than or equal to n, and that ‘ growing
at the fastest possible rate’ is to mean that K(w") = n—c for some positive ¢
independent of n but perhaps depending on w. Different ‘optimal monotone
complexities’ and the associated minimal descriptions of a finite object § relative to
the ‘context’ will in general lead to different values of K(6), but a fundamental
theorem asserts that any two such optimal monotone complexities K* and K** always
satisfy an inequality of the form

|K*(6)— K**(6)] < c**¥,

where ¢*** does not depend on 8, and this ensures that there is no ambiguity in the
definition. (As explained before, it is the references to ‘context’ that unambiguously
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OBITUARY 43

lock the discussion onto what the classical probabilist would recognise as a specific
model.)

We now have a theorem (due to L. A. Levin and C. P. Schnorr) saying that for a
given ‘context’ the sets T and C are the same. That is, a given infinite (0, 1)-sequence
w is either (1) typical and chaotic, or (ii) non-typical and non-chaotic.

Finally the definitions of the sets CS and KS of infinite (0, 1)-sequences serve to
remind us of what the ‘contextual’ probability model was. It is formulated in
language similar to that used by von Mises when describing his ‘collectives’. If we
used the Church reformulation of that, we would have to say that #(w")/n—p as
n—oo (where #(w") is the sum of the components of w™, and where in our present
example p = 1), and that this convergence holds in every effectively selected subsequence.
That, however, would tell us that the given infinite (0, 1)-sequence w belongs to set
CS (C for Church). We want the necessary and sufficient condition for w to belong
to a different set, KS (K for Kolmogorov), which is to be a subset of CS, and it is
defined by requiring the same convergence condition to hold even when in forming
the selected subsequences we are allowed at each stage to select any symbol in the
sequence that has not already been chosen —that is, we are allowed (effectively) to
‘dodge about’ when selecting new terms.

We then have a second theorem saying that

T=CcKScCS.

Here the inclusion C < CS is strict (M. van Lambalgen and D. Loveland).

Accordingly we can use C to provide an environment in which to do classical
probability with a new —an entropic — motivation. It is natural to ask if the first
inclusion in the above displayed formula could be shown to be an equality. In one of
his publications [1969a] ANK announced results suggesting that KS is strictly larger
than C, but the proof of these assertions has since been lost, and so that question is
still open. (Dr Razborov now tells me that A. Shen has proved this result.)

Another open question asks whether an element of KS stays in KS if we apply a
second Kolmogorov selection process to it.

To practical probabilists many other questions will spring to mind, and it is too
early to expect conclusive answers to all of them. The time is, I suppose, not yet ripe
for an entropy-theoretic reworking of the Grundbegriffe, but we may perhaps hope to
see this done in the near future.

Already the fact that C < KS is enough to make it plain that in principle we
should be able to rebuild probability theory starting with the infinite (0, 1)-sequences
in C as a basis, so using entropic rather than probabilistic methods. Before he died,
ANK was convinced that this must be so, and indeed he knew that to some extent it
had been carried out. It was therefore especially fitting that the Kolmogorov—
Uspenskii paper [1987c] that we have been following, which was delivered (by
Uspenskii) as the opening lecture of the First World Congress of the Bernoulli
Society in Tashkent, should be immediately followed in its subsequent publication
in Teoriya Veroyatnostei by a remarkable paper by V. G. Vovk that exemplifies in a
triumphant manner the success of this part of the Kolmogorov programme.

This is nothing less than an entropic proof of the classical law of the iterated
logarithm for a FIXED chaotic infinite (0, 1)-sequence. As the LIL theorem first
emerged in the context of number theory (see for example Feller [13)), this is natural
enough, but one wonders what G. H. Hardy would have thought of it.
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44 ANDREI NIKOLAEVICH KOLMOGOROV

Let us use the notation

. # (") —1n
* — A

LIL*(w) = limsup v (nloglogn)’

so that the classical theorem asserts that LIL*(w) = 1/4/2,
Let us now introduce the following terminology: we shall say that we{0, 1}* is
chaotic up to a discrepancy f(n) when

n—K(w™) < fln)+0(1),

and that it is chaotic if the condition holds with f{rn) = O(1). Then Vovk’s version of
the LIL theorem is that

LIL*(w) = % if w is chaotic up to a discrepancy o(loglog n).
Accordingly we get an entropic version of the classical LIL-theorem with an
unexpectedly light assumption, because the Vovk assumption for LIL is much weaker
than mere chaoticity (= membership of C). Vovk’s theorem indeed generalises the
classical LIL theorem in two ways. In the first place, it holds for any fixed infinite
binary sequence provided that a suitable degree of chaos prevails, and in the second
place, the critical chaotic condition is substantially weaker than the one that might
have been expected. But Vovk’s techniques in fact yield much more than this. He is
also able to describe what it is that replaces the classical LIL behaviour when the
given (0, 1)-sequence satisfies any one of a variety of yet weaker near-chaos
conditions.

Vovk then turns to two other classical limit theorems and shows, for example, that
the strong law of large numbers holds for an individual infinite (0, 1)-sequence w if
it is chaotic up to a discrepancy o(n), and that it fails for some of the w that are chaotic
up to a discrepancy en. Also he shows that 0 and 1 each recur infinitely often if the
given w is chaotic up to a discrepancy (;— &) log, n, but that there exists an ‘ ultimately
constant’ sequence o that is chaotic up to a discrepancy (2+¢)log, n.

So we can now assert classical probability limit theorems for suitably nearly
chaotic individual infinite (0, 1)-sequences, and also we can now classify such
theorems by the degree of chaoticity required. This last aspect of Vovk’s work
reminds one of the concept of ‘depth’ in number theory, not to mention the
‘Infinitirkalkiil’ of Du Bois Reymond. Hardy would indeed have been interested! I
hope that work has already begun on computing the discrepancy f{n) for some of the
more interesting infinite (0, 1)-sequences that occur in the classical theory of numbers.

Another very striking recent result is that of E. A. Asarin (whose paper
immediately follows that of Vovk). He has shown that the analogue of the ‘T = C’-
theorem holds in the very different ‘context’ of brownian paths.

In concluding this mini-review of ANK'’s later work I must stress again that the
results described were obtained by a large and internationally diverse school, but it
was a school in effect dedicated to making explicit the perceptions of Kolmogorov.

Mention must be made here of the use of quantitative complexity in inferential
statistics. To take only one example of this, when two competing explanatory theories
have been proposed with reference to a given set of observed data, it is usually
thought desirable to penalise the more complicated explanation in some quantitative
way, when carrying out a statistical test to decide which explanation to adopt. Some
numerical measure of complexity will be required for that purpose, and the choice
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OBITUARY 45

and use of this is related to ANK’s programme just because it involves the definition
of complexity for a given finite object. A stimulating discussion of a wide range of
such questions will be found in the record of a Symposium organised by the Royal
Statistical Society (Journal, Series B, 1987) and built around papers by P.R.
Freeman, J. Rissanen, and C. S. Wallace presenting complexity-based approaches to
a variety of statistical problems.

At all stages of his career ANK seems to have been busy simultaneously on a
multiplicity of fronts, and this was especially so towards the end of his life. Thus
during the decade of ‘complexity’ he was also actively developing new limit
theorems of the classical type with his younger colleagues, and occupied with his
growing interest in mathematical education, taking very heavy responsibilities in
connexion with one of the special schools for gifted children sponsored by the
Moscow State University. To this school he devoted a major proportion of his time
over many years, planning syllabuses, writing textbooks, spending a large number of
teaching hours with the children themselves, introducing them to literature and
music, joining in their recreations and taking them on hikes, excursions, and
expeditions. There are those who shudder when such schools are mentioned, and
protest about excessive pressure, one-sided development, and so forth. I am
persuaded that these criticisms are groundless, and founded on ignorance. ANK
sought to ensure for these children a broad and natural development of the
personality, and it did not worry him if the children in his school did not become
mathematicians. Whatever profession they ultimately followed, he would be content
if their outlook remained broad and their curiosity unstifled. Indeed it must have been
wonderful to belong to this extended family of Andrei Nikolaevich. See him talking
to some members of it (Plate II).

A wise man has remarked that every mathematician has his own personal view
of Kolmogorov. I have attempted to portray my own, but the numerous obituaries
now being written will enable readers to sample other perspectives, and to build up
a portrait for themselves. I should add that the hard facts, the bibliographic details,
and the three photographs included in this impressionistic essay were given to me by
my friend Albert Shiryaev, to whom I am most grateful. His own much longer study
will be published in the journal Annals of Probability and will undoubtedly prove to
be the authoritative record of the life and work of this extraordinary man.

Those who want a glimpse of Kolmogorov’s personality will find it of interest to
read the two sets of reminiscences published by Aleksandrov [1] and by Kolmogorov
himself [1986b]. These contain fascinating records of expeditions to the mountains
(see Plate IIT), and record the history of their long friendship.

It could go without saying that Kolmogorov received numerous honours. He was
a Hero of Socialist Labour, and was awarded seven Orders of Lenin in addition to
many other distinctions. But perhaps the greatest honours conferred upon him in his
own country were the Lenin Prize (1965) and the Lobachevskii Prize (1987). At the
time of his death he was clearly recognised there, as also here, to be one of the greatest
mathematicians of all time.

From abroad came 26 honorary doctorates and honorary memberships of learned
societies, as well as a Balzan Prize and a Wolf Prize. In particular he became an
Honorary Member of the'London Mathematical Society in 1959, an Honorary
Fellow of the Royal Statistical Society in the same year, and a Foreign Member of the
Royal Society in 1964.

He directed the studies of nearly 70 research pupils, of whom some, as for example
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46 ANDREI NIKOLAEVICH KOLMOGOROV

Martin-L6f and Rényi, came from other countries, but mostly his pupils were from
the USSR, many of these later becoming Members or Corresponding Members of the
Soviet Academy of Sciences.

In a moving last message to his research pupils, quoted in the memoir by Shiryaev,
he laid upon them the responsibility of continuing his work for the better education
of young children. It seems certain that here too we all have much to learn from his
example.

We can only guess how Kolmogorov will be regarded by future generations.
Which was the most significant: his massive combinatorial power, or his penetrating
insight? Or should these be regarded as two aspects of a single gift?

References

1. P.S. ALEKSANDROV, ‘Pages from an autobiography’, Uspekhi Mat. Nauk 34 (1979) 219--249, 35 (1980)
241-278.
2. M. S. BARTLETT, ‘Periodogram analysis and continuous spectra’, Biometrika 37 (1950) 1-16.
3. D. BLACKWELL, ‘Another countable Markov process with only instantaneous states’, Ann. Math.
Statist. 29 (1958) 313-316.
4. N. F. BRITTON, Reaction-diffusion equations and their applications in biology (Academic Press, New
York, 1986).
5. R. BROWN, ‘A brief account of microscopical observations made ... 1827 &c’, Philos. Mag. (2) 4 (1828)
161-173.
6. P.J. DANIELL, ‘Integrals in an infinite number of dimensions’, Ann. of Math. (2) 20 (1918-19) 281-288.
7. P.J. DANIELL, ‘Functions of limited variation in an infinite number of dimensions’, Ann. of Math. (2)
21 (1919-20) 30-38.
8. P.J. DaNIELL, ‘Contribution to discussion’, J. Royal Statist. Soc. Suppl. 8 (1946) 88-90.
9. D1 SAN-MIN, ‘ Uniqueness of Doob process determined by ‘0+ ’-system’, Essays on Markov functions,
4th Chinese Probability Colloq. (Institute of Railways, Changsha, 1984), pp. 125-136.
10. J. L. Doos, Stochastic processes (Wiley, New York, 1953).
11. A. EINSTEIN, ‘ Uber die von der molekularkinetischen Theorie der Warme gefordete Bewegung von in
ruhenden Fliissigkeiten suspendierten Teilchen’, Ann. d. Physik (4) 17 (1905) 549-560.
12. N. 1. ERMOLAEVA, Yarovizatsiya 2 (1939) 79.
13. W. FELLER, An introduction to probability theory and its applications, Vol. 1 (3rd ed., Wiley, New York,
1968).
14. R.A. Fls)HER, The genetical theory of natural selection (Oxford University Press, 1930).
15. R. A. FisHER, ‘The wave of advance of advantageous genes’, Ann. Eugenics 7 (1937) 355-369.
16. M. FRECHET, Recherches théoriques modernes sur le calcul des probabilités, Vol. I (1936), Vol. II (1938)
(Gauthier Villars, Paris).
17. M. L. GASPAROV et al., Problemi teorii stiha (Nauka, Leningrad, 1984).
18. B. HOSTINSKY, Méthodes générales du calcul des probabilités, Mem. Sci. Math. 52 (1931).
19. Hou ZHEN-TING, “0+ ’-system determines birth and death process uniquely’, Essays on Markov
Sfunctions, 4th Chinese Probability Colloq. (Institute of Railways, Changsha, 1984), pp. 103-112.
20. C. T. Ionescu TULCEA, ‘Mesures dans les espaces produits’, Atti Acad. Naz. Lincei Rend. Cl. Sci. Fis.
Mat. Nat. (8) 7 (1949) 208-211 (1950).
21. D. G. KeEnpALL, ‘Mathematical models of the spread of infection’, Math. and Computer Sci. in Biol.
and Medicine, (Med. Research Council) (HMSO, London, 1965), pp. 213-224.
22. D. G KENDALL, ‘Some recent advances in the theory of denumerable Markov processes’, Trans. 4th
Prague Conf. on Info. Theory etc. (1967), pp. 11-17.
23. D. G. KenpaLL and G. E. H. REUTER, ‘Some pathological Markov processes etc., Proc. Internat.
Congress Math. Amsterdam (1954) 111, 377-415.
24. E. KoLMaN, ‘Is it possible to prove or disprove Mendelism by mathematical and statistical methods?’
C.R. Acad. Sci. URSS 28 (1940) 834-838. i
25. P. LEvy, ‘Systémes markoviens et stationnaires. Cas dénombrable’, Ann. Sci. Ecole Norm. Sup. (3) 68
(1951) 327-381.
26. T. D. LyseNko, ‘In response to an article by A. N. Kolmogoroff’, C.R. Acad. Sci. URSS 28 (1940)
832-833.
27. R. vON MISes, Wahrscheinlichkeitsrechnung (Fr. Deuticke, Leipzig and Vienna, 1931).
28. O. NIKoDYM, ‘Sur une généralisation des intégrales de M. Radon’, Fundamenta. Math. 15 (1930)
131-179.

A 'T '066T ‘02T2Z697T

wouy

IpUOD pUe SLLB | 841385 *[5202/0T/08] Uo Akiqiauliuo AB|1M ‘90UB|OXT 8120 PUe Ul esH Joj aimiisu| euolieN ‘301N AQ T€T'2ZAWIA/ZTTT 0T/I0PA00 A8 I

ol

L

965U901 SUOLLILIOD 9B 3|deo1 dde B Ad PaUBAOB 212 SBPILE YO B8N J0 SN 10§ AIRIqIT BUIIUO /3|1 UO (SUONIpU



OBITUARY 47

29, D. ORNSTEIN, ‘The differentiability of transition functions’, Bull. Amer. Math. Soc. 66 (1960) 36-39.

30. G.E. H. REUTER, ‘On Kendall’s conjecture concerning ‘0+ ’-equivalence of Markov transition
functions’, J. London Math. Soc. (2) 35 (1987) 377-384,

31. N. WIENER, Extrapolation, interpolation, and smoothing of stationary time series (Wiley, New York,
1949).

32. A. A. YUSKEVICH, ‘On differentiability of transition probabilities of homogeneous Markov processes
with a countable number of states’, Ucenye Zapiski MGY 186 (Mat.) 9 (1959) 141-159.

KOLMOGOROV’S WORK ON TURBULENCE
G. K. BATCHELOR

The name Kolmogorov has different associations for different mathematical and
scientific communities. For those interested in the turbulent motion of fluid,
Kolmogorov — whom they think of as their Kolmogorov — will always be remembered
for the theory of ‘local isotropy’, or universal equilibrium, of the small-scale
components of fluid motion that he put forward in 1941. This powerful theory, which
has been found extremely useful in a wide variety of physical contexts, was published
(in English) in two short notes [1941d, g] in Comptes Rendus de ' Académie des
Sciences de 'URSS which, remarkably, found their way into western university
libraries during World War II. These papers are unusual for a mathematician in that
they contain no mathematics to speak of, dimensional analysis and elementary
probability concepts being all that is required. They are essentially a statement of two
hypotheses, justified heuristically, and the style is that of an axiomatic theoretical
physicist. Kolmogorov published four other similar short notes on turbulence [1941f,
1942b, 1949h, 1962f), the last being a reconsideration and refinement of the universal
equilibrium theory. All these papers are unusual, original and penetrating, but the
two in 1941 on the universal equilibrium theory have had by far the greatest impact
on the study of turbulence and will be described first.

The basis of Kolmogorov’s two hypotheses was the notion of kinetic energy
‘cascading’ from components of the fluctuating turbulent motion with large length
scales to components with smaller length scales as a consequence of nonlinear inertial
interaction of different components, a notion which was familiar from previous work
by G. I. Taylor and L. F. Richardson in particular. Kolmogorov recognised that, as
the Reynolds number of the turbulent motion is increased, the smallest, viscosity-
dominated, length scale present in the flow decreases, thereby increasing the number
of steps in the cascade; and he regarded as plausible the assumptions, first that the
cascade has an accelerating character in that the transfer of energy from components
with length-scale /, say, to those with length-scale 1/ occurs in a time which diminishes
with /, and second that the transfer from one scale to another is accompanied by some
statistical decoupling of the components involved. This physical picture of the
turbulence suggested to Kolmogorov the premise that the components of motion with
length scales small compared with the scale L characteristic of the components of
motion containing most of the kinetic energy are effectively independent of the
components on length-scales near L, and so are asymptotically statistically
homogeneous in space and time and isotropic, regardless of the way in which the
turbulence is being generated and regardless of its large-scale statistical properties.

This extremely powerful premise represents the essence of the Kolmogorov
theory. It was latent in earlier discussions of observational data, but had not been
formulated nor seen so clearly. From a practical point of view it has the weakness of
referring only to components on small length scales, which normally make negligible
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48 ANDREI NIKOLAEVICH KOLMOGOROV

contributions to the rates of transfer of momentum and mass in inhomogeneous flow
fields, but about these small-scale components it says a great deal.

If the above premise is accepted, there arises the question, what determines the
properties of the components of motion with small length scales involved in this
universal equilibrium ? This question was answered by Kolmogorov’s two ‘similarity
hypotheses’. The first of these hypotheses states that the statistical properties of
the small-scale components of the motion are uniquely determined by just two
parameters, one being the kinematic viscosity of the fluid (v) which is relevant to the
dissipation of energy at the very smallest scales, and the other the mean rate at which
energy is transferred to the universal-equilibrium range of length scales from larger
scales per unit mass of fluid (¢). The idea here is that the large-scale properties of the
turbulence are relevant only insofar as they are the source of kinetic energy which is
transferred, at the rate ¢, to the smaller-scale components. Moreover, since the small-
scale components of the motion are statistically steady, the mean rate at which energy
is put in at one end of the universal-equilibrium range is equal to the mean rate at
which it is taken out at the other end by viscous dissipation, showing that

1 Ou,  Ou, 2>
° Eth; <(0xj+ax,)

where u, is the local velocity of the fluid.

This first hypothesis imposes restrictions on the functional forms of statistical
properties of the small-scale components of the motion. For instance, for the second
moment of the difference between the fluid velocities at two points separated by the
vector r we have on dimensional grounds

g (X +1)—u ()P = (ve): F(r/n)

for r < L, where d denotes a component parallel to r, r is the scalar magnitude of r,
and 7 = (v3/e)i. The length # is evidently a measure of the length scale at which
viscous dissipation occurs, and the function F is a universal form. It may also be
shown from the statistical isotropy of the small-scale motion that the second
moment of any other component of the velocity difference is determined by this same
function F.

The second similarity hypothesis states that, if the Reynolds number of the
turbulence is so large that values of r such that # < r < L exist, the properties of the
components of motion associated with length scales in this range depend only on e&.
This hypothesis strengthens the restrictions, and again it follows on dimensional
grounds alone that F must be proportional to (r/5)}, corresponding to

(ug(X+1) —u (X} = Cler)}

for n < r < L, where C is a universal constant. Similar deductions may be made for
other moments of velocity differences ; and any dimensionless ratio of powers of these
moments is necessarily an absolute constant when r lies in this range in which only
inertia forces act.

This expression for the second moment of the velocity difference was the first
definite quantitative prediction in the study of turbulence. Kolmogorov compared the
predicted form of the second moment with the very limited wind-tunnel data available
in 1941, but the measurements were too sparse to provide any real test of the variation
as ri over the rather small range of values of r to which it applies. Techniques for the
measurement of fluctuating velocities have improved greatly since then, and it has
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also been realised that it is preferable to compare measurements with predictions of
the energy spectrum function, which is the Fourier transform of the second moment
of the velocity, because the wave-number range corresponding to n < r < L enlarges
indefinitely as the Reynolds number is increased. The spectral density should vary as
&8 (where « is the magnitude of the vector wave number) provided L™ < k <77,
according to the Kolmogorov theory, and this has now been supported by many
independent sets of measurements, over several wave-number decades in the case of
measurements at very large Reynolds number.

By an extraordinary coincidence the essential ideas of the universal equilibrium
theory were put forward independently a short time later by two other people, L.
Onsager in 1945 in USA, and C. F. von Weizdcker in Germany in 1945 although not
published until 1948. They both showed that the spectral density should vary as x~
for a restricted range of wave-number magnitude. However, the clearest formulation
of the ideas was undoubtedly that of Kolmogorov, and it was also both more precise
and more general.

A few years later Kolmogorov [1949h] made what proved to be a typical
application of the universal equilibrium theory to a physical problem. In these
applications one first identifies a physical process in which the components of motion
with length scales in the equilibrium range play a significant part, and then the effect
of these small-scale components is represented analytically by the appropriate
dimensional combination of ¢ and v. Kolmogorov’s problem concerned the tendency
for turbulent motion of a dispersion of drops of one liquid in a second liquid to
deform and perhaps to break up the drops. The largest size of drop for which surface
tension at the interface can hold the drop together against the deforming tendency of
the turbulence will be that for which the surface-tension stress 7/a (where a is the
drop radius) is comparable in magnitude with the variation of stress due to the
turbulence over the outer surface of the drop. When < a < L, this variation of stress
over the drop surface is primarily inertial and is determined mainly by the
components of the motion with length scales near a, and so on dimensional grounds
is proportional to p(ea)’. Equating the two stresses then gives the useful prediction
that a is of order (T/p)%e‘g. Many other similar applications of the universal
equilibrium theory have been made.

But the 1941 universal equilibrium theory was not perfect. At an international
conference on the mechanics of turbulence at Marseille in 1961 Kolmogorov
announced that ‘quite soon after’ these ideas originated ‘Landau noticed that they
did not take into account a circumstance which arises directly from the assumption
of the essentially accidental and random character of the mechanism of transfer of
energy from the coarser vortices to the finer’. Landau’s point was that the local and
instantaneous rate of energy dissipation per unit mass may be expected to have an
increasingly spotty distribution as the Reynolds number of the turbulence is increased
and that its variance will increase without limit. Other properties of the local small-
scale components of the motion will likewise exhibit large fluctuations, and any
relation between statistical quantities which are affected by fluctuations about the
mean will consequently be dependent on the Reynolds number and so cannot be truly
universal. For example, the dimensionless ratio of the nth moment (n» > 2) of the local
velocity gradient to the in-power of the second moment is a parameter of the small-
scale components and so should be a universal constant according to Kolmogorov’s
first similarity hypothesis, but may be expected to depend on the Reynolds number
in the light of Landau’s comment. Measurements of such ratios of moments have
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50 ANDREI NIKOLAEVICH KOLMOGOROV

been made, and they confirm that there is indeed a dependence on Reynolds number,
the dependence being an increase in magnitude with Reynolds number which
becomes more rapid as » is increased.

Further progress clearly required information about the probability distribution
of the local rate of energy dissipation. At this same conference Kolmogorov [1962f]
went on to report that his colleague and former student A. M. Obukhov had
proposed, as ‘a simplified scheme’, that the logarithm of the average of the
instantaneous rate of dissipation over a sphere of radius r in the fluid (Ing¢,) has a
normal distribution when L/r is large and that the variance of Ing, is given by

A+uln(L/r),

where A depends on the large-scale features of the motion and g is a universal
constant. Kolmogorov thereupon modified his two similarity hypotheses to allow for
dependence on the Reynolds number, and adopted Obukhov’s specific suggestion
as a third hypothesis. The explicit expression for the energy spectral density now

becomes E(x) = CeiS(kL)™*® for LM<k <nq™

It appears from a number of experiments made in recent years that this expression fits
the data a little better with x4 having a value between 0.2 and 0.5 than with y =0,
although the difference is slight. The effect of dissipation fluctuations on the moments
of the velocity gradient is stronger, and here too there is reasonable agreement
between observations and the consequences of the third hypothesis. The properties of
the small-scale components of turbulent motion, and in particular the intriguing
‘intermittency’ in the spatial and temporal distributions of vorticity and dissipation,
are still the subject of discussion and research, nearly 50 years after Kolmogorov
announced his universal equilibrium theory.

Finally, there is a paper [1942b] about quite different questions which is less
profound but remarkably prescient. Here Kolmogorov had the very practical purpose
of establishing approximate equations which would allow calculation of some of the
important parameters of flow fields in which turbulence is generated by a mean
shearing motion of the fluid and is dependent on position in the fluid, as for instance
in steady mean flow along a tube of circular cross-section. It is not possible to obtain
a closed exact set of governing equations for mean quantities from the Navier—Stokes
equation of motion, because the number of velocity moments needed to specify the
fluctuating motion statistically is not finite and as a consequence of the nonlinearity
of this equation the moments of different order are interdependent. Kolmogorov
proposed instead to choose a small number of physically significant quantities (such
as the local mean kinetic energy of the fluctuating motion per unit mass of fluid)
which would be the dependent variables in a corresponding set of approximate
equations obtained by operating on the Navier-Stokes equation in various ways
before averaging, an idea on which Prandtl was working simultaneously in Germany.
The difficult part of the plan is to represent, by an intuitive appeal to some physical
picture of the processes at work, each of the quantities arising in these equations in
terms of the chosen dependent variables. It calls for inspired guessing and a judicious
compromise between simplicity of the equations and accuracy of the representation.
Kolmogorov chose three position-dependent variables, the mean velocity, the mean
square of the velocity fluctuation, and a certain frequency related to the mean rate of
strain. His proposed approximate equations need not be reproduced here, because
they have not stood the test of time and it is the approach that is significant. The

A 'T '066T ‘02T2Z697T

wouy

IPUOD PU. SR L 3 895 *[520Z/0T/0€] U ARiq178UIIUO 43I ‘20UB|[20XT 818D PUE LRESH J0Jaimiisu| UOTEN ‘3DIN Ad TE'T'Z2/SWIA/ZTTT OT/I0pAU0D™ A N

ol

96LBOI"] SUOLUILIOD BAEBI) 9IGEO1IAdE DU} AQ POLIBAC 3.2 SIDILE WO ‘360 J0 I[N 10§ AIRIGIT SUIIUO /31 UO (SUOBIPLC-p



OBITUARY 51

equations are inevitably non-linear, and Kolmogorov noted that their solution
‘presents great difficulties’. Numerical solution was not feasible in 1942, but it has
become so in recent years, and the approach to turbulent shear flow suggested by
Kolmogorov is now the basis of a vast amount of work, known as ‘turbulence
modelling’, directed towards the solution of practical flow problems in mechanical,
aeronautical, hydraulic and chemical engineering.

KOLMOGOROV’S WORK ON PROBABILITY,
PARTICULARLY LIMIT THEOREMS

N. H. BINGHAM
1. Foundations and the ‘ Grundbegriffe’

In Hilbert’s problem list of 1900 one finds (Problem 6) ‘To treat in the same
manner, by means of axioms, those physical sciences in which mathematics plays an
important part; in the first rank are the theory of probability and mechanics’.

The basis for a modern and rigorous treatment of probability was laid by
Lebesgue around 1901-4 in his work on measure theory and integration. In
particular, this provided the language in which results on almost-sure convergence
could be formulated, an early example being Borel’s ‘normal number’ theorem of
1909.

It is perhaps surprising that some three decades were needed before the successful
synthesis of these ideas took place. One necessary preliminary was the freeing of
measure theory from the geometrical aspects associated with its being developed first
in Euclidean space; a major influence here is the work of Fréchet. Another was the
completion by Nikodym in 1930 of the ‘ Radon—Nikodym theorem’, begun by Radon
in 1913; this was an essential ingredient in a successful treatment of conditioning.

The flourishing Soviet school of analysts including Luzin, Suslin and others did
much to develop the ‘metric theory of functions’, and Kolmogorov, a pupil of Luzin,
was well placed to turn the measure-theoretic background he acquired here to
probabilistic problems, in which he became interested following his first collaboration
with Khinchin [1925f]. The result was his classic book on foundations of 1933,
Grundbegriffe der Wahrscheinlichkeitsrechnung, which essentially inaugurated the
modern era of probability theory.

Chapter I (in which Kolmogorov credits Fréchet as being the first to identify
probability, expectation, random variable, ... with measure, integral, measurable
function, ...) is introductory. In Chapter II we find o-algebras and the key axiom of
countable additivity, completing the now-standard Kolmogorov axioms. Chapter
IIT develops distribution functions in one and several dimensions, and then (§4) in
infinitely many. Here we find the key ‘ Daniell-Kolmogorov theorem’ (originally due
to P.J. Daniell in 1918), passing from an appropriately consistent infinite set of
‘finite-dimensional distributions’ to one ‘infinite-dimensional distribution’, or
stochastic process. In §5 one finds convergence in probability and with probability
one. Chapters IV and V cover expectation and conditioning. In Chapter VI we find
the weak and strong laws of large numbers (considered further below), and in the
Appendix the Kolmogorov zero-one law.

It is difficult to overstate the impact of the Grundbegriffe on the development of
the subject; essentially the history of probability theory splits in 1933 between ‘pre-
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Kolmogorov’ and ‘Kolmogorov’. We note in passing that history might have turned
out rather differently; very important measure-theoretic work had already been done
by Paul Lévy — for instance, in his book [17] of 1925 one finds the modern machinery
of characteristic functions. In his autobiography [20, pp. 67-68] Lévy writes
poignantly of his realisation, immediately on seeing the Grundbegriffe, of the
opportunity which he himself had neglected to take. A rather different perspective is
supplied by the eloquent writings of Mark Kac ([16], and preface to [15]) on the
struggles that Polish mathematicians of the calibre of Steinhaus and himself had in
the 1930s, even armed with the Grundbegriffe, to understand the (apparently
perspicuous) notion of stochastic independence. This period resulted in much
important probabilistic work with a Polish flavour — for instance, the delightful book
by Kac [14] on independence, and the work of Marcinkiewicz and Zygmund [24].

2. Weak limit theorems; Gnedenko and Kolmogorov

Lévy’s book [17], and the continuity theorem for characteristic functions therein,
provided a powerful new technique for proving weak (or distributional) limit
theorems. Suppose for instance that X, X, X,,... are independent and identically
distributed with mean x4 and characteristic function ¢. From

Eexp{it Zn; Xk/n} = ¢(t/n)* = (1 +iut/n+o(1/n))" — e**

k=1

and the continuity theorem, one obtains the ‘weak law of large numbers’

! Y X,—p (n—o0) in probability,
k=1
due to Khinchin in 1929. Kolmogorov considers the non-identically distributed case
in his classic paper [1928d] and its sequel [1929a). In particular (Satz XII) he refines
Khinchin’s weak law in the identically distributed case, showing that there exist
constants ¢, with
! Y X,—c,—0 in probability

Ny
((X,) is ‘stable’) if and only if
nP(X| > n)—0;

then ¢, can be taken as [*_ y dF(y) (writing F for the law of X). The final result here
is that of Ehrenfeucht and Fisz of 1960, giving the equivalence of

(i) the characteristic function ¢ is differentiable at the origin, and ¢'(0) = iy,

(i) xP(X|>x)—>0and [*,y dFy) > p (x >0),

(ii)) 1/nY.7 X, - u (n—o00) in probability.
Slightly more general is the question of ‘relative stability’: the existence of constants
a, with

Y. X./a,— 1 in probability,

k=1

a classical instance being that of the St Petersburg game.
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The central limit theorem may be handled similarly. When the X, have variance
a®, writing ¢, for the characteristic function of X—EX one has

n n 2 1 n e
Eexp{itZ(Xk—ﬂ)/(aw)}=Mﬁ) = (1-gro2)) e,

k=1 n

and (writing @ for the standard normal or Gaussian law) concludes that

L Y (X,—u) > ® (n— o0) in distribution

oV N
by the continuity theorem. This central limit problem may be generalised: consider
‘triangular arrays’ (X,,:1 <k <k,, n=1,2,..), with terms in the nth row mutually
independent, and individual terms negligible as » —o0. What are the possible limit
laws for ) ¥, X,,, and what are the conditions for convergence? The possible limits
are the infinitely divisible laws (those which, for each n=1,2,..., are an nath
convolution power), characterised by the Lévy—Khinchin formula (due in the finite-
variance case to Kolmogorov [1932b, c], and in the general case to Lévy in 1934/35,
Khinchin in 1937).

Kolmogorov’s second profoundly influential contribution to the textbook
literature of probability theory is his monograph with B. V. Gnedenko [1949a],
published in Russian in 1949 and translated into English (and annotated) by K. L.
Chung in 1954. Chapter 3 contains a thorough discussion of the infinitely-divisible
laws, Chapter 4 of conditions for convergence to them, and Chapter 5 of conditions
for convergence to normal, Poisson or degenerate laws (this last covering the weak
law of large numbers, relative stability etc.). Chapters 7-9 cover the identically
distributed case (stable laws and their domains of attraction, Berry—Esseen theorem,
local limit theorems, etc.).

Something of the power and scope of [1949a], as well as its style, is aptly
summarised by its translator, Chung, in his preface: ‘...a certain amount of
mathematical maturity, perhaps a touch of single-minded perfectionism, is needed to
penetrate the depth and appreciate the classic beauty of this definitive work’. Of its
central theme, Chung remarks again, in the preface to his own book [3], that it ‘has
been called the ““central problem™ of classical probability theory. Time has marched
on and the centre of the stage has shifted, but this topic remains without doubt a
crowning achievement’.

One should note the debt that Gnedenko and Kolmogorov owes to its predecessor,
Paul Lévy’s classic [18] of 1937. Indeed, Lévy emphasised the dominant part that the
question of conditions for convergence to normality played throughout his life as a
probabilist; see his autobiography [20] and obituary [22]. As for its successors: all the
modern classics treat at least part of this material; we single out the monographs of
Ibragimov and Linnik [11] and Petrov [25] as perhaps closest in scope. Though much
of the book’s content is now available in more streamlined or easily digestible form
elsewhere, it remains a powerful source of inspiration and technique.

3. Strong limit theorems

Kolmogorov’s first work on strong limit theorems — indeed, on probability theory
—is his paper with Khinchin of 1925 on convergence of random series [1925f]. He
returns to the subject in [1928d], Satz VII, obtaining the criterion for convergence
(‘three-series theorem’). In particular, for independent X, convergence of ) var X,
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54 ANDREI NIKOLAEVICH KOLMOGOROV

and ) EX, imply almost-sure convergence of Y. X,. The subject was pursued further
by Lévy in his equivalence theorem [18]: for X, independent, convergence of }_ X, in
distribution, in probability and with probability one are equivalent.

In [1928d] one finds the important tools known as the Kolmogorov inequalities.
The first (upper, or maximal) inequality

2, (X,—EX))

j=1

P (max

k<n

n
> e) <e?) varX,
1

gives a powerful generalisation of Chebychev’s inequality (the case n = 1); the second
(lower) inequality is more complicated.

In [1930a]) Kolmogorov obtains the following strong law of large numbers: if the
X, are independent with mean 0 and variance o2, and

Y o2 /n* <o,

then

1& -

=Y X,—0 (n >00) almost surely and in L%

k=1
Conversely, if Y 6%/n® = oo the above convergence fails for some (X,).
Kolmogorov returns to this subject in Chapter VI of the Grundbegriffe, where he

states without proof the definitive result, Kolmogorov’s strong law of large numbers:
if X, X,, X,, ... are independent and identically distributed,

0] EIXl<oo&EX=u=>%ZX,C—>,ua.s.,
k=1
(i) E|X|=oo=>—l» Y X,| -0 as.
P

One may combine these:
1 n
ElX| <o & EX=u©;ZXk—+y as.
k=1

Full proofs are given (in the greater generality of L?, 0 < p < 2) by Marcinkiewicz
and Zygmund in 1937 [24].

Kolmogorov’s strong law is a supremely important result, as it captures in precise
form the intuitive idea (the ‘law of averages’ of the man in the street) identifying
probability with limiting frequency. One may regard it as the culmination of 220 years
of mathematical effort, beginning with J. Bernoulli’s Ars Conjectandi of 1713, where
the first law of large numbers (weak law for Bernoulli trials) is obtained. Equally, it
demonstrates convincingly that the Kolmogorov axiomatics of the Grundbegriffe
have captured the essence of probability.

Kolmogorov’s second major contribution to strong limit theorems is his law of the
iterated logarithm (LIL) of 1929 [1929d]. The LIL was first obtained by Khinchin
in 1924 for Bernoulli trials. Kolmogorov extended Khinchin’s result to general
distributions, not necessarily identical. For independent X,, write S, for Y7 X,, B,
for the variance of S,, and assume B, —c0. Kolmogorov showed that under the
almost-sure bound L
X, = o((B,/loglog B,)) a.s.
one has

limsup [liminf] S,/(2B, loglog B,)! = 1 [—1] ass.
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Both the result, and the method of proof (Kolmogorov’s exponential bounds) have
had a great influence on later work. We note that the almost-sure bound above is
sharp, as was shown by Marcinkiewicz and Zygmund in 1937 [24].

Kolmogorov’s LIL has led, in particular, to the theory of upper and lower
functions and to integral tests of Kolmogorov—Erdés—Petrovskii type. For a fuller
account, see, for example [2].

4. From the Kolmogorov—Smirnov test to the invariance principle

Suppose that observations X, X,,... are made independently from a common
distribution F. How can one recover the population (or parent) distribution F from
a sample (X,,..., X,) of size n, in the limit as » - c0? The answer (‘fundamental
theorem of statistics’, due to Glivenko and Cantelli, both in 1933) is that, if

n

1
E(x):=-) 0y,
L=
denotes the empirical distribution (random measure with mass 1/# on each sample
point), then one has almost-sure uniform convergence of F, to F:

sup |F,(x)— F(x)| = 0 (n > 0) a.s.
zeR
In this sense, the sample determines the population distribution in the limit.
To exploit this, one needs to know the rate of convergence. This was found by
Kolmogorov in [1933¢]: form the statistic

D,: = +/nsup|F,(x)— F(x)|

(this is easy to calculate from the data, as the supremum is attained at one of the
points X,). Then
(i) D, is ‘distribution-free’: its distribution is the same for all continuous F,
(ii) D, converges in distribution as n —00; its limit law is

Y (—)*exp (—2k*x).
k=—0o0
Kolmogorov’s proof was simplified by Smirnov in 1944; D, is thus known as the
Kolmogorov-Smirnov (or KS) statistic. As the ‘KS limit law’ above is tabulated, one
thus has a non-parametric test of the statistical hypothesis that an unknown
population distribution is given by a specified F. The associated theory has been very
extensively developed; see the recent monograph of Shorack and Wellner [26)].

A heuristic approach to the Kolmogorov—-Smirnov theorem, identifying the limit
law above with that of the supremum of a Brownian bridge, was suggested by Doob
in 1949. The proof of his result was completed by Donsker in 1952, following earlier
work by Erdds and Kac in 1946. In brief, Donsker’s result is a functional form of the
central limit theorem. Instead of a sequence of partial sums S, scaled to converge to
a normal law, one forms by piecewise linear interpolation a sequence of random
continuous functions on [0,1], &, say. These are shown to converge to Wiener
measure (the law of Brownian motion on {0, 1]) in the sense of weak convergence of
measures. The term ‘invariance principle’ is used, since the limit law does not depend
on the law F of the X, ; one may thus calculate it for some simple choice of F (the coin-
tossing case, say).
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56 ANDREI NIKOLAEVICH KOLMOGOROV

The Erdés-Kac-Donsker invariance principle was generalised by Kolmogorov’s
pupil Yu. V. Prokhorov in 1956, in the first volume of the Soviet journal Theory of
Probability and its Applications (TPA). Here one finds Prokhorov’s theorem
identifying tightness with relative compactness. The functions space C[0,1] of
continuous functions is not always the appropriate one; often one needs the space
DI[0, 1] of functions without discontinuities of the second kind (say, right-continuous
with left limits). Appropriate topologies for the study of weak convergence in D were
studied by Skorokhod in 1956, again in the first volume of TPA ; these were metrised
by Kolmogorov [1956a). The theory sketched above is developed at length in the
influential monograph of Billingsley [1]. For a full account of the theory in a
martingale setting, see the recent book by Jacod and Shiryaev [12], whose second
author, A. N. Shiryaev, is again a pupil of Kolmogorov’s.

S. Stochastic processes : realisability and metric entropy

One of the most important landmarks in the development of probability since the
Grundbegriffe was the publication twenty years later of Doob’s classic book [4] on
stochastic processes. The Kolmogorov axiomatics were by then quite standard: we
quote from Doob’s preface ‘ Probability is simply a branch of measure theory, with
its own special emphasis and field of application, and no attempt has been made to
sugar-coat that fact’.

One of the distinctive problems of stochastic process theory is that of constructing
(or ‘realising’) a stochastic process on its natural carrying space. To take the most
important example, the Brownian motion or Wiener process (with time-parameter
te[0, 1], say), the Daniell-Kolmogorov theorem constructs the process on R®!
but one can do much better: after discarding the complement of a Wiener-thick set
one can construct the process on C[0, 1] (‘Brownian paths are continuous’: see, for
example, [4, VIII.2]).

Kolmogorov was one of the first to ask for criteria for a stochastic process X to
be realisable on C[0, 1]. The classical Kolmogorov criterion (sufficient condition) for
this is

E(1X, =X, < clh'** (r, s> 0)
for some ¢ and all ¢, t+A€[0, 1] (Slutskii [27]). This can be extended (Loéve [21],
§35)): if
P(X,,.,—X,| > g(h) <q(h) >0 (h—>0) Vi,

then subject to suitable conditions on g(.) and ¢(.) one may realise X with (almost-
surely) continuous paths, and indeed with a.s. modulus of continuity g(.):

| Xpn— X} < cg(h) V1, as.
In the Brownian case, one has Lévy’s modulus of continuity [19]:

lim (2hlog(1/h) sup |X,,,—X,|=1as.
110 5€[0,1~h}
te[0,h]
Suppose for simplicity that X is zero-mean Gaussian. Its structure is completely
specified by its covariance function, or equivalently by its incremental variance
d*s, 1): = E[(X,— X,)*].

Being an incremental standard deviation, d gives a metric on the parameter-space T
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(by the Cauchy-Schwarz inequality). Let N, be the minimum number of balls of
radius < ¢ required to cover T. The necessary and sufficient condition for X to have
continuous paths is (Fernique [9])

f V1ogN,de <0
0+

(sufficiency was proved earlier by R. M. Dudley in 1967). In the stationary case
(d(s, ) = o(|s—1]), say) the Fernique criterion becomes

Id):= J G(u)du/(ulogh(1/u)) < oo,

where & is the non-decreasing rearrangement of o (Jain and Marcus [13]). For a
survey of earlier work, see Dudley [5]; in particular, the results above give in the
Brownian case path-continuity and Lévy’s modulus of continuity (ibid., Ex. 2.2).
Note also the dichotomy of Yu. K. Belyaev (another pupil of Kolmogorov’s):
Gaussian sample paths are either continuous, or unbounded on every interval (ibid.,
§3.3). Remarkably, much of the above theory extends also to the non-Gaussian case
(Fernique [10]).

For a subset 4 of a metric space, define N,(4) as the number of balls of radius ¢
needed to cover 4. Then H,(4):= log N,(4) is called the e-entropy of 4 (Kolmogorov
[1956g]; Kolmogorov and Tikhomirov [1959b]), or in the terminology of G. G.
Lorentz [23], the metric entropy of A. This concept has proved very valuable in a
number of contexts; for applications to approximation theory see Lorentz’s survey,
and for empirical processes, Dudley [6, Chapter 6].

6. Other topics

6.0. Markov processes. In his classic paper [1931a] Kolmogorov develops the
theory of Markov processes, and in particular the Chapman-Kolmogorov equations.
This subject is closely allied to the theory of Markov chains, discussed elsewhere ; for
a full modern treatment see the monograph of E. B. Dynkin [8], a pupil of ANK.

6.1. Statistics. Kolmogorov’s interest in statistics is reflected in the title Theory of
probability and mathematical statistics (‘PS’) of the second volume of his selected
works. This contains papers on least squares, unbiased estimation and other topics;
see [1931c, 1946b, 1947c, 1947f, 1950a].

6.2. Prediction and filtering. Following the work of 1938 by H. Wold on time
series, Kolmogorov ([1939e, 1941a, b]) turned in 1938 to the prediction (or filtering)
problem for stationary sequences. Similar work by Wiener, restricted during wartime,
was published in 1949. A treatment of the ‘Kolmogorov—Wiener filter’ is given in
Chapter XII of Doob [4]. This involves prediction given the infinite past; for the more
difficult problem of prediction given a finite segment of the past, see Dym and
McKean [7]. A recursive treatment of filtering was not developed till Kalman’s work
of 1960.

6.3. Branching processes and biological problems. Kolmogorov was deeply
interested in biological problems; in particular he greatly admired the work of
R. A. Fisher on genetics. We mention [1940g] on Mendel’s laws (this led to a dispute
with Lysenko; Kolmogorov’s stand here took great courage in 1940); [1947d]
with Dmitriev on branching processes (here, and independently in T. E. Harris’s
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58 ANDREI NIKOLAEVICH KOLMOGOROV

paper of the same year, the term branching process is introduced); [1937d] by
Kolmogorov, Petrovskii and Piskunov (‘KPP-Fisher’) on the advancing-wave
problem in genetics — this and Fisher’s work each appeared in 1937, independently.
6.4. Self-similarity. In the study of self-similarity, initiated by B. B. Mandelbrot in
the 1960s, the fractional Brownian motion process plays a distinguished role. It is
interesting to note that this process was introduced by Kolmogorov in [1940c].
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KOLMOGOROV’S CONTRIBUTION TO FOURIER SERIES

W. K. HAYMAN

Some of ANK’s earliest work was on Fourier series, and as David Kendall has
said in his introductory essay, it brought him instant fame.
Let f be a Lebesgue integrable function in (0,27) and let

0
ta,+ Y (a,cosnx+b,sin nx) ¢))
1
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be the Fourier series of f. In [1923a] ANK constructed a Fourier series that diverges
almost everywhere, and in [1925h] he even constructed an everywhere divergent
Fourier series.

Kolmogorov also obtained a number of supplementary conditions under which
(1) converges. Thus in [1925g] with G. A. Seliverstov he showed that the condition

3 (a2 +b2)logn <o @)

is sufficient for the series (1) to converge almost everywhere. This remained the best
result until Carleson [1] in 1966 proved that if fe L%, or equivalently if

Y (a2 +bE) <o, )

then (1) converges almost everywhere.
Carleson’s theorem has been extended by Sjélin [5], who proved that

feLlogLloglog L

is sufficient for almost everywhere convergence.

In the opposite direction Y. M. Chen [2] extended Kolmogorov’s theorem
slightly. Using Kolmogorov’s technique he constructed a function in L (loglog L)*~*
whose Fourier series diverges almost everywhere.

Such results lay far in the future in the nineteen-twenties. In [1927b] Kolmogorov
and Menchov showed that if W(n) = o(logn) then there exist bounded orthogonal

functions ¢,(x) for which
L (@ +b)W(n) <o,

while the series Y a, $,(x) diverges almost everywhere. This made it plausible to
suppose that (2) might indeed be the right condition for a Fourier series to converge
almost everywhere. In [1927b] it was also claimed that Kolmogorov had a proof that

there exists a series
Y a,cos(m,x+4,) @

that diverges almost everywhere, while (3) holds and the m, are distinct integers. If

the m, form an increasing sequence then this would conflict with Carleson’s theorem.

At any rate it does not seem that Kolmogorov ever published a proof of this claim.
Another seminal paper of ANK was [1925d]. Suppose that

o0
S =) (a,sinnx—b,cosnx)
1

is the conjugate series to f (which can be shown to be summable in a suitable sense).
Kolmogorov showed that f satisfies what is nowadays called a weak type (1,1)
inequality. Thus if E() is the set on which |f| > A, then the measure |E(1)| of E(4)
satisfies

B0 <S5 | 17O ©®

and, if0<p <1,

1 [ . » 3 1 7
(55|, e as) < corg [ 1oy, ©
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The best values for the constants,

1 1 !
C= (— logcot|-8|d0
T Jo 2

Clp) = (%f (sin ) dﬂ)i,

have only recently been found by B. Davis [3, 4].
I should also like to mention the following result in [1935d]. Suppose that p > 1
and that ¢!” is the least upper bound of the Fourier remainder,

and

R.(f,x) = ix)—3a,— ) (a,coskx+b,sinkx)
1

for all f with a continuous (p— 1)th derivative in (0, 2z) which satisfies
f*72x) =) < |x—yl.
Then Kolmogorov proved that

_ 4logn+0(1))

®
Ca nin®

as n—00. When p is odd he even found the exact value

Cﬁlp) = LJ‘K’.
2n ),

In a rather different direction lies the following theorem relating bounds for
derivatives of functions on the real line R. We write

M, = sup [f*(x)].

zeR

Z sin kx dx.

k=n+1 k

Then Kolmogorov announced in [19380] and proved in [1939c] the following
convexity theorem. If M, and M, are finite then

M, < C, , MY M¥ (0 < k < ),

with explicit values for the constants C, .

Mention should also be made of the book on the theory of functions and
functional analysis by Kolmogorov and Fomin ([1954], 1960h] and four later
editions), which is greatly treasured by analysts.

Kolmogorov’s work on Fourier series was truly seminal. He proved that a Fourier
series need not converge anywhere, and established conditions for almost everywhere
convergence that were widely believed to be best possible, and were only sharpened
40 years later by Carleson. But possibly his greatest contribution is the work in
{1925d] on conjugate series. His representation of the conjugate function and the
proof of (5) and (6) led the way to the work on the Hilbert transform which lies at
the heart of much of modern harmonic analysis.
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KOLMOGOROV’S WORK IN LOGIC

J. M. E. HYLAND
1. Introduction

Kolmogorov’s two papers on logic are concerned almost entirely with
intuitionism. Intuitionism is the philosophy and practice of mathematics that arose
in the first instance from Brouwer’s critique of classical mathematical reasoning.
Brouwer held that mathematics consists of freely created mental constructions, and
that truth depends (in some way) on knowledge, and so on proof. It follows,
according to Brouwer, that pure existence proofs, which do not at least in principle
exhibit a witness, should be regarded as illegitimate. Such non-constructive arguments
typically depend on argument by contradiction: hence notoriously on this account,
the law of the excluded middle is not valid. Kolmogorov wrote two papers on
intuitionistic logic and mathematics, the first [1925¢] published in 1925 and the second
[1932d] in 1932 (though dated 15 January 1931).

2. O printsipe ‘tertium non datur’ (1925)

In this paper Kolmogorov appears to accept Brouwer’s critique of the general
applicability of the law of the excluded middle in mathematics, and addresses the
question of why the use of illegitimate principles has not proved disastrous. The
answer sketched would now be formalized as a relative consistency result. K describes
a translation 4* of formulae A4 such that if 4 is provable using classical reasoning
then A4* is provable using intuitionistic reasoning. Since the translation of a classical
inconsistency is an intuitionistic one, this shows that if intuitionistic reasoning is
consistent, then so is classical reasoning.

To present the formal details of his translation, Kolmogorov needed to provide
some intuitionistically correct formal system of logic. He argues for the intuitive
correctness of a number of axioms, and (the standard) rules of inference. He is not
concerned with axiomatics as such, and simply mentions some questions about
completeness in passing. However, he does to a considerable extent anticipate
Heyting’s axiomatization of the intuitionistic predicate calculus (see Heyting [5]). The
system that results is minimal propositional calculus with implication and negation.
Thus it is a system for intuitionistic logic without the principle that everything follows
from a contradiction. This principle was recognized as problematic at the time, and
more recently Dummett [1] felt the need to argue for it explicitly. Kolmogorov states
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baldly that it cannot have any intuitive foundation. This concern with the problems
of negation is taken up again in the second paper.

In 1923 Brouwer showed in informal fashion that for any proposition A4, the
propositions = 4 and ~—— 4 are equivalent. (As we would now say, the operation of
negation provides a Galois connection.) Kolmogorov seems to have been the first to
realize the general logical significance of this: in intuitionistic logic the double
negation of any logical operator behaves as in classical logic. He proves Brouwer’s
result and other standard properties of double negation in his formal system, and thus
establishes the basic properties of the ‘double negation’ translation. This translation
is commonly attributed to Godel in view of [2], where the translation is given for a
full system of arithmetic. A restricted logic is sufficient for Kolmogorov’s purposes.
He gives a complete treatment for a component of propositional logic based on
implication and negation, and sketches a treatment for the universal quantifier (the
rules for which he takes to be part of the axioms of mathematics as opposed to logic).

In fact Kolmogorov wants to establish more than a (relative) consistency result.
He regards the intuitionistic validity of a proposition of the form A* as constituting
the ‘pseudo-truth’ of the proposition 4. So he claims that, notwithstanding the
intuitionistic critique, classical mathematics can be preserved as the study of pseudo-
truth. The result is that (contrary to the opinion of Brouwer) classical mathematics
is conservative over constructive mathematics for finitary assertions. To establish all
this, one should show that the non-logical, mathematical or set theoretic axioms of
classical mathematics are at least pseudo-true. Kolmogorov simply states that this is
the case, giving as example the laws for quantifiers (which we would take as part of
logic). However, experience bears out his general impression. For a well-developed
system of constructive mathematics such as that of Martin-Lof {10), it is quite
straightforward to give an interpretation of classical type theory along the lines
sketched by Kolmogorov. (Whether such systems faithfully reflect Brouwer’s thought
is another matter.)

3. Zur Deutung der intuitionistischen Logik (1932)

Kolmogorov’s 1932 paper is not widely read. (It is written in German, while the
earlier paper appears in English translation in van Heijenoort [4].) Unlike the first, the
second paper is not written from the point of view of a committed intuitionist. Rather
its first part contains an interpretation of intuitionistic logic that is intended to make
perfectly good sense to a mathematician unimpressed by intuitionistic arguments.
The interpretation is in terms of (unanalysed) notions of problem and solution.
Kolmogorov takes intuitionistic logic in Heyting’s axiomatization and argues that it
can be identified with the classical logic of problems. This interpretation has a variety
of descendants, described below.

In the second section of the 1932 paper the intuitionistic critique is itself examined.
The argument is sketchy, but the general line of thought is clear. The intuitionist gives
- A positive force as the existential claim that there is a proof of a contradiction from
A. Superficially the truth of existential assertions appears to depend on time; if
Ix.A(x) means that one has constructed a witness w and a proof that A(w) holds, then
at some time it may be false, and later become true. Then, the paradoxical claim is
that the whole point of intuitionism disappears because the only assertions whose
negations have definite sense are the decidable ones, that is, those for which the law
of the excluded middle does hold! Clearly this time dependent reading of existential
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propositions is not intended by Brouwer. Kolmogorov concludes that to make sense
of Brouwer’s thought, we need to consider a quite different kind of assertion, whose
negation will have objective sense. This notion is more like that of a problem or task,
whose subjective element is the solution. Thus Kolmogorov arrives at a vision of
mathematics in which the solution of problems is considered as an independent task
alongside the proof of theoretical assertions. Kolmogorov’s paradox of intuitionism
is not compelling. A modern account of intuitionism would present a time-
independent reading: roughly, ‘ 4’ is equivalent to ‘ A4 is provable’ rather than ‘I have
a proof of A’. However, Kolmogorov’s apparent (pre-recursion theory) vision, of
a kind of constructive problem mathematics in harness with a (presumably) classical
theoretical mathematics, is appealing in itself. In fact Kolmogorov does not give any
account of the (logic of the) theoretical assertions, to which he refers.

It is hard to be sure of Kolmogorov’s position in this very short section. For
example, in a footnote he raises the ‘new question’ of which laws of logic hold good
for propositions whose negation has no sense. If this were just a case of finding an
axiom system, he had already raised this question (for the implicational fragment of
classical logic) in his 1925 paper. What did he have in mind?

Kolmogorov’s paper was written independently of Heyting’s similar work on the
interpretation of intuitionistic logic [6]. Heyting analysed a proposition as an
expectation to find some condition fulfilled ; he took himself to be making explicit the
proper intuitionist’s conception of the meaning of propositions in terms of
constructions or proofs, implicit in the writings of Brouwer. Kolmogorov on the
other hand is not concerned to elucidate the intuitionistic critique : he simply provides
an interpretation of the logic. Over the years we have come rightly or wrongly to
regard Kolmogorov’s interpretation and Heyting’s explanation as different readings
of the same idea. This view is clearly presented in Martin-L&f [10]. Martin-L6f’s own
position, which descends from Kolmogorov via the (Curry-Howard) ‘Propositions as
Types’ interpretation, involves identifying propositions as problems; an independent
notion of abstract assertion is allowed no clear sense.

A variety of formal interpretations (Kleene [7], G6del [3], Kreisel [8, 9]) in the style
of Heyting and Kolmogorov have played a major role in the study of the
metamathematics of intuitionistic systems. A recent book (Troelstra and van Dalen
[11]) calls such formal interpretations ‘ BHK-interpretations’, so that the main early
protagonists (Brouwer, Heyting and Kolmogorov) all get credit. Kreisel [9] also
contains an illuminating and non-dogmatic discussion of the foundational issues
involved in intuitionism.

4. Conclusion

There is a shift in emphasis between Kolmogorov’s two papers on logic. The first
provides an interpretation of classical mathematics within intuitionistic mathematics.
Clearly here, Kolmogorov finds Brouwer’s intuitionism a great deal more congenial
than Hilbert’s formalism. The second paper can be read somewhat less surely in the
reverse direction; it provides an interpretation of intuitionistic logic within classical
mathematics. While it does not arrive at a definite philosophy of mathematics, it
contains a clear attempt to preserve the intuitionistic insights in some form.

Both papers treat what have proved to be fundamental ideas about intuitionistic
mathematics. They were written over sixty years ago in what is effectively the pre-
history of mathematical logic. Though the style is of that time, the ideas still seem
fresh and the attitude is remarkably modern.
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SUPERPOSITIONS, METRIC ENTROPY, COMPLEXITY
OF FUNCTIONS, WIDTHS

G. G. LorenTz

I will review the work of Kolmogorov on these subjects; all of it except for [1936a]
was achieved in 1956-63. Sometimes ANK wrote only one paper, a seminal one,
leaving the field wide open (§4). At other times, the initial result of ANK was a lonely
peak, around which the ensuing work clustered (§1). In each section I will try to
discuss also the later work that was a logical development of his. First, however, I
would like to give some of my personal thoughts and reminiscences about ANK.

One is astonished to see how much of ANK'’s best work looks even better now
than when it first appeared. An example is his 1923 function fe L, with almost
everywhere divergent Fourier series. At the time this was thought to be a first step
towards proving the Luzin conjecture, which postulated the existence of continuous
functions with a.e. divergent Fourier series. And we know now that the series converge
a.e. even for functions fe L,,p > 1.

One could ask, was ANK a pure or an applied mathematician? Is it possible to
make this distinction? Without attempting to answer the latter question, let us
assume that the answer is yes. Then, what astonishes one is how much of ANK'’s work
(including probability) could, with some justification, be called applied mathe-
matics — perhaps as much as two thirds. Yet generally ANK is considered a pure
mathematician. My explanation of this is as follows. What had been applied
mathematics before ANK'’s investigation, through his vision became a part of science
where applied and pure mathematics intermingle, become indistinguishable.

The only time I have spoken with ANK personally was at a party given by
Professor Fichtenholz in Leningrad in the late 1930s. .I was a young assistant
professor then. As I recall, ANK made a mathematical joke about the position of a

The article by G. G. Lorentz has been partially supported by Texas ARP.

A 'T '066T ‘02T2Z697T

wouy

IPUOD PU. SR L 3 895 *[520Z/0T/0€] U ARiq178UIIUO 43I ‘20UB|[20XT 818D PUE LRESH J0Jaimiisu| UOTEN ‘3DIN Ad TE'T'Z2/SWIA/ZTTT OT/I0pAU0D™ A N

ol

L

965U901 SUOLLILIOD 9B 3|deo1 dde B Ad PaUBAOB 212 SBPILE YO B8N J0 SN 10§ AIRIqIT BUIIUO /3|1 UO (SUONIpU



OBITUARY 65

rower on the Moscow river (assuming him to be I. M. Vinogradov). Wanting to make
a joke of my own, I began ‘There are two points on the line...". ANK gently
interrupted : ‘ Where else could they be?’ This reduced me to silence.

At the same meeting, ANK said that he was absolutely sure that Euler’s constant
y is transcendental, but that the problem is ‘naked’ in the sense that there are no
approaches to its solution. Perhaps he tried to solve it himself? He also described
what in his opinion was a good doctoral dissertation, meaning, of course, a Russian
one. According to ANK, a good dissertation ‘must astonish’. (It remained unclear

who must be astonished. ANK himself?) As an example he mentioned Tikhonov’s

dissertation on partial differential equations.

1. Superpositions

The solution of the 13th problem of Hilbert is the most spectacular of ANK’s
achievements discussed in this article. At the second International Congress of
Mathematicians at Paris in 1900, Hilbert formulated this problem in the following
way.

(I) Prove that the equation of seventh degree x'+ax®*+bx*+cx+1 =0 is not

solvable with the help of any continuous functions of only two variables.

If we ignore the algebraic part of the problem, this can be interpreted to mean:
(II) Prove that there are continuous functions of three variables not representable by
continuous functions of two variables.

The means that we are allowed to use are superpositions of functions. For example

Sx, p,2) = Fg(x, ), l($(x), y(x,2))) (1.1)

is a superposition of functions of one and of two variables. A negative answer to (II)
will, of course, give a negative answer to (I). In the years before ANK'’s paper [1957b]
there were some unsuccessful attempts to prove (II). After preliminary work, partly
with Arnold, ANK straightforwardly disproved (II). He established:

THEOREM 1.1. Al continuous functions of two or more variables are superpositions
of functions of one variable, and of the special function s(x,y) = x+y of two variables.
More precisely, each continuous function f on I', where I = [0, 1], has a representation

Sk r ) = ;: g,(i ¢i.,(xi)) (1.2)

i=1

where the ¢, ; are fixed continuous functions on I, while the g,e C(R) are continuous
functions that depend on f.

Fairly soon, by efforts of Fridman in 1972, of Sprecher in 1965 and of the present
author, this has been improved to:

THEOREM 1.2. Each function fe C(I) has a representation
2n+1

S(xy,.0,x,) = j-Zl g(:l A, ¢,(x‘)) (1.3)

where the @, are fixed strictly increasing functions from Lip | on I, the A, are fixed
algebraically independent constants, and only ge C(R) depends on f.
3 BLM 22
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66 ANDREI NIKOLAEVICH KOLMOGOROQV

In (1975) Kahane simpliﬁed the proof of (1.3) using category arguments. The
following is a geometric formulation of Theorem 1.2.

THEOREM 1.3. There exists a homeomorphic embedding h of I'" into R***! so that
on the image B = h(I*) of I", each continuous function f is of the form

2n+1

S Vo)) = j; g()’j) (1.4)

Sfor some ge C(R). The embedding h is of the special form

V= z‘ili¢j(x,),j= 1,...,2n+1.

We can compare this with the classical topological theorem (due to Nbeling)
according to which each n-dimensional separable metric space can be embedded into
R2"*1, We see that ANK’s theorem is a refined version of a special case of this.

The number 2n+1 of (1.2) and (1.3) appears also in a fine combinatorial lemma
of ANK about coverings of R* by 2n+ 1 systems of disjoint cubes. It enables one to
derive a ‘baby form’ of (1.2) and appears in all known proofs of ANK’s theorem.

After Theorem 1.2, all work on ANK’s theorem has been ‘negative’, that is, it
consists of proofs that certain aspects of this theorem cannot be improved.

First, do there exist at all genuine continuous functions of several variables apart
from the sum x+ y? Theorems 1.1 and 1.2 deny this. Thus the product xy reduces to
the sum and to functions of one variable: xy = exp (log x + log y). However, Hilbert’s
conjecture was based on a sound idea, that not all in a sense bad functions (functions
of many variables) can be represented by good functions (functions of few variables).
Indeed Vitushkin [12], even before ANK’s theorem, proved ‘the Fundamental
Theorem of Differential Calculus’: there exist differentiable functions of arbitrarily
many variables. More precisely, we have:

THEOREM 1.4. For r 2 1 and n = 2 there exist r-times continuously differentiable
Sfunctions of n variables, not representable by r-times continuously differentiable
Sfunctions of fewer variables.

A simple proof of this by Kolmogorov and Tikhomirov [1959b] uses the estimate
(2.3) of the metric entropy of the unit ball of the Sobolev space and the fact that this
entropy is not essentially increased under superpositions. In other words, the entropy
of the set of bad functions is larger than that of a set of good functions. It is necessary
here to measure the quality of a function by means of the ratio r/n.

Next question: is it possible to replace the Lipschitz functions ¢ in (1.3) and (1.2)
by continuously differentiable functions? No, in this respect Theorem 1.2 is the best
possible.

We call an expression of the form

ij(xl’“'an)g}(¢j,1""’¢J,n—1) (1.5)

=1

with @, , = @, (x,,...,x,), a linear superposition. For example, (1.2) and (1.3) are
linear superpositions. Now Kaufman [3] (and the present author) proved:
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THEOREM 1.5. Not all functions fe C(I*) are representable by means of linear
superpositions (1.5) with fixed continuous functions p, and ¢, ,€ C(I") and arbitrary
g,€ C(I"™"), because they form a set of first category in C(I").

Earlier, Vitushkin and Henkin [14] proved this when the g,e C(J) in (1.5) depend
only on one variable. Then the functions (1.5) form a nowhere dense set in C(I"). It
is not known whether this holds for the general case in (1.5).

Leaving aside now the special properties which the functions ¢, , of (3.2) may
have, we ask probably the most important question: what is the minimal number of
terms in (1.2)? And ANK’s number 2n+1 proves to be the best possible. This was
shown only in 1985 by Sternfeld. Let X, ¥,,j = 1,..., N be compact metric spaces. A
family F = {¢,}}, of continuous functions which map X into Y is said to be a basic
family for X if each fe C(X) admits a representation

fx) = Y, g(p4x), xeX, (1.6)
J=1

for some g,eC(Y), j=1,...,N. Thus, in the case X=1I", N=2n+1, Y, =1,
j=1,...,N, Theorem 1.1 implies that there exists a basic family {¢,};’ = C(X) and
evenone of the special form¢,(x,,...,x,) = Y%, @, ,(x,).j = 1,..., N. Using topological
as well as combinatorial arguments, Sternfeld [10] established:

THEOREM 1.6. If X is a compact metric space that has topological dimension
dim X = n, then each basic family F c C(X) contains at least 2n+ 1 functions.

As a corollary, the number of terms in (1.2) cannot be reduced even for much

more general representations
2n+1

f(xl""!xn) = ;/Z gj(¢j(x1""3xn))'

2. Metric entropy

This notion is different from the ‘probabilistic entropy’, treated in the article of
W. Parry; it is a realization of ideas of Shannon [8), in application to metric spaces
X. A compact set A = X can be approximately described by an economical e-net (e
> 0) of points (x,)Y, with the property that the distance of each point x € 4 to at least
one of the x, is < &. Then 4 is covered by N balls of centres x; and radii ¢. This leads
us to define N,(A4) to be the smallest N with the property just formulated. Then

H(A):=log N,(A) 2.1

is called the metric entropy of A. Normally, H(A) —co for ¢ - 0, and the asymptotic
behaviour of this function describes the ‘massiveness’ of 4. There is a dual notion of
the metric capacity C(A) of A. This is C(A):=logM(A4), where M (A) is the
minimum of the cardinal numbers M of sets of ¢-distinguishable points (y,)) of 4,
that is, points with dist (y,, ;) > ¢,i # j.

The general theory of metric entropy and capacity is not rich. The main interest
lies in the asymptotic determination of entropy for concrete compact sets in function
spaces. For this purpose, one invariably uses the inequality

Co(A) < H(A). (2.2)

3-2
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If one can estimate C,(A4) well from below, and H/(A4) from above, then a good
estimate of both will result.

In [1956g] ANK gave these definitions and some examples, followed by his joint
paper (1959b) with Tikhomirov, with a rich collection of sets of functions with a
calculation of their entropy for the uniform metric. The two main results (the second
is by Vitushkin [13]) are:

H(B) ~C(B}) = (1/e)", q=p+a, (2.3)

where Bj is the set of functions on a compact region in R", with all partial derivatives
of order < p satisfying the a-Lipschitz condition, 0 < & < 1. Moreover,

H(A) and C,(4) = Clog”“%+0(log"%loglog %), 2.9

for the set A of uniformly bounded analytic functions of » variables on a multidisc,
with the uniform norm on a smaller concentric multidisc; the constant C depends on
the radii of the multidiscs.

If T:X - Y is a compact linear operator from X to Y, one defines the entropy of
T by H(T):= H(B’), where B’ = T(B,) stands for the image of the unit ball of X
under T. This is an important tool in the investigation of compact operators and the
geometry of Banach spaces. Work of Carl, Pietsch, Triebel, V. Milman and others
attest to this. The eigenvalues A,(T) of T (taken in decreasing order of |4,(T)|) are
important in this theory, as also are the so-called s-numbers. To this category belong
the entropy widths ¢,(T) of T. For n=1,2,...,¢,(T) = ¢ is obtained by solving the
equation H(T) =n. An example is the inequality of Carl:

14u(T)| < v/ 26,(T), 2.5)

which holds for a compact operator T mapping a Banach space into itself.

It is perhaps worthwhile to discuss a general approach to the estimates such as
(2.3) and (2.4). What is desirable is to have an approach which will: (a) work for
arbitrary Banach spaces X; (b) depend only on the geometry of the set A = X and not
on special properties of elements of 4 (such as analyticity); (c) be good enough to
yield estimates such as (2.3) and (2.4), even with the remainder term.

This proves to be possible (Lorentz [4]) for the so-called full approximation sets
(or balls in approximation spaces, in the terminology of Butzer and Scherer — Levin
and Tikhomirov apply these ideas to more general sets), which are defined by two
sequences (d)7, d, > 0 and {¢,}?°, the latter spanning X. Then a full approximation
set A is given by 4 ={feX:E,(f) <d,, n=1,2,...}. The estimates of H,(A4) and
C,(A) are obtained by means of the theorem of Brunn and Minkowski about mixed
volumes and a variant of another theorem of Minkowski, which counts the number
of lattice points in a convex body in R".

There are numerous applications of entropy. As examples we mention applications
to: non-linear approximation (Vitushkin [13]); as topological entropy to ergodic
theory (Dinaberg, 1970; Bowen, 1971); to sound transcription and the coding of
signals (Buslaev and Vitushkin, 1975); to aimost everywhere convergence of sequences
of linear operators (Bourgain, 1988).
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3. Complexity of functions

ANK’s approach here is based on the number of bits of the memory of a computer
that are needed in order to approximate a function f with an error < . In this theory,
the approximations, for each f, are constructed ‘from scratch’, without the use of
other (‘known’) functions.

A Boolean function Fis any map of {0, 1}" into {0, 1}™, that is, a map which assigns
to each sequence X:x,,...,x, of Os and 1s a similar sequence Y:y,,...,y,, of length m.
One can represent F as a superposition of N operations 1 —x and y U z on terms
x, y, z=0,1. The complexity K(F) of F is the number

K(F)=n+m+minN. 3.1

Let feC[0,1], 0<Aflx) <1, and € >0 be given. We select n and m so that
|f(x)—fx")| < 3¢ for [x—x’| <27, and that 27™ < le. Then a Boolean function
F:x,....,X, > ),,..., ¥, is said to approximate fwith error < gif |x— Y% 27'x,| < 2™
implies |fAx)—)/.,27y,| <e. (This means: the knowledge of F allows one to
compute f{x) with error < ¢ at each x.)

The complexity K(f,¢) of fis a function of ¢ > 0 defined by

K(f,&) = min {K(F): F approximates f with error < &}. (3.2)

For a set of functions 4 = C[—1, 1] we put K(4,¢) = sup,., K(f,¢).

The short paper [1963c] of ANK on this subject does not contain proofs. Much
later, they have been supplied by Asarin [1].

The e-complexity K(4,¢) of a class 4 = C[—1, 1] can be computed if A4 is a unit
ball in a Sobolev space, or a set of bounded analytic functions. In these examples,
K(a, £) proves to be very close to the capacity C,(A4) of §2. In the first case they are
different by a factor of order log(1/¢).

For the complexity of individual functions there are no ‘inverse theorems’. Thus
a slow increase of K(f, &) — oo for ¢ = 0 does not imply that fis smooth. As an example
ANK gives van der Waerden’s nowhere differentiable function f for which K{(f,¢) is
smaller than the typical complexity of analytic functions.

Why has ANK’s theory of complexity of individual functions never been further
developed? One reason might be that ANK is no longer with us. Another reason
might be that in today’s computing one rarely starts ‘from scratch’. Instead, one can
use many other helpful functions, or use software. This explains the existence of
attempts to estimate complexity using different ideas, such as the algebraic
computational complexity. See the expository article [9] of Strassen. One of the first
and perhaps the most striking results of this theory (Schénhage and Strassen [7])
asserts that multiplication of two large numbers with N dyadic digits each can be
completed in O(Nlog Nloglog N) steps.

4. Widths

This subject was introduced in the short seminal paper of ANK [1936a], the only
one that he wrote on the question. There is at present an enormous literature on this
subject. See the excellent book of Pinkus [6].

If X, is an n-dimensional subspace of a Banach space X, then for feX,
E,(f):=inf,.x |f—gl is the error of approximation of f by X,. For a subset K < X,
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70 ANDREI NIKOLAEVICH KOLMOGOROV

we measure E,(K), the error of approximation of K, by the worst approximable
elements f of K:
E.(K):=sup inf | f—g]. 4.1
feK geX,
Finally, for a given n, we look for an n-dimensional subspace X, that approximates
K best. We obtain the nth Kolmogorov width of K:

d,(K,X):=d,(K):= inf sup inf | f—g|. 4.2
X,cX feK geX,
Subspaces X, (if they exist) which realize this infimum, are called the optimal
subspaces for K in X. The problem is to determine d,(K) (exactly or asymptotically)
for some natural sets K. Many beautiful early results are due to Tikhomirov [11];
among other things, he recognized the significance of Borsuk’s antipodal theorem in
these questions. The most difficult problem, solved only recently (and not covered
adequately in the book of Pinkus), concerns the nth widths of the unit ball B}, of the
Sobolev space Wila,b] (p refers here to the L, metric) in L [a, b]. The point is that
forr=1,2,...and 2 < p < ¢ < oo the optimal subspaces are the classical polynomial
subspaces, and the d (B, L ) can be estimated fairly easily. For the remaining pairs
. q these natural subspaces are far from being optimal, and the true values of the
d,(B,,L,) are much smaller than their natural upper estimates. The optimal spaces
are then described only indirectly. Probabilistic methods were used by Kashin [2] to
find the asymptotic behaviour of the d,(B}) in these cases. A simpler proof by Gluskin
in 1984 uses the P. Lévy-E. Schmidt isoperimetric theorem about measures of
subsets of the Euclidean sphere of high dimension. This was further simplified by
Makovoz [5].
The results of ANK’s paper [1936a] are characteristic for the width theory in
Hilbert spaces. ANK studies the class B} = {f: | f|l, < 1} in L,[0, 1] and proves that

d,(By,L)=A"% nz=r, 4.3)
where A, are the eigenvalues of the problem
M=1)yy*—y =0, (4.4)

with the side conditions y®(x) =0, k=r,...,2r—1 for x =0, x = 1. Besides the
‘classical’ optimal subspaces spanned by the eigenfunctions of (4.4), there are also
optimal subspaces of splines. This fact appears also in other similar situations.

References

1. E. A. AsarIN, ‘On the complexity of uniform approximations of continuous functions’, Uspekhi Mat.
Nauk 39 no. 3 (237) (1984) 157-169.
2. B.S.KasHIN, ‘Diameters of some finite-dimensional sets and classes of smooth functions’, Izv.
Akad. Nauk SSSR 41 (1977) 334-351.
3. R. KAUFMAN, ‘Linear superpositions of smooth functions’, Proc. Amer. Math. Soc. 46 (1974)
360-362.
. G. G. LORENTZ, ‘Metric entropy and approximation’, Bull. Amer. Math. Soc. 72 (1966) 903-937.
. Y. Makovoz. ‘A simple proof of an inequality in the theory of n-widths’, Constructive theory of
Jfunctions (Bulgarian Acad. Sci., Sofia, 1988), pp. 305-308.
6. A. PINKUS, n-widths in approximation theory (Springer, Berlin, 1985).
7. A.SCHONHAGE and V. STRASSEN, ‘Schnelle Multiplikation grosser Zahlen’, Computing 7 (1971)
281-292.
8. C. E. SHANNON, 4 mathematical theory of communication (University of Illinois Press, Urbana, 1949).

th &

A 'T '066T ‘02T2Z697T

wouy

IpUOD pUe SLLB | 841385 *[5202/0T/08] Uo Akiqiauliuo AB|1M ‘90UB|OXT 8120 PUe Ul esH Joj aimiisu| euolieN ‘301N AQ T€T'2ZAWIA/ZTTT 0T/I0PA00 A8 I

ol

L

965U901 SUOLLILIOD 9B 3|deo1 dde B Ad PaUBAOB 212 SBPILE YO B8N J0 SN 10§ AIRIqIT BUIIUO /3|1 UO (SUONIpU



OBITUARY 71

9. V. STRASSEN, ‘ Algebraische Berechnungskomplexitit’, Perspectives in mathematics (Birkhéuser, Basel,
1984), pp. 509-550.

10. Y. STERNFELD, ‘Dimension, superposition of functions on separation of points, in compact metric
spaces’, Israel Math. J. 49 (1985) 13-53.

11. V. M. TikHOMIROV, ‘Widths of sets in function spaces and the theory of best approximations’,
Uspekhi Mat. Nauk. 15 no. 3 (93) (1960) 81-120.

12. A. G. VITUSHKIN, ‘On the 13th problem of Hilbert’, Dokl. Akad. Nauk SSSR 95 (1954) 701-704.

13. A. G. VITUSHKIN, Theory of the transmission and processing of information (Pergamon Press, New
York, 1961 ; Russian edition: 1959).

14. A. G. VITusHKIN and G. M. HENKIN, ‘Linear superpositions of functions’, Uspekhi Mat. Nauk 22
(1967) 77-124.

KAM-THEORY

H. K. MOFFATT

In 1953 and 1954 Kolmogorov wrote two papers [1953c 1954a] on the general
theory of dynamical systems, with important applications to Hamiltonian mechanics.
Both papers were precisely four pages in length, the limit permitted by Doklady Akad.
Nauk SSSR at that time. Their influence on the subsequent development of the
subject has however been out of all proportion to their length; indeed the second
paper, whose title may be translated ‘On the preservation of quasi-periodic orbits
under a small change of Hamiltonian’ contains the essence of what has subsequently
come to be known as KAM-theory (after Kolmogorov, Arnold and Moser).
Kolmogorov stated the first critical theorems in this field and outlined the essential
ingredients in their proof; it was left to V. I. Arnold [1] and J. Moser [2] to complete
the proofs and to extend somewhat the circumstances to which Kolmogorov’s
theorems apply. KAM-theory lies at the heart of recent new understanding of the
phenomenon of chaos in Hamiltonian systems (see, for example, Percival [3] in the
proceedings of the Royal Society Discussion Meeting on Dynamical Chaos held in
February 1987), and Kolmogorov’s contribution in 1954 may be seen, with the benefit
of hindsight, as providing the most important breakthrough in this subject since the
fundamental difficulties were first recognized by Poincaré [4] in 1892. I say ‘with the
benefit of hindsight’ because it was not until the development of the high-speed
computers of the 1970s and 1980s that the full significance of KAM-theory could be
properly appreciated. There were in fact rather few citations of Kolmogorov’s papers
on this subject up to about 1970; and since then the papers of Arnold and Moser,
being more accessible to English-speaking readers, are those that are most widely
known. There can be no doubt however that Kolmogorov was the ultimate source of
inspiration for these new developments.

It is worth noting that Kolmogorov presented an account of this work, referring
to both of the papers mentioned above, in a lecture at the International Congress of
Mathematicians held in Amsterdam 2-9 September 1954; this lecture, ‘General
theory of dynamical systems and classical mechanics’ appeared (in Russian) in
Vol. 1 of the Proceedings of the Congress, published in 1957. Kolmogorov’s famous
paper ‘On the preservation of quasi-periodic orbits...” was ‘received’ by Doklady on
31 August 1954 (and it appeared before the year was out!). One may surmise that it
was partly the stimulus of preparing an important invited lecture to the International
Congress that promoted the breakthrough for which Kolmogorov had already
prepared the ground in his earlier (1953) paper.
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72 ANDREI NIKOLAEVICH KOLMOGOROV

What, then, was the nature of this breakthrough? Kolmogorov considers an
autonomous Hamiltonian system with Hamiltonian H(g,, p,, §) where a runs from 1
to 5 (the number of degrees of freedom), and € is a perturbation parameter; he
assumes ‘ for simplicity ’ that H is an analytic function of its arguments, although it is
clear that he recognises that this assumption is stronger than absolutely necessary.
After some preliminary statement of notationt he states his Theorem 1 (referred to
later by Arnold as Kolmogorov’s theorem ~ see, for example, V. I. Arnold Mathe-
matical methods of classical mechanics, Springer-Verlag, 1978), which in view of its
great historic interest we state here in full (in translation from the Russian original):

‘THEOREM 1. Let .
H(g,r,0) = m+ Y Apu+3 L, @ofq) Papy+ O(lp) )]
a af

where m and A, are constants such that for suitable constants ¢ > 0 and
n > 0 the inequality c
— ©)

>
(D>

is satisfied for all integer vectors n. Furthermore, let the determinant formed
from the mean values

1 n 4
¢aﬂ(0) = (E)T;J: J: (Daﬂ(q) dql dqs

of the functions a2
=——H(q,0,0
q)aﬂ(q) apa apﬂ (q’ )

be non-zero:

|6.5(0)] # 0. O

Then there exist analytic functions F(Q, R, 6) and G(Q, P, 6) defined for all
sufficiently small 8 and for all points (Q, P) in some neighbourhood V of the
set T;, such that the associated contact transformation

4, = Q,+0F(Q,P,0), p,= F,+0G,(Q,P,0)
of Vinto V' < G reduces H to the form
H=M@®6)+} A, P+ O(PP) Q)]

(M(6) does not depend on Q and P).’

Recognizing that the import of this theorem may be lost on the inexpert reader,
Kolmogorov immediately provides a vital word of explication which again is worth
quoting in full:

‘It is easy to understand the importance of Theorem 1 for mechanics. It
shows that the s-parameter family of quasi-periodic motions

9o = Aot +qP, p,=0

existing at @ = 0 cannot disappear under conditions (2) and (3) as a result
of a small change in the Hamiltonian H: there is merely a shift of the s-

t Vector notation is used, for example, p = (p,) with scalar product (p,q) = Y, p,g,and |p|* = (p, p). The
space G is the product of an s-dimensional torus T and a domain S of R®. It is assumed that p =0 is
contained in S; T, is the set of points in G for which p = 0. The Theorem 1 as quoted above contains an
obvious misprint which is faithfully transcribed from the original Russian version.
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OBITUARY 73

dimensional torus T; which is covered by the trajectories of these motions
into the torus P =0, which remains covered with trajectories of quasi-
periodic motions with the same set of frequencies 4,,...,4,.

This style is not untypical of Kolmogorov: a theorem stated in full formality and
at some length, followed by an informal and illuminating indication of its real
meaning. This is further followed, not by a proof of the theorem (although it is hard
to believe that Kolmogorov would have stated it as a theorem if he had not been
100 % confident of its provability) but by a summary of the procedure by which the
contact transformation (g, p) — (Q, P) may be constructed, in the course of which
discussion, the need for and meaning of the conditions (3) and (4) of the theorem is
made abundantly clear. For a system with two degrees of freedom, the condition (3)
takes the form

4
n111+n212 ?W (*)

which, with n, and n, integers, means that the frequency ratio 1,/4, must be
‘sufficiently irrational’, a condition which appears also in the earlier (1953) paper. If
resonances occur through vanishing of n, 4, +n, 4, (for any n,, n,) then Kolmogorov’s
procedure fails, just as Poincaré’s attempt to analyse non-integrable systems by
perturbation analysis had failed some 60 years before. But Kolmogorov’s recognition
of the need for a condition of the type () was the crucial flash of insight that enabled
vital progress to be made.

The torus P = 0 that survives the perturbation in the above theorem is of course
what later.came to be known as the KAM-torus; and Kolmogorov argued further in
his (1954) paper that ‘for small values of 8 the displaced tori obtained in accordance
with Theorem 1 fill the greater part of the region G’, a statement which he then
refined to a Theorem 2 (not a conjecture!) relating to the Lebesgue measure of the set
of quasi-periodic orbits that survive the perturbation. And all this in four pages! The
degree of crystallization of thought in these four pages is truly remarkable and can
rarely have been surpassed.
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(5]

W

ENTROPY IN ERGODIC THEORY — THE INITIAL YEARS

WILLIAM PARRY

The years 1954-59 were especially fruitful even for one renowned for so many
singular contributions to mathematical research. There was profusion as always (in
fact 52 separate items are listed in Kolmogorov’s bibliography, including books and
other expository work); but more important, these were the years in which he:

(i) proposed and solved his famous perturbation theorem for Hamiltonian
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74 ANDREI NIKOLAEVICH KOLMOGOROV

systems (the beginning of KAM - Kolmogorov, Arnold, Moser — theory [1954a, b]
(4, 10);

(ii) extended Shannon’s work to continuous state processes (along with
Dobrushin, Gelfand, Pinsker, Yaglom and others) (see for example [13]);

(iii) introduced ¢-entropy and other related ideas into the problem of measuring
the massiveness of function spaces [1959b];

(iv) made the first major inroads to Hilbert’s 13th problem concerning the
representability of continuous functions of several variables by the superposition of
functions of fewer variables (the reduction from three to two variables was made by
the 3rd year student Arnold [5] after which Kolmogorov reduced the variables from
two to one together with addition) [1957b, 1959b];

(v) introduced entropy into ergodic theory and solved the principle outstanding
problem of that time [1958f, 1959a].

All but (i) above are concerned with some variation on the theme of entropy.

It is a specifically ergodic theoretic point of view that holds together the problems
of stochastic processes and those of dynamical systems. But it was a specifically
Kolmogorov point of view that enabled him to make a smooth transition between
these areas and Hilbert’s 13th problem in the same period. The problems of carrying
forward Shannon’s ideas on entropy from finite state processes to continuous state
processes are natural enough and indeed had been probed by Shannon and his
coworkers [18]. But the successful application of these ideas to formally deterministic
systems represented a significant leap forward.

Or perhaps one should speak of Kolmogorov’s lead forward. For although
Kolmogorov’s two papers [1958f, 1959a)] prepared the basic groundwork for future
developments, it was Sinai who shaped these ideas into a more serviceable form.

Perhaps today when we witness a surfeit of papers and a number of significant
results relating to ‘chaos’ and ‘strange attractors’ the idea that deterministic
dynamical systems can exhibit randomness or stochasticity is no longer surprising,
but there is no doubt that present day discoveries in these areas are the florescence of
the seed sown by Kolmogorov.

It would be too much to claim that Kolmogorov foresaw the main features of
development in dynamical systems over the subsequent 30 years, but his papers on
entropy in its various guises, combined with his emerging ideas on complexity, do
suggest a totally new point of view from which to understand dynamics. Today we
might say that, Laplace notwithstanding, a human scale of observation provides even
deterministic systems with the main features of stochastic processes and thereby
important invariants. The invariants are computed from observations of the system
through a finitely partitioned lens, so to speak.

Ergodic theory is concerned with the behaviour of discrete or continuous time
dynamical systems for which there is a measure (volume) which remains invariant
through the passage of time. In the discrete case such a dynamical system amounts
to a single measure preserving transformation T:X — X together with its iterates
T = T* 1o T. The measure m (which we assume to be a probability measure, that
is, m(X) = 1) enjoys the invariance property

Jf(x) dm = ff(Tx) dm

whenever f is integrable.
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In the 1930s von Neumann [23] had shown that ergodic transformations T with
pure point spectra (those for which the operator U,: L¥(X) - L¥(X), U,f=foT has
pure point spectrum) are completely characterised by their spectra. Subsequently
some progress was made in the analysis of transformations with mixed spectra but an
understanding of transformations with continuous spectra, and in particular with
Lebesgue spectra, was completely lacking. This meant that the all-important
transformations from probability theory such as independent (Bernoulli) shifts and
Markov shifts remained mysterious from an invariant point of view, for (apart from
the period in the Markov case) they are spectrally indistinguishable one from another.

In retrospect it is clear that information theory in the hands of Shannon,
McMillan and others, through their approximation and coding procedures, was
developing precisely the required machinery for the problem left open by von
Neumann. But there were many other directions suggested by these procedures.
Suffice it to say that continuous state stochastic processes needed an information-
theoretic treatment, which occupied Kolmogorov, Dobrushin, Gelfand, Pinsker and
Yaglom [13]. Kolmogorov also saw the possibility of an entropy-theoretic analysis of
large sets such as various function spaces [1959b], and went on from there to exploit
these ideas in a major attack on Hilbert’s 13th problem. In short Kolmogorov, in
these years, moved from one important problem to another.

In 1958 Koilmogorov published a solution to the main outstanding problem of
ergodic theory. If & = (4,, 4,,...) is a partition of X, the entropy of a is defined as

H(a) = —) m(4,)logm(A4,).

One can generate finer and finer partitions o® with the aid of T. The sets in «” are
typically 4, n T! A4, Nn..NTTA4, and one proves that H(a™)/n converges to a
limit A(T, &) (possibly infinity).

Kolmogorov’s initial definition of entropy [1958f] concerned only discrete time or
continuous time dynamical systems satisfying the 0—1 law, which he called quasi-
regular automorphisms and flows, respectively. (They are now known as K-
automorphisms and K-flows.) These systems are analogues of regular stationary
stochastic processes. He was to stress in his subsequent paper [1959a] that the
definition given in [1958f] was principally motivated by his desire to capture entropy
for continuous time systems. His first note suffered from a severe but not fatal flaw,
and even his second failed to give the most efficient definition of entropy.

Kolmogorov’s second, improved, definition [1959a] is as follows: if H(a) < 0o and
if o is a generator (that is, a generates the full g-algebra under iteration) then the
entropy of T is

h(T) = h(T, ).

In the same paper he proves the vital invariance principle that h,(T) is independent
of the generator a. The same result, however, was also established by Sinai [19] using
his definition of entropy, the definition which is now universally preferred:

h(T) = sup h(T, )

where the supremum is taken over all finite partitions. (Kolmogorov had earlier
obtained this result via the approach of [1959a], but had favoured the method of
[1958f], as it seemed to cover continuous and discrete time dynamics simultaneously.)
As Rohlin showed, one obtains the same quantity — the Kolmogorov—Sinai invariant
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— if one takes the supremum over all countable a with H(«) < 0. Rohlin also showed
that the two definitions coincided for (at least) ergodic measure preserving
transformations [15].

In any case, the invariance of 4(T') (or h,(T")) gives an immediate solution to the
problem bequeathed by von Neumann, for it is easy to show that a Bernoulli shift T
based on the probability vector (p,,...,p,) has entropy

k
WT) = -3 plogp,
i=1

and so there are infinitely many Bernoulli shifts which are not isomorphic although
they have the same Lebesgue spectrum of infinite multiplicity.

Thus Kolmogorov solved this hitherto recalcitrant problem. More important,
entropy made its entrance into ergodic theory and dynamical systems. Thirty years
on, the potency of this idea is far from spent. From the beginning, especially with the
work of Sinai [21], Anosov ]3], and others, it was clear that entropy was an essential
concept for a complete understanding of the classical work of Hedlund, Hopf and
Morse on geodesic flows on manifolds of negative curvature. In fact Sinai [20] made
an early connection between these geodesic flows and the other important notion
referred to above, namely that of quasi-regularity for flows and automorphisms.

As we have indicated, Kolmogorov’s improved definition of entropy is not the
most efficient, and his first is based on a fallacy which invalidated three of the four
stated theorems! But the insight and methods were not to be confounded by such a
trifle. Kolmogorov had grounded his reasoning (implicitly) on the false statement : if
&, > o, > ...areg-algebras such that (|2, &/, = A (the 0-1 g-algebra) then for any
other g-algebra %, (2., (&, vV #) = . The mistake was pointed out by Rohlin who
used a counterexample based on the 6-adic rationals. (See [1959a].)

Was there a demon-virus spreading this fallacy in 19587 In the same year Wiener,
another stochastic giant, made precisely the same error in his lectures ‘Non-linear
problems in random theory’ [25] when attempting to prove that a certain class of
continuous state processes can always be represented as a function of an independent
process. (This was actually joint work with Kallianpur done in Calcutta in 1956. See
[9]. The error in this case was discovered by Rosenblatt [16].)

To return to Kolmogorov’s notion of the entropy of a measure preserving
transformation, or rather to Sinai’s generally accepted definition, the first point to be
made is that aithough entropy can easily be defined for a finite state stationary
process by virtue of the fact that the states are specified, Kolmogorov’s initial paper
and its correction (not to mention verbal accounts of Kolmogorov’s seminars of that
time) give ample evidence that the search for an appropriate definition of entropy of
a dynamical system (lacking an intrinsic, invariant, state structure) presented
significant problems. These problems are closely related to the natural prejudice one
had in viewing stochastic processes as ‘random’ and dynamical systems as
‘deterministic’. There are of course (singular) stochastic processes which warrant
their description as deterministic, but what can one mean by the random behaviour
of a dynamical system given by an autonomous differential equation or by the
iteration of a ‘known’ transformation?

If we restrict ourselves to a measure preserving transformation T and make human
observations of the dynamical system generated by iteration, then we effectively
partition the space X into regions (4,,...,4,) = « and observe the behaviour of a
point x as it moves in discrete time. That is, we record which regions the iterations
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of x move into. This is surely the case as our record of the movement is not likely to
be infinitely precise. More often than not we are interested in a specific physical aspect
of the system and the function defining this observable can only be approximately
represented. It is precisely this constraint on our knowledge that produces for us a
random process (defined by a) or that, more recently, has prompted the designation
‘chaos’ — especially when combined with the effects of ‘exponential divergence’ of
trajectories.

A concrete example can be given of how the erroneous distinction between
stochastic processes and differentiable measure-preserving maps worked on the minds
of those who were there at the beginning of entropy in ergodic theory. Sinai [22] has
related his attempt to compute the entropy of an ergodic group automorphism of a
two-dimensional torus. He was not alone, at that time, in supposing that the answer
must be zero. However, on showing his sketches of the geometry of the system
(no doubt the now well known complementary expansions and contractions) to
Kolmogorov, he was persuaded that, on the contrary, the map should have positive
entropy. Once he had changed his point of view, he proceeded rather quickly to
compute the correct positive value log|f| where f is the eigenvalue with maximum
modulus. This is an interesting instance of Kolmogorov’s penetrating insight and
formidable intuition. In fact he even provided Sinai with the most appropriate
partition with which to compute the entropy. Other instances occur in [1958f], despite
its awesome gaffe; for example, the stress on the importance of K-systems; the
warning that processes with independent increments would not provide examples of
flows with finite entropy; the ‘artificial’, but ‘interesting’, examples of flows with an
arbitrary positive and finite value which he computes heuristically and which (if T
understand correctly) can be represented as a suspension over a Bernoulli shift —a
type of flow which became important later in connection with hyperbolic flows.

There were many immediate problems to be undertaken following [1958f] and
[1959a], the most pressing being the conjectures or implied conjectures. How does
Kolmogorov’s definition relate to Sinai’s modification? This was clarified by Rohlin
[15], who proved that if T is aperiodic and h(T) < co then there exists a generator «
with H(x) <oo. Thus for all important cases h,(T) = h(T). How do we solve
Kolmogorov’s problem of defining entropy for a flow {7;:¢€ R}? This was achieved by
Abramov [1], who showed that A(T;) = |t| A(T,) so that the natural definition is A(T}).
Kolmogorov asserted that a (quasi-regular) K-automorphism has countable Lebesgue
spectrum (in the orthocomplement of the constants). He had proved this (in the form
of regular stationary processes) in [6] (see also [14]) and Sinai proved the analogue for
K-flows [20].

There were many remarkable results to be proved in later years. Ergodic theory
increasingly converged on its origins — differentiable dynamics and the foundations of
statistical mechanics. The key notions of topological entropy and Lyapunov exponents
[12] played their parts here. As to the former (initially defined by Adler, Konheim and
McAndrew [2]), a more serviceable definition was provided by Dinaburg [8] and
Bowen [7] inspired by Kolmogorov’s definition of ¢-entropy and e-capacity (but see
also Appendix 7 of [18]). The closely related notion of pressure was then defined and
explored by Ruelle [17] and Walters [24].

But to provide a reasonable ‘conclusion’ to this brief account, one cannot do
better than to quote Ornstein’s definitive complement [11] to Kolmogorov’s papers:
two Bernoulli shifts with the same entropy are isomorphic.

Kolmogorov’s introduction of entropy into ergodic theory gave rise to an
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78 ANDREI NIKOLAEVICH KOLMOGOROV

exponential growth of activity in measure-theoretic and smooth dynamics. Ornstein’s
theorem gave a further impetus to research in this area. The combined effect was a
renewal of the broad direction opened up by Birkhoff and von Neumann in the 1930s,
enabling a rich variety of contacts with other areas to be made.

Postscript. Roy Adler informs me that before news of the work of Kolmogorov
and Sinai had arrived in the USA, but after it had been done, Kakutani had posed
the problem of distinguishing the Bernoulli shifts based on (3,3) and (3,3,3) using
entropy to his student R. Scoville. It seems that one of the reasons for the lack of
success was that Scoville used only 2-set partitions. Apparently von Neumann also
thought that these shifts could be distinguished with the aid of Shannon’s ideas. As
Kolmogorov has acknowledged, D. Z. Arov had attempted to use entropy in ergodic
theory in his Odessa dissertation (1957) but without conclusive results.

I should like to thank Professor Ya. G. Sinai for several helpful discussions. I am
also grateful to Ann Dowker who kindly translated one of Kolmogorov’s papers for
me.
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KOLMOGOROV AND THE COMPLEXITY OF ALGORITHMS

A. A. RazBorov
1. Kolmogorov-Uspenskii machines

Andrei Nikolaevich (ANK in what follows) appears first to have become
interested in the theory of algorithms in 1951 when he suggested to his student V. A,
Uspenskii (now professor at the Moscow State University) the study of a new
definition of the notion of an algorithm. The main ideas and results of their research
were summarised in the talk *On the notion of algorithm’ given by ANK on 17 March
1953 at a session of the Moscow Mathematical Society. (For a summary of this see
[1953a] and the joint paper [1958i].) Later such algorithms became known as
Kolmogorov—Uspenskii algorithms. Let us sketch their definition. A Kolmogorov-
Uspenskii algorithm (or machine) operates stepwise on labelled graphs of a special
kind. At each moment there is a distinguished vertex. One working step of a
Kolmogorov-Uspenskii machine consists of rebuilding a neighbourhood of the
distinguished vertex, following the instructions of the machine. There is an important
restriction that the diameter of the neighbourhood is to be bounded from above by
a constant depending only on the machine under consideration. The machine halts
when the current neighbourhood coincides with one on a list given in advance. The
result of the computation is determined by this neighbourhood.

Before ANK'’s approach, many different methods had been suggested for making
precise the intuitive notion of an algorithm, for example, the Herbrand—-Gddel
calculus, the Turing machines, recursive functions, Markov algorithms, and so on.
All are pairwise equivalent, and the famous Church thesis states that any reasonable
definition should be equivalent to those above. But simulations of algorithms of one
kind by those of another kind are not direct: they make use of auxiliary codings. It
seems that ANK was the first to realise that one has to be interested in the simplicity
and naturalness of such simulations, rather than in the mere fact of their existence.
ANK foresaw in this way many of the ideas of modern complexity theory. Here is
what he and Uspenskii wrote in [1958i].

We want to emphasise that the question is not the reducibility of an arbitrary
algorithm to an algorithm in our sense {the Kolmogorov-Uspenskii algorithms) ... but
that any algorithm essentially fits the definition proposed.

It was proved in [1958i] that the set of functions computed on a Kolmogorov—
Uspenskii machine is exactly the set of recursive functions (this is additional evidence
in support of the Church thesis), and, what is more important, strong arguments were
given demonstrating that all previously known definitions of the concept ‘algorithm’
can be simulated by Kolmogorov-Uspenskii machines in a direct ‘local’ way.

These ideas of ANK were extended by A. Schénhage [5]. He proved, in particular,
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80 ANDREI NIKOLAEVICH KOLMOGOROV

the possibility of simulating any multi-dimensional Turing machine by a Schénhage
machine (this being just a Kolmogorov-Uspenskii machine of a special kind) in real
time. This is a reasonable refinement of the intuitive notion of a ‘direct’ simulation
in the sense of Kolmogorov.

2. The algorithmic theory of information

It is clear from intuition that the word 111111111111 contains less information
than 3.1415926535, while the latter, in turn, contains less information than a ‘random
word ’ consisting of twelve digits. But how does one make this intuition precise? ANK
was one of the first to realise that it is impossible to do this within the framework of
‘pure’ probability theory without involving the theory of algorithms. In his first
paper [1963d] devoted to this question he wrote:

We can show that in sufficiently large populations the distribution of a property may
be such that the frequency of its occurrence will be almost the same for all sufficiently
large sub-populations, when the law of choosing these is sufficiently simple. Such a
conception in its full development requires the introduction of a measure of the
complexity of the algorithm.

The simplest way of understanding the main ideas of [1963d] is to consider an
imaginary experiment involving card-guessing. Assume that there is a finite set of
cards lying back-to-front on a table, with the successive digits of an unknown binary
word written on their hidden faces. Assume also that an algorithm for turning over
the cards is given, which at each step (perhaps using information gained from
previous steps) points to a card not used before and either guesses the symbol written
on that card or passes. The card is then turned over and, if a guess has been made,
the player checks whether or not it was correct.

Extending old ideas of von Mises, ANK proposed that one should consider a
binary word to be ‘random’ if any ‘sufficiently simple’ algorithm when applied to this
word does not lead to a proportion of correct answers that is ‘essentially more’ than
50 per cent. Roughly speaking, ANK showed in [1963d] that, if the total number of
algorithms under consideration is not ‘too large’, then such ‘random words’ do exist.
He then wrote, in the foreword to the Russian translation of [1963d]:

The main differences from the papers by von Mises are the entirely finite nature of
the whole framework, and the introduction of a quantitative estimate for the stability of
Jfrequencies.

It was the introduction of this quantitative approach that led ANK to a precise
definition of a measure of randomness for finite objects.

It seems that the paper [6] published in 1964 by Solomonoff was one of the first
publications containing a project for reconstructing information theory. ANK
arrived at a similar idea in 1963-64 without having known about Solomonoff’s
research, and he published his first paper [1965a] on this topic in the beginning of
1965. In that paper he investigated the concept of the complexity of a finite object y
with respect to a given finite object x. Afterwards this concept was called the
Kolmogorov complexity.

Given a partially recursive function ¢(p, x) (throughout the following p, x, and y
are binary words), the Kolmogorov complexity K (y|x) is defined by

K (ylx) = min |p| if such words p exist,
$(p, 2)=y

K, (ylx) = o0 otherwise.
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Informally K,(ylx) is the minimal possible length |p| of a program p that yields y
given x.

The main theorem proved in [1965a] states that there exists a partially recursive
function A(p, x) such that for every other partially recursive function ¢(p, x), we have

K.(y1x) < Ky(y1x)+ C,

with a constant C; that does not depend on x and y. For any 4 and B both satisfying
the conditions of the theorem we have

K(71%) = Kp(y10)| < Ca 5

and so, up to an additive constant, we can speak about the Kolmogorov complexity
K{(y|x) irrespective of the choice of A4.

The most important particular case is that of an empty x, and then K(y) = K(y|x)
is called the (absolute) Kolmogorov complexity of y.

It is impossible to overestimate the importance of these ideas and results. Here we
sketch only a few of the later developments.

ANK involved his pupils in the elaboration of his ideas, especially L. A. Levin and
P. Martin-L6f. The Kolmogorov complexity K( y|x) can be regarded as the entropy of
y given x. In accordance with this it is sometimes denoted by the letter H instead of K.
Extending the analogy one defines the amount of information I(y:x) contained in y
relative to x by the formula

I(y:x) = H(x)— H(x|y).

Kolmogorov and Levin proved in [1969a] that two fundamental formulae of
information theory can be retained in the new algorithmic framework in the following
approximate form:

[(y:x)—I(x:y)| = O(log, H(x, )),
H(x,y) = H(x)+ H(y|x)+ O(log, H(x, ))-

Starting from the ideas of Kolmogorov, Martin-L6f [3] proposed in 1966 a definition
of a random (infinite) binary sequence. ANK conjectured in [1969a] that there should
be an alternative definition of this notion in terms of the Kolmogorov complexity of
the finite left-hand segments of the given sequence, and pointed out some difficulties
that arise in pursuing this course. These difficulties were overcome independently by
Levin [2] and C. P. Schnorr [4]. It turned out that a sequence x;,Xx,,...,X,,... iS
random in Martin-Lof’s sense if and only if

KM((x,, x,,...,x,)) = n+0(1).

Here KM is a slight modification of the Kolmogorov complexity — the so-called
monotone Kolmogorov complexity.

The reader wishing to see further details is referred to [1] and to [1983d]. The
algorithmic theory of information is currently being actively studied by several young
pupils of Andrei Nikolaevich: E. A. Asarin, A. Kh. Shen’, V. G. Vovk, and others.
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THE WORK OF KOLMOGOROV ON COHOMOLOGY

C. A. ROBINSON

In the mid-1930s Kolmogorov played a substantial part in the early development
of cohomology theory. It happened that almost exactly the same discoveries were
made independently and simultaneously by J. W. Alexander in the USA, and were
published by him in English. As a result, Kolmogorov’s work on this subject has been
less well known in English-speaking countries than it deserves to be. Both
Kolmogorov and Alexander lectured on their discoveries at the International
Topology Conference at Moscow in 1935.

The first aspect of Kolmogorov’s work was begun in 1934 and concerns duality
theory in cell complexes [1936f]. At this time, the topological invariance of homology
groups was a standard result, but cohomology existed only as the theory of ‘ pseudo-
cycles’ in a section of Lefschetz’s 1930 text on topology. For any finite cell complex
K, Kolmogorov in his paper introduces the chains, cochains, homology and
cohomology groups of K, with coefficients in a locally compact abelian group.
(Homology and cohomology groups are respectively called ‘Betti u-groups’ and
‘Betti o-groups’ in his work.) He shows that A"(K; A) and H (K; B) are dual groups
if A and B are Pontryagin duals of each other. When L is a subcomplex of some
cellular decomposition of an n-sphere, he proves the celebrated duality theorem of
Alexander and Kolmogorov:

H_(L)~H""(S"—L), 1<r<n.

Kolmogorov’s next contribution was the definition of cohomology groups for
arbitrary locally compact topological spaces. He published this in four notes to the
Comptes Rendus [19361, m, n, o). The same discovery (for compact spaces) was made
independently by Alexander, and the result is known as Alexander-Kolmogorov
cohomology. One can think of it as dual (in Pontryagin’s sense) to Vietoris homology,
which is obtained by considering a finite set of nearby points as a ‘simplex’ in a space.

The construction of the cohomology groups can be outlined as follows. If X is a
locally compact space, Kolmogorov considers the alternating functions from X"+
into an abelian coefficient group #. The group F" = F'(X; #) of r-cochains on X is
obtained from these by identifying two functions if they agree on some neighbourhood
of the diagonal in X*!. The coboundary operator g,:F"™! — F" is defined by

& NP Prs > P) = X (= 1) fAPos - s Pecss Pisrs -+ Py)-

i=0

Since g,0g, = 0, one can define the cohomology group H'(X; #) as the subquotient
(kerg,)/(im g,) of F". Kolmogorov relates this to the corresponding homology theory,
which generalizes that of Vietoris. He introduces relative homology and cohomology
groups, develops some of their standard properties, and then deduces a variety of
forms of the duality theorem for the homology and cohomology of a closed subset
and its complement in a manifold.
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The first major advantage of cohomology over homology is the existence of the
ring structure. In the case of a manifold M, the product in H*(M) corresponds under
Poincaré duality to the geometrical operation of intersecting cycles. In [1936h],
Kolmogorov introduces a precursor of the product we use today. His construction
relates to the rational cohomology of an arbitrary simplicial complex. In order to
define the modern product, one introduces an ordering of the vertices. The complexes
in this paper are unordered, and so Kolmogorov obtains a ring structure in which the
product of an r-dimensional class with an s-dimensional one is larger than the modern
one by a factor of (r+s)!/r!s!. This important work on the cohomology ring was
also announced in Kolmogorov’s 1935 Moscow lecture.

I should like to thank Professor G. W. Whitehead for some helpful comments on
Kolmogorov’s work in this field.

KOLMOGOROV’S CONTRIBUTIONS TO THE THEORY OF
STATIONARY PROCESSES

PETER WHITTLE

An interest in stationary processes is incidental to a considerable part of
Kolmogorov’s work, but his direct and classic contributions to the subject were made
over a relatively brief span of time. The note published in Comptes Rendus [1939¢]
indicated that these matters were stirring in his mind. Two short papers [1940b, c]
published the following year revealed that he had registered the connection between
stationary processes and Hilbert space. In September/October of that year he wrote
his classic study [1941a] on stationary processes in Hilbert space, and then continued
in November with a more explicit account [1941b] of the interpolation and
extrapolation of such processes.

His interest was evidently stirred by Wold’s work [7], to which he made repeated
reference. The principal result of this work was the formula which immediately
became known as Wold’s decomposition. This expresses the variable x(¢) of a scalar-
valued stationary process as the sum of a singular component (linearly predictable
from its remote past) and a one-sided moving average of white-noise variables (later
to be known as the innovations of the process).

In his Comptes Rendus note Kolmogorov simply states his evaluations of the
variance of interpolation error and k-step extrapolation (prediction) error. These
evaluations are both celebrated and satisfying: the interpolation variance and the
one-step prediction variance are respectively the harmonic and geometric means of
the spectral density function. The case of zero prediction error was Wold’s singular
case. It is now plain to us from this note that Kolmogorov had essentially solved the
prediction problem for stationary processes; the note was perhaps too bare and
cryptic for this to be evident at the time.

The principal results established in the literature when Kolmogorov began his
major advance in 1940 were those by Khinchin [3] and Cramér [1] on the spectral
representation of the autocovariance function, and Wold’s decomposition. Kolmo-
gorov’s insight was to see a scalar random variable of finite second moment as an
element of a Hilbert space H, and the expected product of two such random variables

as defining the inner product of the two elements. Suppose that all the members of
4-2
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a stationary sequence {x(f)} are elements of H, and, indeed, that each element of H
can be seen as a member of one of a number of jointly stationary sequences. The
operator U inducing the time translation Ux(f) = x(t+1) then leaves the inner
product invariant. That is, U is recognised as a unitary operator on H, and a
substantial known theory can be brought to bear. In particular, the spectral
representation of U is essentially a Fourier representation, and this implies
corresponding Fourier representations of the autocovariance and of the random
function x(-) itself.

The two 1940 papers are in fact concerned with processes whose increments are
stationary. However, the results deduced do include as a special case the spectral
representation of the stationary random function x(:) (as the Fourier-Stieltjes
transform of a process of uncorrelated increments). While this result was implicit in
earlier abstract work by von Neumann [4] and Wintner [6], this was the first
realisation of its implications in the stationary process context, certainly preceding the
oft-quoted work of Cramér [2]. An even longer sighting into the future on
Kolmogorov’s part is the beginning of a study of self-similar processes, with its
recognition of the special role of power-law autocovariance functions.

Kolmogorov’s major work in this area [1941a] gave a complete analysis of
stationary processes using the Hilbert space formulation, and integrated Wold’s
results into an analytic framework associated with the spectral representations. He
first introduced the idea of subordination: that one stationary process is subordinate
to another if it can be represented as a moving average of that other. He translated
the idea of subordination into spectral terms; also the decomposition of a process into
mutually orthogonal components. Proceeding in this way, he deduced the Wold
decomposition, with an interpretation of the components in spectral terms.

The article ends with a treatment of linear least-square interpolation and
extrapolation, deriving the results asserted in Comptes Rendus, and giving a complete
spectral characterisation of what we would now term the purely deterministic and
purely non-deterministic cases. This treatment is given greater body and detail in the
immediately following paper [1941bj].

Kolmogorov and Wiener [5] are generally given joint credit for the development
of the prediction theory of stationary processes. This surely constitutes insufficient
recognition of Kolmogorov’s clear ten-year priority. On the other hand, one can
commiserate with Wiener in his misfortune. The war that gave him the stimulus to
work on these problems both delayed his own publication (on security grounds) and
left him unaware of Kolmogorov’s results. The contrast in the approaches of the two
is interesting. Wiener quickly cast the problem into analytic form; he derived
conditions for the optimal predictor and converted these into a Wiener—Hopf
problem. Kolmogorov took a more directly temporal and statistical approach; just
the simple Gram-Schmidt orthogonalisation which Wold had employed and which
led to the fruitful concept of an innovation. Of course, the two approaches had to
converge at some point. Kolmogorov saw that the generating function of the
coefficients in the innovations representation constituted a canonical factor of the
spectral density function, that it was the limit on the unit circle of a function analytic
within, and that it had what we should now term the minimum-phase property. When
one compares this work with all that has been done since one is impressed by its ease
and economy. On the other hand, it is just this economy which has made the work
a ‘mathematician’s’ work; Wiener’s writings are better known by practitioners, not
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only because they are located in the Western literature and because they make specific
reference to applications, but also because the labour of analysis is evident, and so the
achievement itself more evident.

One might say that some concession is made in this direction in an article which
Kolmogorov published a few years later [1947f] in a commemorative volume. This
article gave considerable attention to the spectral representation of the random
function itself, which had played a surprisingly slight role in the 1941 memoir. It also
made clear the practical significance of these concepts by, for example, deducing the
spectral density of a process generated by driving a differential equation with white
noise.
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Statistics (Tashkent, 27 Sept.—-2 Oct. 1948) (Uzbekgosizdat, Tashkent), pp. 216-220.
(g) ‘The real significance of results in dispersive analysis’, Proc. 2nd All-Union Conference on Mathematical
Statistics (Tashkent, 27 Sept.—2 Oct. 1948) (Uzbekgosizdat, Tashkent), pp. 240-268.
(h) ‘On the disintegration of drops in a turbulent flow’, Dokl. Akad. Nauk SSSR 66, 825-828.
(i) ‘Absolute value’, BSE-2, Vol. 1, 32.
(j) ‘Jacques Hadamard’, BSE-2, Vol. 1, 388.
(k) ‘Additive quantities’, BSE-2, Vol. 1, 394,
() ‘Axiom’, BSE-2, Vol. 1, 613-616.
(m) ‘Axonometry’, BSE-2, Vol. 1, 617.

1950

(@) ‘Unbiased estimates’, Izv. Akad. Nauk SSSR Ser. Mat. 14, 303-326.
(b) ‘On the question of the determination of the coefficient of temperature conduction of soil’, /zv. Akad.

Nauk SSSR Ser. Geog. Geofiz. 14, no. 2, 97-98.

(c) “Algebra in the secondary school’, BSE-2, Vol. 2, 61-62.

(d) ‘Algebraic expression’, BSE-2, Vol. 2, 64.

(e) ‘Algorithm’, BSE-2, Vol. 2, 65.

(f) ‘Euclid’s algorithm’, BSE-2, Vol. 2, 65-67.

(g) ‘Aleksandr Danilovich Aleksandrov’, BSE-2, Vol. 2, 83.

(h) ‘Pavel Sergeevich Aleksandrov’, BSE-2, Vol. 2, 84.

(i) ‘Asymptote’, BSE-2, Vol. 3, 238-239.

(j) ‘Asymptotic expressions’, BSE-2, Vol. 3, 239.

(k) ‘Naum Il'ich Akhiezer’, BSE-2, Vol. 3, 565.

(1) ‘Stefan Banach’, BSE-2, Vol. 4, 183.
(m) ‘Nina Karlovna Bari’, BSE-2, Vol. 4, 245.

(n) ‘Sergei Natanovich Bernstein’, BSE-2, Vol. 5, 52.

(o) ‘Infinite numbers’, BSE-2, Vol. S, 66-67.

(p) (With V. F. Kagan) ‘Infinitesimal numbers’, BSE-2, Vol. §, 67-71.
(q) (With B. N. Delone) ‘Elements at infinity’, BSE-2, Vol. 5, 2.

(r) ‘Infinity (in mathematics)’, BSE-2, Vol. 5, 73-74.

(s) ‘Biharmonic functions’, BSE-2, Vol. 5, 159.

(t) ‘Bilinear form’, BSE-2, Vol. 5, 167.

(u) ‘The law of large numbers’, BSE-2, Vol. 5, 538-540.

(v) ‘An exposition of the foundations of Lebesgue’s theory of measure’, Uspekhi Mat. Nauk 5, no. 1,

211-213.

1951
(a) ‘On the question of differentiability of transition probabilities in time-homogeneous Markov
processes with countably many states’, Uch. Zap. Moskov. Gos. Univ. 148 (Matematika 4), 53-59.
(b) ‘A generalization of Poisson’s formula to the case of a sample from a finite aggregate’, Uspekhi Mat.
Nauk 6, no. 3, 133-134.
(c) ‘Ivan Georgievich Petrovskii’, Uspekhi Mai. Nauk 6, no. 3, 161-164.
(d) ‘A statistical acceptance control for an admissible number of defective products equal to zero’,
Leningrad, 1-24.
(e) (With S. A. Yanovskii) ‘ Luitzen Egbert Jan Brouwer’, BSE-2, Vol. 6, 62.
(f) ‘Variational series’, BSE-2, Vol. 6, 641.
(g) (With S. A. Yanovskii) ‘Hermann Weyl’, BSE-2, Vol. 7, 106.
(h) ‘Quantity’, BSE-2, Vol. 7, 340-341.
(i) ‘Probable error’, BSE-2, Vol. 7, 507.
(j) ‘Probability’, BSE-2, Vol. 7, 508-510.
(k) (With T. I. Kozlov) ‘Sampling method’, BSE-2, Vol. 9, 417-418.
(I) (With A. N. Khovanskii) ‘Introductory article and comments on the book: N.[I. Lobachevskii,
Complete collected works® (Gostekhizdat, Moscow-Leningrad), vol. 5, pp. 329-332; 342-348.

1952

(a) ‘On the question of drag in the velocity profile under turbulent flow in tubes’, Dok!. Akad. Nauk SSSR
84, 20-30.

(b) ‘Gaussian distribution’, BSE-2, Vol. 10, 275.
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(c) ‘Geodesic curvature’, BSE-2, Vol. 10, 481.

(d) ‘David Hilbert’, BSE-2, Vol. 11, 370-371.

(e) ‘Histogram’, BSE-2, Vol. 11, 447.

(f) ‘Boris Vladimirovich Gnedenko’, BSE-2, Vol. 11, 545.

(g) ‘Homeomorphism’, BSE-2, Vol. 12, 21.

(h) ‘Homotopy’, BSE-2, Vol. 12, 35.

(i) ‘Motion (in geometry)’, BSE-2, Vol. 13, 447.

(j) ‘Binomial’, BSE-2, Vol. 13, 518.

(k) ‘Real numbers’, BSE-2, Vol. 13, 570.

() ‘Division’, BSE-2, Vol. 13, 628.
(m) ‘Discreteness’, BSE-2, Vol. 14, 435.

(n) ‘Dispersion’, BSE-2, Vol. 14, 438.

(o) ‘Distributivity’, BSE-2, Vol. 14, 479.

(p) ‘Distributive operator’, BSE-2, Vol. 14, 479.

(q) ‘Differential (in mathematics)’, BSE-2, Vol. 14, 498-499.

(r) (With B. P. Demidovich and V. V. Nemytskii) ‘Differential equations’, BSE-2, Vol. 14, 520-526.
(s) ‘Fiducial probability’, BSE-2, Vol. 14, 616.

(t) ‘Confidence limits’, BSE-2, Vol. 14, 617.

(u) (With 1. G. Bashmakova and A. P. Yushkevich) ‘Mathematical symbols’, BSE-2, Vol. 17, 115-119.
(v) ‘Value of a digit’, BSE-2, Vol. 17, 135.

(w) (With V. L. Bityutskov) ‘Isomorphism’, BSE-2, Vol. 17, 478-479.

(x) ‘Isotropic lines’, BSE-2, Vol. 17, 509.

(y) ‘Concrete number’, BSE-2, Vol. 17, 557.

(z) ‘Vasilii Grigor’evich Imshenetskii’, BSE-2, Vol. 17, 607.
(A) Mathematics as a profession. to help those entering higher educational institutes (Soviet. Nauka).

1953

(a) ‘On the concept of algorithm’, Uspekhi Mat. Nauk 8, no. 4, 175-176.

(b) ‘Some papers of recent years in the field of limit theorems in the theory of probability’, Vestnik

Moskov. Univ. 10, 29-38.

(c) ‘On dynamical systems with an integral invariant on a torus’, Dokl. Akad. Nauk SSSR 93, 763-766.
(d) ‘Mathematical induction’, BSE-2, Vol. 18, 146.

(e) (With V. 1. Glivenko) ‘Integral’, BSE-2, Vol. 18, 250-253.

(f) ‘Probability integral’, BSE-2, Vol. 18, 253.

(g) ‘Interpolation’, BSE-2, Vol. 18, 304-305.

(h) ‘Intuitionism’, BSE-2, Vol. 18, 319.

(i) ‘Elimination of unknowns’, BSE-2, Vol. 18, 483.

(j) ‘Experiment’, BSE-2, Vol. 18, 604.

(k) ‘Method of exhaustion’, BSE-2, Vol. 19, 50-51.

(1) ‘Quadrant’, BSE-2, Vol. 20, 434.
(m) ‘Compactum’, BSE-2, Vol. 22, 282.

(n) ‘Constant’, BSE-2, Vol. 22, 416.

(o) ‘Continuum’, BSE-2, Vol. 22, 454-455.

(p) ‘Coordinates’, BSE-2, Vol. 22, 524-525.

(q) ‘Correlation’, BSE-2, Vol. 23, 55-58.

1954

(a) ‘On the conservation of conditionally periodic motions for a small change in Hamilton’s functions’,
Dokl. Akad. Nauk SSSR 98, 527-530.

(b) ‘General theory of dynamical systems and classical mechanics’, Proc. Internat. Congress Math.
(Amsterdam, 1954), Vol. 1, 315-333.

(c) ‘The line’, BSE-2, Vol. 25, 167-170.

(d) ‘The law of small numbers’, BSE-2, Vol. 26, 168.

(e) ‘Andrei Andreevich Markov’, BSE-2, Vol. 26, 294.

(f) ‘Mathematics’, BSE-2, Vol. 26, 464-483.

(g) ‘Mathematical statistics’, BSE-2, Vol. 26, 485-490.

(h) ‘Mathematical physics’, BSE-2, Vol. 26, 490.

(i) ‘Richard von Mises’, BSE-2, Vol. 27, 414.

(j) ‘Multidimensional space’. BSE-2, Vol. 27, 660.

(k) (With P. S. Aleksandrov) ‘Set theory’, BSE-2, Vol. 28, 14-17.

(1) (With S. V. Fomin) Elements of the theory of functions and functional analysis. A course of lectures.
Part I, Metric and normed spaces (Izdat. Moskov. Univ. English edition: Graylock Press,
Rochester, NY, 1957).

(m) Chief editor’s preface to the Russian translation of: R. Peter, Recursive functions (1zdat. Inostr. Lit.,
Moscow, 3-10. Third English edition, Academic Press, New York-London, 1967).
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1955

(a) ‘Estimates of the minimal number of elements of ¢-nets in distinct function classes and their
application to the question of representability of functions of several variables by superpositions
of functions of fewer variables’, Uspekhi Mat. Nauk 10, no. 1, 192-194.

(b) ‘Orientation’, BSE-2, Vol. 31, 188-189.

(c) ‘Foundations of geometry’, BSE-2, Vol. 31, 296.

(d) (With L. A. Skornyakov) ‘Surface’, BSE-2, Vol. 33, 346-347.

(e) ‘Ordered numbers’, BSE-2, Vol. 34, 238.

(f) ‘Acceptance statistical control’, BSE-2, Vol. 34, 498-499.

() As (a), but in Dokl. Akad. Nauk 101, 192-194.

1956

(a) ‘On the Skorokhod convergence’, Teor. Veroyatnost. i Primenen. 1,239-247; = Theory Probab. Appl.
1, 215-222.

(b) ‘Two uniform limit theorems for sums of independent random variables’, Teor. Veroyatnost. i
Primenen. 1, 426-436; = Theory Probab. Appl. 1, 384-394.

(c) (With Yu. V. Prokhorov) ‘ Zufillige Funktionen und Grenzverteilungssétze’, Bericht iiber die Tagung
Wahrscheinlichkeitsrechnung und mathematische Statistik (Berlin), pp. 113-126.

(d) ‘Some fundamental questions of approximate and exact representation of functions of one and several
variables’, Proc. 3rd All-Union Math. Congress (Moscow), vol. 2, 28-29.

(¢) ‘On the Shannon theory of information transmission in the case of continuous signals’ [in English],
IEEE Trans. Inform. Theory, Vol. 1, T-2, 102-108.

(f) ‘On the representation of continuous functions of several variables by superpositions of continuous
functions of fewer variables’, Dokl. Akad. Nauk SSSR 108, 179-182.

(g) ‘On certain asymptotic characteristics of completely bounded metric spaces’, Dokl. Akad. Nauk SSSR
108, 385-388.

(h) (With I. M. Gel'fand and A. M. Yaglom) ‘On a general definition of the amount of information’,
Dokl. Akad. Nauk SSSR 111, 745-748.

(i) ‘Theory of probability’, Mathematics, its content, methods, and significance (Izdat. Akad. Nauk SSSR,
Moscow), Vol. 2, pp. 252-284.

(j) (With S. B. Stechkin) ‘S. M. Nikol’skii (on his 50th birthday)’ Uspekhi Mat. Nauk 11, no. 2, 239-244,

(k) “Evgenii Borisovich Slutskii’, BSE-2, Vol. 39, 378.

(1) ‘Nikolai Vasil’evich Smirnov’, BSE-2, Vol. 39, 406.

1957

(a) ‘Theory of the transmission of information’, Plenary Session of the USSR Academy of Sciences on
scientific problems of automatization of production, 15-20 October 1956 (Izdat. Akad. Nauk SSSR,
Moscow), pp. 66-99.

(b) ‘On the representation of continuous functions of several variables by superpositions of continuous
functions of one variable and addition’, Dok!. Akad. Nauk SSSR 114, 953-956.

(c) ‘On a justification of the theory of real numbers’, Mat. Prosveshchenie 2, 169-173.

1958

(a) Mathematics as a profession (2nd ed., Izdat. Moskov. Univ.).

(b) (With I. M. Gel'fand and I. M. Yaglom) ‘The amount of information and entropy for continuous
distributions’, Proc. 3rd All-Union Math. Congress (1zdat. Akad. Nauk SSSR, Moscow), Vol. 3,
pp. 300-320.

(c) ‘Sufficient statistics’, BSE-2, Vol. 51, 106.

(d) ‘Information’, BSE-2, Vol. 51, 129-130.

(e) ‘Cybernetics’, BSE-2, Vol. 51, 149-151.

(f) ‘A new metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces’,
Dokl. Akad. Nauk SSSR 119, 861-864.

(g) ‘Sur les propriétés des fonctions de concentrations de M. P. Lévy’, Ann. Inst. H. Poincaré 16, no. 1,
27-34.

(h) ‘On linear dimensionality of topological vector spaces’, Dokl. Akad. Nauk SSSR 120, 239-241.

(i) (With V. A. Uspenskii) ‘On the definition of an algorithm’, Uspekhi Mat. Nauk 13, no. 4, 3-28;
= AMS Transl. (2) 17 (1961), 217-245.

(j) ‘General theory of dynamics and classical mechanics’ [in English], Proc. Internat. Congr. Math.
Edinburgh, Vol. 1, 315.

1959
(a) ‘Entropy per unit of time as a metric invariant of automorphisms’, Dokl. Akad. Nauk SSSR 124,
754-1755.
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(b) (With V. M. Tikhomirov) ‘e-entropy and e-capacity of sets in a function space’, Uspekhi Mat. Nauk
14, no. 2, 3-86; = AMS Transi. (2) 17 (1961), 277-364.

(c) ‘Transition of branching processes in diffusion and related problems of genetics’, Teor. Veroyatnost.
i Primenen. 4, 233-236.

(d) ‘Remarks on papers by R. A. Minlos and V. V. Sazonov’, Teor. Veroyatnost. i Primenen. 4, 237-239.

(e) ‘Theory of probability’, Forty years of mathematics in the USSR (Fizmatgiz, Moscow), Vol. 1,
781-795.

(f) Preface to the book: W. R. Ashby, Introduction to cybernetics (Chapman and Hall, London, 1956)
(Izdat. Inostr. Lit., Moscow), pp. 5-8.

1960

(a) (With O. V. Sarmanov) ‘The work of S. N. Bernstein on probability theory’, Teor. Veroyatnost. i
Primenen. 5, 215-221; = Theory Probab. Appl. 5, 197-203.

(b) ‘On the ¢™ classes of Forte and Blanc-Lapierre’, Teor. Veroyatnost. i Primenen. 5, 373; = Theory
Probab. Appl. S, 337.

(c) ‘Random functions of several variables, almost all realizations of which are periodic’, Teor.
Veroyatnost. i Primenen. 5, 374; = Theory Probab. Appl. 5, 338.

(d) (With B. V. Gnedenko, Yu. V. Prokhorov and O. V. Sarmanov) ‘The work of N. V. Smirnov and
mathematical statistics (on his 60th birthday)’, Teor. Veroyatnost. i Primenen. S, 436-440;
= Theory Probab. Appl. 5, 397-401.

(e) (With Yu. A. Rozanov) ‘On strong mixing conditions for stationary Gaussian processes’, Teor.
Veroyatnost. i Primenen. 5, 222-227; = Theory Probab. Appl. 5, 204-208.

(f) (With B. V. Gnedenko) ‘Aleksandr Yakovlevich Khinchin (obituary)’, Uspekhi Mat. Nauk 15, no. 4,
97-110; = Russian Math. Surveys 15, no. 4, 93-106.

(g8) Mathematics as a profession (3rd ed., Izdat. Moskov. Univ., Moscow).

(h) (With S. V. Fomin) Elements of the theory of functions and functional analysis. Vol. 2, Measure,
Lebesgue integral, Hilbert space (1zdat. Moskov. Univ., Moscow).

1961

(a) ‘Automata and life’ (Abstract of a paper read at the methodological seminar of the Faculty of
Mechanics and Mathematics of Moscow State University of 5 April 1961), Mash. Per. i Prikl.
Lingvist. 6, 3-8.

(b) ‘Automata and life’, Tekhnika Molodezhi no. 10, 16-19; no. 11, 30-33.

(c) ‘Remark on a lecture by V. K. Lezerson’, Teor. Veroyatnost. i Primenen. 6, 367.

(d) (With P. S. Aleksandrov) ‘Properties of inequalities and the concept of approximate calculations.
Irrational numbers’, Questions of the teaching of mathematics in the secondary school (Uchpedgiz,
Moscow).

1962

(a) (With M. Arato and Ya. G. Sinai) ‘On the estimation of the parameters of a stationary Gaussian
Markov process’, Dokl. Akad. Nauk SSSR 146, 747-1750; = Soviet Math. Dokl. 3, 1368-1371.

(b) (With A. M. Kondratov) ‘The rhythmics of Mayakovsky’s poems’, Vopr. Yazykoznaniya, no. 3,
62-74.

(c) (With L. S. Pontryagin and E. F. Mishchenko) ‘A probability problem in optimal control’, Dokl.
Akad. Nauk SSSR 145, 993-995; = Soviet Math. Dokl. 3, 1143-1145.

(d) ‘The work of B. V. Gnedenko on probability theory’, Teor. Veroyatnost. i Primenen. 7, 323-329.

(e) ‘Précisions sur la structure locale de la turbulence dans un fluide visqueux aux nombres de Reynolds
élévés’ (Marseille, Aug.—Sept. 1961), Proc. Coll. Internat. du Mécanique de la Turbulence (Paris),
pp. 447-458.

(f) ‘A refinement of previous hypotheses concerning the local structure of turbulence of a viscous
incompressible fluid at high Reynolds number’ [in English], J. Fluid Mech. 13, no. 1, 82-85. See
also Proc. Internat. Colloq. ‘ Mech. de la Turbulence’ (CNRS, 1962), pp. 447-458.

(g) (With L. I. Gikhman and V. S. Korolyuk) ‘B. V. Gnedenko (on his fiftieth birthday)’, Uspekhi Mat.
Nauk 17, no. 4, 191-200; = Russian Math. Surveys 17, no. 4, 105-113.

(h) (With S. A. Aivazyan, L. D. Meshalkin and V.F. Pisarenko) Review of the book: A. M. Dlin,
Mathematical statistics in technology, Teor. Veroyatnost. i Primenen. 7, 243-248.

1963

(a) ‘Approximation to distributions of sums of independent random variables by infinitely divisible
distributions’, Trudy Moskov. Mat. Obshch. 12, 437-451.

(b) ‘Discrete automata and finite algorithms’, Proc. 4th All-Union Math. Congress (Izdat. Leningrad.
Univ., Leningrad), Vol. 1, 120.

(c) ‘Various approaches to an estimate of the difficulty of an approximate definition and calculation of
functions’, Proc. Internat. Congress Math., Stockholm, pp. 369-376.
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(d) ‘On tables of random numbers’ [in English], Sankhya Ser. A 25, 369-376.

(e) ‘The study of Mayakovskii’s rthythmics’, Vopr. Yazykoznaniya no. 4, 64-71.

(f) (With A.V.Prokhorov) ‘On contemporary Russian poetry: general characteristics’, Vopr.
Yazykoznaniya no. 6, 84-95.

(g) (With A. V. Prokhorov) ‘Statistics and probability theory in research into Russian poetry’, Proc.
Symp. on complex investigation of artistic creation (Nauka, Leningrad), p. 23.

(h) ‘How I became a mathematician’, Ogonék no. 48, 12-13.

(i) Preface to the book: C. E. Shannon, Papers on information theory and cybernetics (Izdat. Inostr.
Lit., Moscow).

1964

(a) (With A. V. Prokhorov) ‘On contemporary dol'nik Russian poetry: Statistical characteristics of
dol'nik in the works of Mayakovskii, Bagritskii, and Akhmatova’, [Dol’nik is a form of tonic
verse that has a trisyllabic metre and allows the omission of one or two unstressed syllables in
each line), Vopr. Yazykoznaniya, no. 1, 75-94.

(b) ‘On the metre of Pushkin’s *“Songs of the Western Slavs™’, Russkaya Lit. no. 1, 98-111.

(c) Preface to the Russian translation of the book: W. Feller, An introduction to probability theory and its
applications (2nd ed., Wiley, New York, 1957) (Mir, Moscow), pp. 5-6.

1965

(a) ‘Three approaches to the definition of the concept “quantity of information™’, Probl. Peredachi
Informatsii 1, no. 1, 3-11.

(b) ‘The volume of knowledge about mathematics for eight year olds in school (commission on
mathematical education of the Math. Division of the USSR Academy of Sciences)’, Mat. v
Shkole no. 2, 21-24.

(c) ‘Geometrical mappings in a school geometry course’, Mat. v Shkole no. 2, 24-29.

(d) (With I. M. Yaglom) ‘On the content of a school mathematics course’, Mat. v Shkole no. 4, 53-62.

(e) ‘Functions, graphs, continuous functions’, Mat. v Shkole no. 6, 12-21.

(f) ‘Remarks about the analysis of the rhythm of Mayakovsky’s *‘ Lines on a Soviet Passport™’, Vopr.
Yazykoznaniya no. 3, 70-75.

(g) ‘Natural numbers and positive scalar quantities’, School Mathematics. Lectures and Problems, no. 4-5
(Izdat. Moskov. Univ., Moscow), pp. 19-35.

1966

(a) Introduction to analysis (Izdat. Moskov. Univ., Moscow).

(b) ‘P. S. Aleksandrov and the theory of do-operations’, Uspekhi Mat. Nauk 21, no. 4, 275--278.

(c) ‘Textbooks for the academic year 1966/67°, Mat. v Shkole no. 2, 26-30.

(d) ‘A school definition of identity’, Mat. v Shkole no. 2, 33-35.

(e) ‘Introduction to S. B. Suvorova’s article ** An attempt at an earlier introduction of the elements of
differential calculus™’, Mat. v Shkole no. 4, 23.

(f) ‘Textbooks for the academic year 1966/67°, Mat. v Shkole no. 6, 31-37.

(g) ‘Geometry on the sphere and geology’, Nauka i Zhizn’ no. 2, 32.

(h) ‘A problem from the theory of curves’, School Mathematics. Lectures and Problems, no. 8, 35.

1967

(a) (With Ya. M. Barzdin’) ‘On the realization of networks in three-dimensional space’, Problemy
Kibernet. 19, 261-268.

(b) ‘Textbooks for the academic year 1966/67°, Mat. v Shkole no. 1, 43-48.

(c) ‘Optional studies in mathematics’, Mat v Shkole no. 2, 2-3.

(d) ‘New programmes and some basic problems in perfecting a mathematics course in the secondary
school’, Mat. v Shkole no. 2, 4-13.

(e) ‘Content of optional studies in mathematics in the academic years 1967/68 and 1968/69°, Mat. v
Shkole no. 2, 33-38.

(f) ‘Programmes of special courses in mathematics’, Mat. v Shkole no. 3, 73-75.

(g) ‘Programmes of special courses in mathematics’, Mat. v Shkole no. 4, 58-59.

(h) ‘Changes in the text of A. N. Barsukov’s algebra textbook for the 6th to 8th classes’, Mat. v Shkole

no. 6, 22-24.

1968

(a) ‘Some theorems on algorithmic entropy and algorithmic amount of information’, Uspekhi Mat. Nauk
21, no. 2, 201.

(b) ‘Design of a programme in mathematics for the secondary school’, Mat. v Shkole no. 1, 4-23.
(c) ‘Generalization of the concept of a power and the exponential function’, Mat. v Shkole no. 1, 24-32.
(d) ‘A programme in mathematics for the secondary school’, Mat. v Shkole no. 2, 5-20.
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(e) ‘On studying the exponential function and logarithms in primary school’, Mat. v Shkole no. 2, 23-25.

(f) ‘On new programmes in mathematics’, Mat. v Shkole no. 2, 21-22.

(g) ‘Introduction to the theory of probability and combinatorics’, Mat. v Shkole no. 2, 63-72.

(h) Appendix to a review of Yu. A. Shikhanovich (of a book by A. A. Stolyar), Mat. v Shkole no. 3, 92.

(i) Elements of the theory of functions and functional analysis (2nd revised ed., Fizmatgiz, Moscow;
English transl. of 1st ed., Graylock Press, Rochester, NY, 1957).

(j) (With A. V. Prokhorov) ‘On the basis of the classical Russian metre’, Commonwealth of science and
mysteries of creation (Iskusstvo, Moscow), pp. 397-432.

(k) ‘An example of the study of metre and its metric variants’, Theory of verse (Nauka, Leningrad),
pp. 145-167.

1969

(a) ‘On the logical foundations of information theory and probability theory’, Probl. Peredachi
Informatsii S, no. 3, 3-7.

(b) ‘Sergei Natanovich Bernstein (obituary)’, Uspekhi Mat. Nauk 24, no. 3, 211-218; = Russian Math.
Surveys 24, no. 3, 169-176.

(c) Letter to the Editor (on errors in an article by B. E. Veits), Mat. v Shkole no. 2, 93.

(d) ‘Scientific foundations for a school mathematics course. First lecture. Modern views on the nature of
mathematics’, Mat. v Shkole no. 3, 12-17.

(e) ‘Scientific foundations for a school mathematics course. Second lecture. Natural numbers’, Mat. v
Shkole no. 5, 8-17.

(f) ‘New developments in school mathematics’, Nauka i Zhizn’ no. 3, 62-66.

1970

(a) Viktor Nikolaevich Zasukhin (in memory of Soviet mathematicians who fell in the Second World
War)’, Uspekhi Mat. Nauk 25, no. 3, 243; = Russian Math. Surveys 25, no. 3, 179.

(b) ‘Gleb Aleksandrovich Seliverstov (obituary)’, Uspekhi Mat. Nauk 25, no. 3, 244-245; = Russian
Math. Surveys 25, no. 3, 180-181.

(c) ‘Scientific foundations for a school mathematics course. Third lecture. Generalization of the concept
of number. Non-negative rational numbers’, Mat. v Shkole no. 4, 27-32.

(d) (With A. F. Semenovich) ‘On an experimental textbook of geometry for the sixth class’, Mat. v Shkole
no. 4, 21-34.

(e) (With A. F. Semenovich and R. S. Cherkasov) ‘ Teaching materials on geometry for the fifth class’,
Mat. v Shkole no. 5, 30-45.

(f) ‘What is a function?’, Kvant no. 1, 27-36.

(g) ‘Problem no. 3°, Kvant no. 1, 52-53.

(h) ‘What is the graph of a function?’, Kvant no. 2, 3-13.

(i) ‘Tiling by regular polygons’, Kvant no. 3, 24,

(j) (With F. L. Varpakhovskii) ‘On the solution of Hilbert’s 10th problem’, Kvant no. 7, 39-44.

(k) Preface to the article: V. G. Boltyanskii and N. Kh. Rozov, ‘Lenin’s theory of knowledge and
mathematical concepts’, Kvant no. 7, 2.

(1) (With A. F. Semenovich and R. S. Cherkasov) Geometry in the sixth class, an experimental textbook
(Prosveshchenie, Moscow).

1971

(a) ‘Quantity’, BSE-3, Vol. 4, 456-457.

(b) ‘Norbert Wiener’, BSE-3, Vol. §, 72.

(c) ‘David Hilbert’, BSE-3, Vol. 6, 519.

(d) ‘A system of basic concepts and notation for a school mathematics course’, Mat. v Shkole no. 2,
17-22.

(e) (With A. F. Semenovich, F. F. Nagibin and R. S. Cherkasov) ‘From an experimental textbook of
geometry for the seventh class’, Mat. v Shkole no. 3, 9-17.

(f) ‘Review of the lecture * Elements of logic in the modern school”’ (at the Commission on Mathematics
of the Academic Methods Council of the USSR Ministry of Education), Mat. v Shkole no. 3, 91.

(g) (With A. F. Semenovich, F. F. Nagibin and R. S. Cherkasov) ‘On the new edition of an experimental
textbook of geometry for the sixth class’, Mat. v Shkole no. 4, 23-25.

(h) (With A. F. Semenovich, F. F. Nagibin and R. S. Cherkasov) ‘On the new edition of the experimental
textbook on geometry for the sixth class’, Mat. v Shkole no. 5, 25-38.

(i) (With A. F. Semenovich, F. F. Nagibin and R. S. Cherkasov) ‘ From a new experimental textbook on
geometry for the sixth class’ (Geometrical constructions), Mat. v Shkole no. 6, 13-21.

(j) ‘Modern mathematics and mathematics in the secondary school’, Mat. v Shkole no. 6, 2-3.

(k) (With V. A. Gusev, A. V. Sisinskii and A. A. Shershevskii) 4 mathematics course for schools of physics
and mathematics (Izdat. Moskov. Univ., Moscow).

(1) *Summer school on Lake Ruby’, Prosveshchenie, Moscow.
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(m) A letter to P. L. Kapitsa, Vopr. Phil. no. 9.

(n) (With other authors) ‘Naum II'ich Akhiezer (on his seventieth birthday)’, Uspekhi Mat. Nauk 26,
no. 6, 257-261; = Russian Math. Surveys 26, no. 6, 233-237.

(o) (With other authors) ‘Ivan Georgievich Petrovskii (on his seventieth birthday)’, Uspekhi Mat. Nauk
26, no. 2, 3-24; = Russian Math. Surveys 26, no. 2, 3-28.

(p) (With A. F. Semenovish, F. F. Nagibin and R. S. Cherkasov) Geometry for the sixth class, a textbook
(Prosveshchenie, Moscow).

(q) (With A. F. Semenovich, F. F. Nagibin and R.S. Cherkasov) Geometry for the seventh class, an
experimental texbook (Prosveshchenie, Moscow).

1972
(a) ‘The complexity of specification and construction of mathematical objects’, Uspekhi Mat. Nauk 21,
no. 2, 159.
(b) ‘Integral’, BSE-3, Vol. 10, 586.
(c) ‘The method of exhaustion’, BSE-3, Vol. 10, 586.
(d) (With S. V. Fomin) Elements of the theory of functions and functional analysis (3rd revised ed.,
Fizmatgiz, Moscow).
(e) ‘The supervisor of studies’, in L. Neiman, The joy of discovery (Detskaya Literatura, Moscow).
(f) ‘Qualitative study of mathematical models of population dynamics’, Probl. Kibernet. 35, no. 2,
101-106.
(g) (With A. F. Semenovich, F. F. Nagibin and R. S. Cherkasov) ‘From a new textbook on geometry for
_ the sixth class’, Mat. v Shkole no. 1, 22-31.
(h) (With R. S. Cherkasov) ‘Boris Vladimirovich Gnedenko’, Mat. v Shkole no. 1, 85-86.
(i) ‘On a letter of N. Ya. Vilenkin’, Mat. v Shkole no. 6, 34-35. (Vilenkin's letter “Equality or
congruence” is in the same issue.)
(j) ‘Agreement of teaching of mathematics and physics’, Proc. All-Union Conf. on the problem of
educational work in schools and classes with a deep study of separate subjects (Sci. Research Inst.,
USSR Acad. Pedagog. Sci.).
(k) (With other authors) ‘Georgii Pavlovich Tolstov (on his sixtieth birthday)’, Uspekhi Mat. Nauk 21,
no. 1, 255-264; = Russian Math. Surveys 27, no. 1, 207-217.
(1) (With P.S. Aleksandrov and P. L. Ul'yanov) ‘Dmitrii Evgen’evich Men’shov (on his eightieth
birthday)’, Uspekhi Mat. Nauk 27, no. 2, 185-195; = Russian Math. Surveys 21, no. 2, 161-171.
(m) (With Yu. K. Belyaev and A. D. Solov’ev) ‘ Boris Vladimirovich Gnedenko (on his sixtieth birthday)”,
Uspekhi Mat. Nauk 27, no. 2, 197-202; = Russian Math. Surveys 217, no. 2, 173-179.
(n) (With other authors) ‘Leonid Vital’evich Kantorovich (on his sixtieth birthday)’, Uspekhi Mat. Nauk
27, no. 3, 221-227; = Russian Math. Surveys 27, no. 3, 193-201.
(o) (With other authors) ‘Georgii Fedorovich Rybkin (obituary)’, Uspekhi Mat. Nauk 27, no. §,
223-225; = Russian Math. Surveys 217, no. 5, 165-167.
(p) (With A.F. Semenovich, F. F. Nagibin and R.S. Cherkasov) Geometry for the eighth class, an
experimental textbook (Prosveshchenie, Moscow).
(q) (With A. F. Semenovich, F. F. Nagibin and R. S. Cherkasov) Geometry for the sixth class (2nd ed.,
Prosveshchenie, Moscow).
(r) ‘Teachers cannot be replaced’, Komsomolskaya Pravda, 15 January, 2.

1973

(a) ‘The continuum’, BSE-3, Vol. 13, 64.

(b) ‘The semilogarithmic and logarithmic network’, Kvant no. 13, 64.

(c) ‘Mathematics as a profession’, Kvant no. 4, 12.

(d) (With A.F.Semenovich and R.S. Cherkasov) ‘On the methodology of studying the topic
“Parallelism and parallel shift” in the geometry course for the seventh class’, Mat. v Shkole no.
1, 24-29.

(e) (With A. F. Semenovich and R. S. Cherkasov) ‘On the structure of a new textbook on geometry for
the seventh class’, Mat. v Shkole no. 2, 17-29.

(f) (With P.S. Aleksandrov and O. A. Oleinik) ‘Ivan Georgievich Petrovskii’, Mat. v Shkole no. 4,
81-86.

(g) (With B. E. Veits and 1. T. Demidov) ‘Methodological remarks on an experimental textbook Algebra
and the elements of analysis for the ninth class’, Mat. v Shkole no. 5, 64.

(h) Scientific foundations for a school mathematics course, in the series: Programmes of pedagogical
institutes (Prosveshchenie, Moscow).

(i) ‘Materials for discussion at the Commission of School Terminology and Notation’, (Educ. Method.
Council, USSR Ministry of Education).

1974

(a) Fundamental concepts of probability theory (2nd ed., Nauka, Moscow). German translation:
Grundbegriffe der Wahrscheinlichkeitsrechnung (Springer-Verlag, Berlin-Heidelberg-New York,
1973).
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(b) (With P. S. Aleksandrov and O. A. Oleinik) ‘In memoriam Ivan Georgievich Petrovskii (18 January
1901-15 January 1974)°, Trudy Moskov. Mat. Obshch. 32, 5-10; = Trans. Moscow Math. Soc. 31,
1-12.
(c) ‘Ivan Georgievich Petrovskii’, Uspekhi Mat. Nauk 29, no. 2, 3-5; = Russian Math. Surveys 29, no. 2,
3-5.
(d) ‘Andrei Andreevich Markov’, BSE-3, Vol. 15, 379.
(e) ‘Mathematics’, BSE-3, Vol. 15, 467-478.
(f) (With Yu. V. Prokhorov) ‘Mathematical statistics’, BSE-3, Vol. 15, 480-484.
(g) ‘Multidimensional space’, BSE-3, Vol. 16, 372.
(h) ‘Orientation’, BSE-3, Vol. 18, 509-510.
(i) (With L. T. Tropin and K. V. Chernishev) ‘Bringing up a new generation’, Vestnik Vysshei Shkoly
no. 6, 26-33.
(j) ‘New programmes: special schools’, Modern mathematical education (Prosveshchenie, Moscow),
pp. 5-12.
(k) ‘A boarding school for the university. What is it for?’, Mat. v Shkole no. 2, 56-60 (in the section ‘Ten
years of the school of physics and mathematics at Moscow State University’).
(1) (With A. F. Semenovich) ‘Anna Maksimilianovna Fisher (obituary)’, Mat. v Shkole no. 2, 87.
(m) ‘The sieve of Eratosthenes’, Kvant no. 10, 2.

1975

(a) (With Yu. K. Belyaev) ‘ Acceptance statistical control’, BSE-3, Vol. 20, 5§72-573.

(b) (With S.I. Shvartsburd) ‘Algebra and the elements of analysis. The method of mathematical
induction’, Mat. v Shkole no. 1, 8-14.

(c) ‘The elements of combinatorics’, Mat. v Shkole no. 2, 16-25.

(d) (With O. S. Ivashev-Musatov) ‘Real numbers, infinite sequence and their limits’, Mat. v Shkole
no. 2, 25-35.

(e) (With V. K. Dzyadyk and L. D. Kudryavtsev) ‘Sergei Mikhailovich Nikol'skii (on his seventieth
birthday)’, Uspekhi Mat. Nauk 30, no. 4, 271-280; = Russian Math. Surveys 30, no. 4, 193-202.

(f) (With P. S. Aleksandrov and S. L. Sobolev) ‘Ol'ga Arsen’evna Oleinik’, Vestnik Moskov. Univ. Ser.
Mat. Mekh. 4, 119-124.

1976

(a) (With S. V. Fomin) Elements of the theory of functions and functional analysis (4th revised ed., Nauka,
Moscow. English translation of Ist ed.: Graylock Press, Albany, NY, 1961).

(b) (With S. I. Shvartsburd) ‘ Trigonometric functions, their graphs and derivatives, in the textbook for
the tenth class’, Mat. v Shkole no. 1, 10-25.

(c) (With G. A. Gal’perin) ‘The 38th Moscow Mathematical Olympiad (February-March 1975)’, Ma.
v Shkole no. 4, 68-72.

(d) ‘The integral in the textbook for the tenth class’, Mat. v Shkole no. 6, 15-17.

(e) ‘Groups of transformations’, Kvant no. 10, 2-5.

(f) (With A. V. Arkhangel’skii, A. A. Mal’tsev and O. A. Oleinik) ‘Pavel Sergeevich Aleksandrov (on his
eightieth birthday)’, Uspekhi Mat. Nauk 31, no. 5, 3-15; = Russian Math. Surveys 31, no. 5, 1-13.

(g) (With P.S. Aleksandrov, B.V.Gnedenko and Yu.V.Prokhorov) ‘Tashmukhamed Alievich
Sarymsakov (on his sixtieth birthday)’, Uspekhi Mat. Nauk 31, no. 2, 241-246; = Russian
Math. Surveys 31, no. 2, 215-221.

1977

(a) ‘Infinity’, Mat. Entsiklopediya Vol. 1, 455-458.

(b) ‘Quantity’, Mat. Entsiklopediya Vol. 1, 651-653.

(c) ‘Probability’, Mat. Entsiklopediya Vol. 1, 667-669.

(d) (With V. V. Vavilov) ‘The school of physics and mathematics at Moscow State University’, Kvant
no. 1, 56-57.

(e) (With other authors) ‘ Adol'f Pavlovich Yushkevich (on his seventieth birthday)’, Uspekhi Mat. Nauk
32, no. 3, 197-202; = Russian Math. Surveys 32, no. 3, 145-153.

1978

(a) ‘What is a function?’, Mat. v Shkole no. 2, 27-29 (in connection with G. V. Dorofeev’s article ‘ The
concept of a function in mathematics and at school’ in the same issue).

(b) ‘On introducing the concepts of dialectical materialism in mathematics and physics lessons’, Mat. v
Shkole no. 3, 6-9.

(c) ‘Design of a programme in mathematics for the secondary school’, Mar. v Shkole no. 4, 7-32.

(d) (With O. A. Oleinik) ‘Sergei L’vovich Sobolev (on his seventieth birthday)’, Mat. v Shkole no. 6,
67-73.

(e) (With A. M. Abramov) ‘New programmes in the French secondary school’, Mat. v Shkole no. 6,
74-78.
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98 ANDREI NIKOLAEVICH KOLMOGOROV

(f) ‘How I became a mathematician. What is mathematics? Science as your profession’, Znanie no. 11,
5-9.

(g) (With 1. G. Zhurbenko) * Estimates of spectral functions of stochastic processes’, Lecture to the 11th
European Conf. on Statistics, Oslo, 14-18 August 1978.

(h) ‘On the formation of a dialectical-materialistic view of the world in schoolchildren in mathematics and
physics lessions’, The role of educational literature in the formation of a view of the world in
schoolchildren (Pedagogika, Moscow), pp. 69-74.

(i) (With other authors) ‘Mark Gregor’evich Krein (on his seventieth birthday)’ Uspekhi Mat. Nauk 33,
no. 3, 197-203; = Russian Math. Surveys 33, no. 3, 185-193.

1979

(a) (With A. V. Bulinskii) ‘Linear sampling estimates of sums’, Teor. Veroyatnost. i Primenen. 24,
241-251; = Theory Probab. Appl. 24, 241-252.

(b) (With V. V. Vavilov and I. T. Tropin) ‘ The first 20 years of the school of mathematics and physics at
Moscow State University’, Kvant no. 1, 55-57.

(c) (With A. F. Semenovich and R. S. Cherkasov) ‘On the textbook Geometry 6-8°, Mat. v Shkole no. 3,
38-42.

(d) (With V. D. Belousov, V. G. Boltyanskii et al.) ‘ Aleksei Ivanovich Markushevich (obituary)’, Mat. v
Shkole no. 6, 77-78.

(e) (With A. M. Abramov, O. S. Ivashev-Musatov, B. M. Ivlev and S. I. Shvartsburd) ‘ The exponential
and logarithmic functions’, Mat. v Shkole no. 6, 22-27.

1980

(a) ‘A dialectical-materialistic view of the world in school courses of mathematics and physics’, Kvant
no. 4, 15-18.

(b) (With A. M. Abramov, O. S. Ivashev-Musatov, B. M. Ivlev and S. I. Shvartsburd) ‘On the textbook
Algebra and analysis for the 9th and 10th classes’, Mat. v Shkole no. 6, 22-217.

1981

(a) (With S. V. Fomin) Elements of the theory of functions and functional analysis (5th ed., Nauka,
Moscow).

(b) (With V. V. Vavilov and L T. Tropin) The school of physics and mathematics at Moscow State
University, Mathematics and cybernetics, no. 5 (Izdat. Moskov. Univ., Moscow).

(c) (With A. F. Semenovich and R. S. Cherkasov) Geometry for the 6th and 8th classes: textbook (3rd ed.,
Prosveshchenie, Moscow).

(d) ‘On the concept of a vector in the mathematics course of the secondary school’, Mat. v Shkole no. 3,

(e) (With A. M. Abramov) ‘On the question of taking the first steps in the topic ““ Vectors™’, Mat. v Shkole
no. 3, 8-11.

(f) ‘Review of L. S. Pontryagin’s book Infinitesimal analysis’, Mat. v Shkole no. 5, 73-74.

(g) (With P. S. Aleksandrov, B. V. Gnedenko, S. S. Demidov, S. S. Petrova, K. A. Rybnikov and A. P.
Yushkevich) ‘Izabella Grigor’evna Bashmakova (on her sixtieth birthday)’, Mat. v Shkole
no. I, 73-74.

(h) (With other authors) ‘Vladimir Mikhailovich Alekseev (obituary)’, Uspekhi Mat. Nauk 36, no. 4,
177-182; = Russian Math. Surveys 36, no. 4, 201-206.

(i) (With other authors) ‘Naum Il'ich Akhiezer (obituary)’, Uspekhi Mat. Nauk 36, no. 4, 183-184;
= Russian Math. Surveys 36, no. 4, 207-208.

(j) (With other authors) ‘Izabella Grigor’evna Bashmakova (on her sixtieth birthday)’, Uspekhi Mar.
Nauk 36, no. S, 211-214; = Russian Math. Surveys 36, no. 5, 187-190.

(k) (With other authors) ‘In memory of Mikhail Alekseevich Lavrent’ev’, Uspekhi Mat. Nauk 36, no. 2,
3-10; = Russian Math. Surveys 36, no. 2, 1-10.

(I) (With other authors) ‘In memory of Anatolii Illarionovich Shirshov’, Uspekhi Mat. Nauk 36, no. 5,
153-157; = Russian Math. Surveys 36, no. S, 129-133.

(m) (With other authors) ‘Sagdy Khasonovich Sirazhdinov (on his sixtieth birthday)’, Uspekhi Mat. Nauk
36, no. 6, 237-242; = Russian Math. Surveys 36, no. 6, 208-214.

(n) (With other authors) ‘ Aleksandr Filippovich Timan (on his sixtieth birthday)’, Uspekhi Mat. Nauk 36,
no. 2, 221-225; = Russian Math. Surveys 36, no. 2, 213-218.

(o) (With V. V. Vavilov and L. T. Tropin) The school of physics and mathematics at Moscow State
University (Znanie, Moscow).

(p) (With P. S. Aleksandrov) ‘A. I. Markushevich as a historian of mathematics’ [in English], Historia
Math. 8, 125-132.

1982
(a) (With A. G. Dragalin) Introduction to mathematical logic (1zdat. Moskov. Univ., Moscow).
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(b) (With 1. G. Zhurbenko and A. V. Prokhorov) Introduction to probability theory, Library “Kvant”,
no. 23 (Nauka, Moscow).

(c) (With Yu. V. Prokhorov) ‘Mathematics’, Mat. Entsiklopediya, Vol. 3, 576-581.

(d) (With R. S. Cherkasov) ‘Boris Vladimirovich Gnedenko’, Mat. v Shkole no. 1, 72-73.

(e) (With V. A. Zalgaller) ‘Leonid Vital’evich Kantorovich (on his seventieth birthday)’, Mat. v Shkole
no. 2, 77-78.

(f) “On the concept of limit in the general-educational school’, Mat. v Shkole no. 5, 56.

(g) ‘Newton and modern mathematical thinking’, Mat. v Shkole no. 6, 58.

(h) (With Yu. K. Belyaev and A.D. Solov’ev) ‘Boris Vladimirovich Gnedenko (on his seventieth
birthday)’, Uspekhi Mat. Nauk 317, no. 6, 243-248 ; = Russian Math. Surveys 37, no. 6, 275-281.

(i) (With S. M. Nikol’skii, V. A. Skvortsov and P. L. Ul'yanov) ‘ Dmitrii Evgen’evich Men’shov (on his
ninetieth birthday)’, Uspekhi Mat. Nauk 37, no. S, 209-219; = Russian Math. Surveys 37, no. 5,
203-215.

1983

(a) (With A. M. Abramov, B. E. Veits, O. S. Ivashev-Musatov and S. I. Shvartsburd) Algebra and the
elements of analysis: textbook for the 9th and 10th classes of the secondary school, (4th ed.,
Prosveshchenie, Moscow).

(b) (With B. V. Gnedenko) ‘Pavel Sergeevich Aleksandrov’, Mat. v Shkole no. 1, 47—48.

(c) “On the textbook Geometry by A. V. Pogorelov’, Mat. v Shkole no. 2, 45.

(d) ‘Combinatorial foundations of information theory and the calculus of probabilities’, Uspekhi Mar.
Nauk 38, no. 4, 27-36; = Russian Math. Surveys 38, no. 4, 29-40.

1984

(a) ‘Remarks on the concept of a set in the school mathematics course’, Mat. v Shkole no. 1, 52-53.

(b) (With O. A. Oleinik) ‘S. L. Sobolev and modern mathematics’, Mat. v Shkole no. 1, 73-77.

(c) ‘Analysis of the metrical structure of Pushkin’s poem “Arion”’, Problems of the theory of poetry
(Nauka, Leningrad), pp. 118-120.

1985

(a) ‘A model of the rhythmic structure of Russian speech, adapted to the study of the metric of classical
Russian poetry’, Russian verse: traditions and problems of development (Nauka, Moscow),
pp. 113-134.

(b) Collected works. Mathematics and mechanics (Nauka, Moscow).

(c) ‘A new metric invariant of transitive dynamical systems and automorphisms of Lebesgue spaces’,
New edition, Trudy Mat. Inst. Akad. Nauk 169, no. 1, 94-98.

1986

(a) ‘On scalar quantities’, Mat. v Shkole no. 3, 32-33.

(b) ‘Memories of P. S. Aleksandrov’, Uspekhi Mat. Nauk 41, no. 6, 187-203; = Russian Math. Surveys
41, no. 6, 225-246.

(c) Theory of probability and mathematical statistics (Nauka, Moscow).

(d) Preface to the book: J. Bernoulli, On the law of large numbers (Nauka, Moscow).

1987

(a) Information theory and the theory of algorithms (Nauka, Moscow).

(b) Speech of welcome to the participants of the first World Congress of the Bernoulli Society, Teor.
Veroyatnost. i Primenen, 32, 218; = Theory Probab. Appl. 32, 200.

(c) (With V. A. Uspenskii) ‘Algorithms and chance’, Teor. Veroyatnost. i Primenen. 32, 425-455.

1988

(a) (With G. A. Gal'perin) Mathematics — science and profession, Library “Kvant”, no. 64 (Nauka,
Moscow).

(b) (With Yu. V. Prokhorov and A.N. Shiryaev) ‘Probabilistic-statistical methods of discovering
spontaneously arising effects’, Trudy Mat. Inst. Akad. Nauk.

Comments on the Kolmogorov bibliography

The main source used was the list prepared by Professor A. N. Shiryaev,
Kolmogorov’s literary executor, which is referred to in what follows as ‘Complete
list’. This was compared with the list of Kolmogorov’s works as published in Uspekhi
Mat. Nauk 18, no. 5 (1963), 28, no. 5 (1973), and 38, no. 4 (1983), and translated in
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Russian Math. Surveys. The first part of the list, published in Uspekhi Mat. Nauk, 8
(1953), was before the days of Russian Math. Surveys, so for the early part of the book
Matematika v SSSR za sorok let 1917-1957 (Mathematics in the USSR for the 40
years 1917-1957) was used.

In the notes below, the following abbreviations will be used: UMN for Uspekhi
Mat. Nauk, SSSR for the book referred to above, and MR for Math. Reviews.

[1923a].

[1925¢).
[1925d].
[1927a).
[1933c].

[1934d].

[1936i].

[1937¢].
[1938c].
[1938p].

[1941a).
[1943b).
[1946d].
[1949¢].
[1952q].
[1963d).
[1965a).
[1966b).

[1970d].
[1971é].

[19711].

[1972g].
[1972h].

[1972j).

[1979b].
[1981b).
[1982d].

SSSR gives page numbers 324-326. Here and later there may be a
discrepancy between different editions.

The title in SSSR is an abbreviation of this.

SSSR gives page numbers 23-28.

SSSR gives page numbers 919-921.

The complete list gives the German double s, but SSSR gives the ordinary
ss.

SSSR gives page numbers 291-295.

SSSR gives page numbers 847-850.

SSSR gives page numbers 355-360.

SSSR gives page numbers 359-401.

There is a little uncertainty as to whether this is the correct work of
Lebesgue.

SSSR gives page numbers 140, the complete list gives 1-10. According to
MR, this issue consists of 40 pages.

Presumably this is one of the articles in [1943a].

SSSR gives page numbers 27-42.

The title on the complete list makes it look like ‘ Word-formation’. In fact,
it is ‘stratification’, as in SSSR and confirmed by MR.

SSSR inserts the word ‘in mathematics’, presumably to distinguish it from
differential in engineering.

This journal is usually known as Sankhya, though it is sometimes called
the Indian Journal of Statistics, as on the complete list.

It is Volume 1, as in UMN and MR.

The complete list gives d,, UMN gives ds, and MR gives do.

Compare [19701]. Probably (d) is a summary of (l).

Compare [1971q]. Probably (e) is a summary of (q).

This must be Lake Ruby in the USA. Presumably Kolmogorov went there,
and this is his report.

Compare [1972q].

Compare [1972m].

It has proved impossible to trace the acronym SIMO.

The complete list says 20 years, UMN says 15 years!

Compare [19810].

Compare [1982h].

Statistical Laboratory
16 Mill Lane
Cambridge CB2 1SB
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