ARCHIBALD JAMES MACINTYRE

N. A. BOWEN

1. The death on August 4th, 1967, at the age of 59, of Archibald James Macintyre,
Research Professor of Mathematics at the University of Cincinnati, Ohio, U.S.A.,
after a brief illness came as a severe shock to all who knew him, whether personally
or by repute. During my thirteen-year association with him at King’s College,
Aberdeen, Scotland, I naturally came to know him well, and to admire his many
fine attributes. His good nature and kindness, his subtle but delightful sense of
humour, the patience with which he explained mathematical problems to those less
quick than he to see the point, the facility with which he was able to imbue his
students with the feeling that mathematics was a living and growing subject and
not a defunct language of invariable symbols, his encyclopaedic knowledge of
mathematical research papers especially in the various branches of mathematical
analysis—all these were highly impressive and go some way towards explaining not
only the high esteem and popularity accorded to him, by both staff and students
wherever he went, but also his power of attracting research students to work under
his inspiring supervision.

Another aspect of his character that impinged itself early on his mathematical
friends, especially on his research collaborators, was his high standard—he simply
would not countenance publication unless, and until, the proposed article was of
first-class quality as regards both content and exposition.

However, what impressed me most of all about him as a mathematician was his
humility. He told me once that he did not regard himself as an original thinker,
but merely as one who could sometimes push further ahead with the ideas and
methods of others. All who have worked in the field of analysis will surely agree
that such an opinion of his work does him less than justice, and I have no doubt
that many of us would be only too happy to produce work of his quality.

Born on July 3rd, 1908, in Sheffield, Macintyre’s early education took place
at the Central Secondary School, Sheffield, after which in October 1926 he entered
Magdalene College, Cambridge, as a Scholar, took his Mathematical Tripos, being
awarded a First Class in the Mathematical Tripos (Part I} in June 1927, a First
Class in the Mathematics Preliminary Examination in June 1928 (on which he.was
awarded the Davidson prize for Mathematics), and in June 1929 he became a Wrangler
with Distinction in Schedule B, in the Mathematical Tripos (Part II). His mathe-
matical contemporaries at Cambridge included Professor H. Davenport (Trinity)s
Professor S. Verblunsky, Dr. J. Cossar and Dr. D. W. Babbage (all of Magdalene)
and his Tutor and Director of Studies at Magdalene was A. S Ramsey, the author
of well-known mathematical text-books and the father of the present Archbishop
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of Canterbury and of the brilliant mathematical logician Frank Ramsey, who died
at an early age.

From 1929 to 1930, A. J. Macintyre worked as a Research Student on integral
functions under Dr. (now Sir) Edward Collingwood at Cambridge, and for one
year from October 1930 he taught Applied Mathematics and Theoretical Physics
in Swansea University College as an Assistant Lecturer attached to the Mathematics
Department, whose Head was then the late Professor A. R. Richardson. The staff
also included R. Wilson, later to become Professor (now Emeritus Professor) of
Mathematics at the same college, with whom A. J. Macintyre struck up a firm
friendship which was to lead to a significant output of research, some joint, on a
variety of problems arising in classical analysis.

In October 1931 Macintyre was appointed as an Assistant Lecturer, and promoted
to Lecturer in 1935, in the Mathematics Department at the University of Sheffield.
Naturally he had continued with his research work since leaving Cambridge, and in
1933 was awarded a Cambridge Ph.D. for his thesis entitled *“ Some Properties of
Integral and Meromorphic Functions .

Macintyre’s next post was as Lecturer in Mathematics at King’s College, Aberdeen;
his appointment being made from October Ist, 1936, to a Department headed by
Professor (now Principal) E. M. Wright, co-author with G. H. Hardy of a well-
known work on the theory of numbers. In 1946 Macintyre was elected a Fellow of
the Royal Society of Edinburgh, and when Senior Lectureships were introduced
into the University of Aberdeen in 1959 he was at once promoted to such a post.
At the time he was on leave of absence from Aberdeen, as a Visiting Research
Professor in Mathematics at the University of Cincinnati, Ohio, U.S.A., and on
September 30th, 1959, he resigned his Aberdeen post in order to return to a permanent
post as Research Professor in Mathematics at Cincinnati. In the same university
he was appointed in 1963 as Charles Phelps Taft Professor of Mathematics—a post
he held until his death on August 4th, 1967. He also earned the rare distinction of
being elected a Fellow of the Graduate School. During his last year he was given
leave to spend some time organizing research projects at the University of California
on the campus at Davis.

From a research point of view Macintyre’s interests were by no means confined
to pure mathematics. He was also deeply interested in aerodynamics, fluid mechanics
and related fields. He believed, for example, that aeroplanes should have their control
surfaces—rudder and elevator—located at the front and not at the back. He con-
ducted with great enthusiasm his experiments with model planes, and corresponded
widely with experts on these matters, steadfastly refusing to accept their views unless
soundly backed by evidence, at the same time being himself able to answer their
objections to his revolutionary ideas. He was awarded a Caird Senior Scholarship
in Aeronautics for 1943-44, and a D.S.I.R. grant from 1946-49 for special research
on the Lanchester Vortex. Difficulty in obtaining suitable apparatus at that time,
as well as an increasing number of students desirous of researching in pure mathe-
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370 ARCHIBALD JAMES MACINTYRE

matics under his friendly and perceptive eye, prevented him from pushing ahead in
these fields, although his interest was maintained throughout his life.

Macintyre’s family life was a happy one and the family had a host of friends.
He had married Sheila Scott of Edinburgh, whose father, a schoolmaster, later
went with them to America, on December 27th, 1940, and who, a Girtonian and
herself a Wrangler in Mathematics, had taught at St. Leonard’s School (St. Andrews)
and at Stowe School. She also was a good mathematician and after her marriage
not only lectured in mathematics at the Universities of Aberdeen and Cincinnati but
also published a number of research papers on mathematical analysis, in particular
on the convergence of Abel’s and other series, and on the Whittaker constant.

The Macintyres had three children, one of whom, Douglas Scott, born in
August 1946, died suddenly of enteritis in March 1949, while Allister William, born
on February 8th, 1944, is now a Computer Programmer and Susan Elizabeth, born
in March 1950, was married on July 10th, 1967, to Mr. J. Gaines of Cincinnati.
Mrs. Macintyre, who, like her husband, had always been popular with both staff
and students, died in America on March 21st, 1960, at the comparatively early age
of 50, three years before her father, who had settled in America with them.

2. Introduction
Since it is clearly not possible for me to describe the whole of Macintyre’s
mathematical output of research papers in the space available, I have selected topics
on two bases—(i) those in which he made the more significant advances, (ii) those
in which exceptionally neat methods were used—(i) and (ii) being naturally not
mutually exclusive classes.

As a classical analyst, Macintyre considered a diversity of problems, throughout
many of which, however, runs a strong thread, viz., his keen interest in overconverg-
ence. Amongst his 43 papers, often grown from seed sown in his Ph.D. thesis, one
finds such topics as asymptotic paths, the flat regions of meromorphic functions,
interpolation problems based on the Laplace transform and other formulae for
regular functions, Tauberian theorems in connection with certain canonical products,
and numerous problems, many published jointly with R. Wilson, in the theory of

0
the singularities of f(z) = Y ¢,z" on the circle of convergence.
n=0

In what follows, references are given to two lists which appear at the end of this
essay. The first is a list of Macintyre’s publications, references to which are preceded
by the letter M.

3. Asymptotic paths
An early example of Macintyre’s elegant methods is his proof [M3], by means
of a theorem due to Grotzsch [12; 367-9, Lemma 1] on conformal transformations,
of the following theorem of Ahlfors [1(a), 1(b)], which generalised Denjoy’s result+

t As well as some given by Collingwood and Valiron in [9].
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ARCHIBALD JAMES MACINTYRE 371

[10] that an integral function of finite order p cannot have more than 2p asymptotic
paths: If £(z) is an integral function bounded on » continuous curves which divide

the plane into n unbounded simply connected domains in each of which f(z) is
unbounded, then lim r~*logM(r) =0, (M(r) = max £ @I).

rfo

4. Flat regions
4.1. A significant part of Macintyre’s work concerns the so-called flat regions
of integral and meromorphic functions f(z). J. M. Whittaker, who published
[25(a), 25(b)] important theorems on the subject, had defined R as a flat region if

H™' < {log|f(z)}/{log|f(z2)l} <H Vzy,z;€R @4.1)
(H > 1 constant).

Macintyre obtained more general and/or sharper results of this nature in three
ways.

(i) A sharp form of Schottky’s theorem, due to Ostrowski [18(a), 85, Th. V*],
shows that, if p(z) (# 0, 1) is regular in |z] < s, then it is flat in |z] < 0s (0 < 3}) if
|p(0)] is large enough. In [MS5] Macintyre gave a new proof of a sharper version
of Whittaker’s results, for functions meromorphic and of finite order in the plane,
with deficient poles, by dissecting the complex plane into curvilinear quadrilaterals
and showing that Ostrowski’s theorem could be applied over a suitable selection of
these quadrilaterals.

(ii) From the Nevanlinna formula (4.2) below, Macintyre [M9] and Macintyre
and Wilson [M15] obtained the inequalitiest

log|f(z)| > — KT (kr),

logf(z) < Kr~9T(kr)}¥ (4.1a,4.1b)

valid over |z| < r, z¢ N, with k > 1, g (an integer) > 1, where f(z) is meromorphic
over |z| < kr, T denotes the Nevanlinna characteristic and N a neighbourhood of
the zeros and poles of f(z). The formula [8(g), 9; 17(a), 4]

2n
log /(@) = iC+ 5 [ log1/(Re)l g(Re', )8
0 4.2
+ Z h(z’ R, am)— ER h(Z, R, bn)
lb'll <

18m| <R

where g ="(Re'?+2)/(Re'?~z) and h(z, R, ¢,) = log {R(z—¢,)/(R*~ ,z)}, shows that
M

the essential problem was to find good bounds for |p(z)| where p(z) = TT (z—c,),
s=1

t For integral functions of finite order Boutroux {5] had given complicated proofs of several
cases of (4.1) and M. L. Cartwright [8(g), 72-77] gives a proof of (4.14) starting with the Hadamard
product. References and further similar theorems are given in [8(a); 8(d), p. 162; 8(e); 8(¢), p. 92].
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372 ARCHIBALD JAMES MACINTYRE

d?log p(z)
dz?
For |p(2)] Cartan’s lemma [4, 46-47; 8(g), 75-77] was already to hand. For the

other Macintyre and Fuchs had just obtained [M12] what was needed. I note in

passing that (a) if N is measured areally in comparison with C, results sharper than

(4.1b) are found, and (b) (4.1b) had to be weakened when g = 1 if the relative

measure is linear, unless} as a result of ingenious work by Macintyre and Fuchs

[M12], z is restricted to lie on a radius argz = a constant.

Inequalities analogous to (4.1ab) for functions meromorphic in an angle were
similarly proved in M15, and flat region results followed in both cases by integrating

(4.1b) when g = 1.

and for , with N as small as possiblef in comparison with C = |z| < r.

(iii) In a third approach to « flat region” problems Macintyre investigates [M8$]
the extent of the regions in which an integral function f(z) remains large in the
neighbourhood of a point z = re®® at which |f(z)| takes its maximum value M(r).
Complicated work by Wiman on comparison of power series had resulted in theorems
which led Macintyre to conclude that ¢(T) = e~ ¥T f(zeT)/ f(2) is practically constant
for such z, with the choice N = zf'(z)/f(z), and he uses ¢(T) to obtain not only
« flat region ” results§ [M8], but also [M7] the simplest proof then known, and new
generalisations, of Bloch’s theoremf.

5. Laplace’s transformation and integral functions
This is the title of an important paper [M10] which not only gave (I) new proofs
and extensions of theorems of M. L. Cartwright [8(f)] and other interpolation
results, but also was to lead to (II) new results in the theory of singularities on the
circle of convergence of power series. Here I deal only with (I). In §6 below appears
an account of (II).
M. L. Cartwright had used the Lagrange interpolation formula and the Phragmén-

0
Lindelsf principle to prove that, if F(z) = 3 a,z" is an integral function satisfying
0

|F(z)| < Me*¥! with © < =, then (i) |F(x)| < K(t) 4 for all real x and an explicit||
K@), if [Fn)l <A (n=0,1,2,..), and (ii) F(x) >0 as x> +o0 if Fn)>0
as n—-o (n=1,2,..). Following Pélya’s well-known article [19(a)] on gaps

t N consists of * small ” circles centred at the c,, of course.

1 Vitally important re §6 below.

§ Which considerably sharpened the best results [24(b)] then known in this direction.

91 [11; 266, 523].

|| In M34 Liu and Macintyre improve upon previous estimates of K(r) by using S. Bernstein’s
theorem [4, 206] that |F'(x)] € Mt when |F(x)| < M for all real x. In M33 Macintyre and Shah
use Nevanlinna theory to obtain an analogue of Bernstein’s theorem for meromorphic functions
satisfying similar relations.
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ARCHIBALD JAMES MACINTYRE 373

and singularities of power series, Macintyre [M10] used the Borel-Laplace transform

F@) =5 [ £ Q 6.1

with a suitable contour C and f({) = f‘, a,n!'{™""1, and showed how to replace f({)
0

by a second associated function

VO = £FO1 3, F(xn)e™ (220 > )

so that (5.1) is in fact an interpolation formula. Term by term integration gave

F@)= lim _L § sin w(z—n)

~d|n|
-0 T-w (z—n) F(me

if im | F(+n)|'"< 1, 1< @ <2n—1, from which a whole family of interpola-

n= o
tion results, as well as (i) and (ii) above, followed.
The method is applied also to obtain analogous resultst for any order p, as
well as for functions regular only in an angle, so giving a new proof of Cartwright’s
analogues to (i) and (ii) above [8(c); 8(f), Th. 10].

6. The coefficient theory of the Taylor seriesi

6.1. It was at Swansea in October 1930 that Macintyre first met Wilson and
started an association which was to last throughout his life. Dienes, then at
Birkbeck College, London, had only recently left Swansea, where fruitful discussions
with Wilson about the manuscript for his book [11] on the Taylor series, which was
to appear in 1931, had already inculcated in Wilson a strong interest in the subject,
which was soon to inspire Macintyre also. The first joint paper [M2] by Macintyre
and Wilson, however, was concerned with interpolatory function theory, dealing
with the order of a meromorphic function interpolated at a sequence of complex
points z, thus generalising a result of Mursi and Winn [16] for the case of an integral
function with the z real.

6.2. For the discussion of the coefficient theory I assume that |z] = 1 is the circle
a0

of convergence of f(z) = X c,z" and, for the first set of results, that there is only
n=0

one singularity S, viz., an isolated essential point at z = 1. Wilson had conjec-
tured that lim ¢, ,,/c,, = 1 where {n'} is a sequence of n of density 1. This was

nl =00

proved [26] when S is of finite exponential order by J. M. Whittaker and Wilson,

t Using f(Q) = %‘f 4, T(o4+n0) {~"-1, o =1/p. Compare [2]. Results in 18(6) are more

simply obtained, and are extended.

1 [3] gives a comprehensive account of developments in this theory up to 1955. §6 here is a
summary of a detailed survey kindly prepared for me by Professor Wilson.
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374 ARCHIBALD JAMES MACINTYRE

using some techniques from a paper of Whittaker’s [25(a)] on the flat regions (see
§4 above) of integral functions.

It was Macintyre who perceived that the connection between the two papers
was not only formal but also fundamental. In simple terms, where an integral
function is “large” it is also “flat”. More precisely, if G(z) is the function
approximately interpolating the c,, so that ¢, = G(n)+c,*, where Iim |c,*|'" < 1,

n—w
and G(z) is an integral function of at most order 1, minimum type [19(b); 744],
then along any radius

log|G(2)l > —vlzl, IG'(2)/G(2) <& (2| =7) (6.1a, 6.1b)

for a set of r of linear density 1, where y and ¢ are any positive numberst.
From (6.1) it easily follows when the isolated essential singularity S at z =1
is unrestricted that

leol > €7, lepsifca—1] <& (6.2a, 6.2b)

for a common sequence of n of density .1.

Inequalities of the form (6.2a) had already been given by Pélya, valid for a
sequence of n of upper density, maximal density, or density} equal to unity, according
to the nature of more specialised S which he had defined.§ The theorems of M15,
discussed in §4 above, enabled Macintyre and Wilson [M14] to obtain analogous
results concerning the sequence for which (6.2b) holdsY for each S.

M14 also contains a definition, due to Macintyre, of the virtually isolated singu-
larity and a proof that (6.2a, 6.2b) hold in this case for a sequence of n of density 1.
An error, however, not easily ascertainable [see M31; 3] occurred in the authors’
proof. It was to be nearly twenty years before Macintyre, in a brilliant paper [M31]
based on an application of Bourion’s theory of over-convergence applied to the
special properties of the singularity concerned, demonstrated the correctness of the
theorem stated.

6.3. So far attention has been confined to the case of a single singularity on the
circle of convergence. In [M13] Macintyre and Wilson showed that, if there are
k singularities, the density (or lower density) of the small coefficients, i.e., the c,
which satisfy |c,| < e™" (y > 0), is zero unless all the singularities are of the same
kind and placed at the vertices of a regular polygon, in which case]| the density is
(k—1/k. More complete results are given when k = 2; when k > 2, a different
method, founded on arguments in a Whittaker-Wilson paper [26]—M14 had not

+ (6.1ab) are of course special cases of (4.1ab). It is here that footnote } of §4 applies.

1 See [3, 13] or [19 (@)] for definitions of these densities.

§ Almost isolated (a.i.); easily approachable or approachable; and a.i. of finite exponential order,
respectively. .

91 See [3, 66-78).

|| The problem was further explored by Ponting [20]. See also (3, 81-2].
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ARCHIBALD JAMES MACINTYRE 375

then been written—restricted the discussion to isolated essential points of finite
exponential order.

6.4. Two further interesting joint papers [M17, M25] by Macintyre and
Wilson deserve mention in connection with the coefficient theory. Both are based
on M10. In M17 a conjecture of Wilson’s is proved and developed, concerning the
close relationship between the orders, types and directions of strongest growth of

¥(z), F(z), G@2), z~'f(z™"), where Y(2) = Z:F(n)z" = G[1/(1-2)] with G(z) an

integral function and f(z) the Laplace transform of F(z). Wilson considerably
sharpened some of the results later.}

In M25 novel Laplace transform techniques and operational methods, together
with Wright’s theory of the generalised Bessel function [28], were used to determine
the asymptotic form of the ¢, arising from singularities like exp P[1/(1 —z)], where
P(2) is a polynomial, and from related singularities. In the introduction Macintyre
sketched an elegant theory which provided the basis required.

6.5. A comprehensive research tract proposed by Macintyre on the coefficient
theory, containing the above results together with later work on the isolable singu-
larity of P6lya [19(b)] and on Hadamard multiplication of singularities (extending
19(b), Th. VIII), had been in preparation by Macintyre and Wilson for some time,
but, although several chapters were finished, the rest of the tract was only in draft
form at the time of Macintyre’s death.

7. Tauberian theorems
7.1. It was in this field that Macintyre suggested that I should start my research
for the Ph.D. degree. The initial problem, first discussed by Valiron [24(a), 237]
and later by Titchmarsh [23], both of whom gave real variable solutions of consider-
able length, was to obtain the relation n(r) ~ Kr* 0 < K < 0,0<p<1,r— o)
for the number of zeros in |z| = r of an integral function f(z) of genus 0, all of whose
zeros are negative, given that, with z = x > 0,

logf(z) ~ Knz cosecnp  (|z] = o0). (.1

Under Macintyre’s hand was evolved a proof [6] based on function theory
methods,} which is not only much simpler but also allows reductions in the
hypotheses. Using Montel’s limit theorem we show§ that (7.1) holds uniformly
in the sector S: [argz| € m—4J, and obtain an elementary Tauberian problem by
taking the imaginary parts for (> 0) small.

Trivial modifications give the corresponding result when f(z) is of genus p, with
p < p <p+1, and Valiron’s theorem is thus completely proved.

t e.g. [27). See also [3, 18].
{ Heins [14] gave a similar proof about the same time.
{[4, 57] gives details of the first step but the method thereafter differs from ours [6].
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376 ARCHIBALD JAMES MACINTYRE

The main relaxations which we found possible in the hypotheses are of two
kinds (A), (B). (A) The path to infinity in (7.1) may be taken, as Montel’s theorem
allows, to be any continuous path P to infinityt in S, and P may itself be replaced
by a discrete sequence (z,) such that |z,| - o0 and z,,,,/z, = 1 oreven (i) |z,4,/2,| = 1.
The proof under the assumption (i) follows from M27, where we obtained, from a
lemma due to J. M. Whittaker [25(c); 57], new proofs of Vitali’s convergence
theorem, Blaschké’s theorem [15; 181] and Montel’s theorem, and, from a lemma
due to Hall [13], a Montel analogue in which the z, tend to the boundary of the
region concerned. (B) (7.1) may be replaced [M22] by its real parts for argz =«
(constant, |¢| < n—3J) with certain side conditions, and with z = z, satisfying (i)}.
The result was obtained for any non-integral order p.

For p < % Titchmarsh [4, 59; 23, 195] had obtained the result also when « = ,
i.e., the path in (7.1) runs along the line of zeros of f(z). We gave a new proof
valid for all non-integral p < 3.

7.2. In our remaining paper [M21] concerning these canonical products, we
showed that Valiron’s theorem is a limiting case of an oscillation theorem, i.e., that
0<!< im x™logf(x) < L< oo implies

X

0<¢( L)< fim n~7q, < ®(, L) < 0, (the —a, are the zeros of £ (2)),
n-»ow
where ®/¢ is arbitrarily near unity when L/l is sufficiently near unity. The proof
follows as before, with the use, suggested by Macintyre, of Nevanlinna’s two constant
theorem§ in place of Montel’s theorem.

8. The two Macintyres »

8.1. As far as I can discover, only one paper [M24] was prepared jointly by
Macintyre and his wife, Sheila Scott Macintyre. Sheila, herself a classical analyst,
had numerous research publications to her credit, especially on the Whittaker con-
stant (defined in 4; 173) and on interpolation series of various kinds for integral
functions. The object of the Macintyre’s paper is to investigate conditions under

which the Abel series Y = iz(z-n)"‘1 F®(n)/n! (i) converges, (ii) is asymptotically
0

equivalent to F(z) in 2(z)> 0, when F(z) is regular for |argz] < #m, where
|F(re'®)| < Kr=?e®® with K > 0, y real, and b(f) the supporting function of a
certain convex set. (i) follows at once from the Cauchy integral for F™(n), but
(ii) required the use of the inverse Laplace transform (5.1) with a suitable C, to
which Schmidli’s method [21] of expanding e* in powers of {e*, followed by term
by term integration, is applied.

1 In fact, from [8(b)], a set of interpolation points of positive linear density suffices.
1 [8(c)] contains inter alia a discussion of the case in which p = 1.
§ [17(b), 411.
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8.2. Macintyre (alone) used this transform again in M28. Here F(z) is an
integral function of exponential type, f({) is replaced by E‘,v,,({) T, (F), and an
expansion for F(z) is obtained on integration. Buck [7] h:d obtained a similar
expansion by writing e* as %u,,(z) £,(0) and integrating. While Buck’s method is

the more powerful in dealing with Abel’s series, Macintyre’s applies to some series,
e.g., the Lidstone and Whittaker two-point and (iii) the analogous Poritsky and
Gontcharoff n-point series, which do not appear in Buck’s analysis.

The basis of this paper is the close relationt among the functions

S = EFO@

for different o. As we know, (iii) are determined by the values of F™(x,) for some
n and p. Macintyre expresses this information in terms of the f({, a,), deduces
f(©) via a simple functional equation, and F(z) via (5.1).

The ideas involved are deeply developed, the method is modified so as to obtain
analogous interpolation series for integral functions of any order (thus solving
explicitly a problem for which Pélya had obtained [19(c)] an existence theorem),
and the paper ends with a proof that summability properties of certain special series
display a consistency not always exhibited by the convergence properties.

9. Gap power series
9.1. In the early 1950’s Macintyre considered [M23] the question as to whether
the existence of asymptotic paths of integral functions F(z) can or cannot be excluded

by a knowledge of the sequence of integers {4,} alone, where F(z) = § Cp 2t
n=0

(0 < 4, to0). Pélya had proved [19(a); 636-9] that, if (i) 4, ~ nloglogn, then
there exists an F(z) which tends to zero as z = x(> 0) » co. Macintyre shows how
to construct a function with as thin a {4,} as possible, with the aid of which he replaces

(i) by the more general “ﬁ‘, 1,1 = 0. If, also, the sequence {i,/n} is bounded,
n=0

the F(z) constructed is of finite order. As is pointed out, two converse results are
suggested, viz., that asymptotic paths are excluded by (Case I) convergence of

o0
> 4,71, (Case II) 4,/n - oo with F(z) of finite order. References are given to a
n=0

method which would prove Case I for radial paths, and to a proof of Case II by
Pélya [19(a); 631, Th. IX], who here raised the question as to whether the relation
lim {logm(r)/log M(r)} = 1 holds. Macintyre [M23] obtains the result, which
r—+ow

clearly excludes the possibility of asymptotic paths and so offers an alternative
(somewhat simpler) proof of Case II than Pélya’s, that, in this case, to each ¢ > 0,

t Compare [19(a), 590(b)].
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there are arbitrarily large R such that {log|F(z)|/log M(R)} > 1—¢ for all z on a
certain continuous curve enclosing the origin and confined to the annulus
R(1—¢) < |z|] < R. The proof of this theorem is an ingenious elaboration of methods
due to Pélya [19(a)] and Sunyer Balaguer [22].

9.2. The early 1950s also saw the arrival in Aberdeen of Paul Erdés for a short
stay as Research Fellow in the Department of Mathematics at King’s College. One
of the consequences was a joint paper [M26] on gap series. Pdlya had shown
[19(a), 640] that im m(r)/M(r) = im p()/M@) =1, (u@r) = rlnlaxlc,,z‘"l), from

r- oo r—=o =r

z

k
lim {log (A,4+;—4,)}/logd, > 3. Let 3 (A, k) denote I (A,+,—A,) " for positive
n=0

n—oo
integral h, k. In M26 Pdlya’s results are (i) obtained under the weaker condition
Y (1, ) < oo, (ii) modified under a variety of hypotheses on ¥’ (A, k). The proofs
depend largely upon showing that the gap series concerned are (sometimes) domin-
ated by the maximum term, or upon constructing gap series which have this property.

9.3. In 1959 Macintyre returned [M32] to problems concerning gap series and,
for example, by setting ¢, = G(n) with G(z) an appropriate integral function, demon-
strated that, if (a) F(z) is holomorphic throughout a simply connected schlicht
domain D which contains |z] = 1, (b) H is a closed subset of D,

(C) An+1/'1n > A(D! H) > l’
then the series is overconvergent throughout H. The proofs, given for two cases,
viz., when D is the whole plane cut from z =1 to z = oo, and when D is one of a

family of domains bounded by certain logarithmic spirals, admit some weakening
of the hypotheses.

10. Conclusion

In this essay I have tried to depict what I consider to be the highlights of
Macintyre’s mathematical output. One thread, in particular, runs throughout his
work, viz., his strong interest in overconvergence, as is seen in M1, M31, M32, M35
and in the research tract (§6 above). In connection with the coefficient theory he
used Bourion’s theory of overconvergence brilliantly to deal with difficult cases,
viz., (i) of the isolable singularity [19(b)] (in the tract) and (ii) of the virtually isolated
singularity [M31, defined in M14].

As one would expect, the germs of his earlier work are to be found in his Ph.D.
thesis, while his later publications, several written in conjunction with his research
students at Cincinnati, are often developments of earlier work.

It has, of course, not been possible to describe here the whole of Macintyre’s
output, but when one considers also the great variety of topics discussed in his
remaining publications not mentioned above, I think that all will agree what a great
debt mathematics owes, and will owe, to the fertility of Macintyre’s mind.

May I offer my sincere thanks to all those who have helped me in any way to
prepare this essay in its present form, in particular to the Registrars of Swansea

d '€ '696T '02TZ69YT

wouy

IPUOD PU. SR L 3L 89S *[520Z/0T/0€] U0 ARiq118UIIUO K31 ‘20UB|[20XT 8180 PUE LRESH J0JaImiisu| UOTEN ‘3DIN Ad 89€'E T/SWIA/ZTTT OT/I0PALIOD" A N

ol

96LBOI"] SUOLILID BAEBI) BIGEO1IAdE DU} AQ POLIBAC 3.8 SIDILE WO ‘360 J0 I[N 10§ AIRIGIT SUIIUO /31 UO (SUORIPLC-p



ARCHIBALD JAMES MACINTYRE 379

University College and of Sheffield University and Mr. W. S. Angus, the former
Secretary of Aberdeen University for biographical details, to H. S. A. Potter,
G. E. H. Reuter, J. M. Whittaker and especially H. Shankar and R. Wilson for
assistance in various ways concerning the mathematical content ?

Ml.

Ma.
M4.
MsS.
M6.
M7.
MS.
M9.
M10.
Mi1.
Mi12.
Mi13.

Mi4.

M15

by

Mi16.

M17.

Mi18.
M19.

List of publications by A. J. Macintyre
*Un théoréme sur I'ultraconvergence ”, C. R. Acad. Sci. Paris, 199 (1934), 598-599.

. * On the order of interpolated integral functions and of meromorphic functions with given

poles ”* (with R. Wilson), Quart. J. Math. Oxford Ser., 5 (1934), 211-220.

* On the asymptotic paths of integral functions of finite order », J. London Math. Soc., 10
(1934), 34-39.

“ Elementary proof of theorems of Cauchy and Mayer *, Proc. Edinburgh Math. Soc. (2), 4
(1934-36), 112-117.

“ A theorem concerning meromorphic functions of finite order ', Proc. London Math. Soc.
(2), 39 (1935), 282-294.

“Two theorems on Schlicht functions ”, J. London Math. Soc., 11 (1936), 7-11.

“ On Bloch’s theorem ”, Math. Z., 44 (1938), 536-540.

“ Wiman’s method and the flat regions of integral functions *’, Quart. J. Math. Oxford Ser.,
9 (1938), 81-88.
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Ser., 9 (1938), 182-184.

“ Laplace’s transformation and integral functions ”, Proc. London Math. Soc. (2), 45 (1939),
1-20.
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220-229.
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“ Some elementary inequalities in function theory ” (with W. W. Rogosmskl), Edinburgh
Math. Soc. Notes, 35 (1945), 1-3.

* Associated intergral functions and singular points of power series” (with R. Wilson),
J. London Math. Soc., 22 (1947), 298-304.
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* Euler's limit for e* and the exponential series *, Edinburgh Math. Soc. Notes, 37 (1949),
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. “ Some theorems on integral functions with negative zeros” (with N. A. Bowen), Trans.
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202-209.
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