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ERIC CHARLES MILNER

Eric Charles Milner was born on 17 May 1928 and brought up in London. His
father was an engineer, but times were hard and work was often difficult to obtain.
So his mother had to help out by working as a seamstress, and Eric was often looked
after by his grandmother. At the age of 11, he won a scholarship to the Haberdashers’
Aske’s Boys’ School, but never attended it in its permanent London buildings because
the outbreak of the Second World War caused all London schools and their pupils
to be evacuated to safer parts of the country. As a result, Eric, an only child and
knowing none of his new schoolfellows, was billeted at a home near Reading where
he was extremely unhappy. In despair, he ran away and returned to London, where,
after unsuccessful attempts to find him another billet, he roamed the streets and
missed school. After some time, he was eventually found another billet where he
received kindness and was much happier. Despite these disruptions and the other
inevitable shortcomings of a war-time education, Eric’s intelligence more than
sufficed to surmount such hurdles, and in later life he could speak and write better
than most of us.

From 1946 to 1951, Eric attended King’s College, London. He graduated with
First Class Honours in 1949, when he was awarded the Drew Gold Medal as the most
distinguished Mathematics student in that year, and a Research Studentship. He then
studied for an MSc degree, taking ‘ Modern algebra’ and ‘ Quantum mechanics (Wave
mechanics)’ as his selected subjects, his supervisors being Richard Rado (then a
Reader at King’s College) and Professor Charles Coulson. He received the MSc
degree, with distinction, in 1950. This was followed by a year’s research in quantum
mechanics under the supervision of Professor Coulson.

Those who knew Eric only as a mature fellow-mathematician (and perhaps even
worked closely with him) may not have realised what a many-sided person he was. A
colleague has described him as ‘a remarkable mixture of Cockney street smartness,
wild adventurer and uncompromising mathematician’. He had considerable business
acumen, and was also very athletic: he was a featherweight boxer for the University
of London around 1947, and took immediately to skiing when he was nearly forty.
In his early youth, he did not contemplate an academic career: nothing in his family
background would have suggested such a possibility. At that time, National Service
was compulsory in Britain, and Eric applied to join the Royal Navy, in which his
academic record would normally have secured a commission and in which he might
well have made his career. He was disappointed to be rejected for the Navy because
he was found to be somewhat deaf, a fact which had not previously been noticed.
Joining the Army did not appeal to him; but service in other Commonwealth
countries was a permitted alternative. Possibly his deafness could have secured
exemption from any form of National Service, but the foregoing circumstances and
an adventurous spirit may explain a decision to go to Malaya in 1951 to work as a
tin assayer for the Straits Trading Company, a tin mining and smelting company.
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92 ERIC CHARLES MILNER

At this time, Professor (later Sir) Alexander Oppenheim was Professor of
Mathematics at the University of Malaya in Singapore. Having survived im-
prisonment during the Japanese occupation, Oppenheim now had the resources to
build up a good Mathematics Department with a well-stocked library. However,
available mathematicians were very hard to find. Richard Guy, himself a recent
recruit to Oppenheim’s department, met Eric socially in late 1951, and managed (with
some effort) to persuade him to abandon his recently chosen way of life and join the
department.

In 1954, Eric married Esther Stella Lawton (known as Estelle), whom he had
known as a fellow-student in London and who now joined him in Singapore.

The Mathematics Department in Singapore was small and geographically some-
what isolated, but Oppenheim was able to arrange visits by a substantial number of
notable mathematicians. Several visits by Paul Erdds, with his habit of disseminating
interesting problems, probably stimulated Eric’s interest in combinatorial set
theory and had a decisive influence on his development as a mathematician.

In 1957, Oppenheim became Vice-Chancellor of the University of Malaya, leaving
Richard Guy as Acting Head of the Mathematics Department during a lengthy
interregnum. Rado had meanwhile become Professor of Mathematics at the
University of Reading, and (at Erdos’ suggestion) Eric spent a sabbatical leave there
in 1958-59, working with Rado in combinatorial set theory. By the time Eric returned
to Singapore, conditions there seemed to be deteriorating, possibly for economic
reasons, and the Milners now had a child (Suzanne, born in June 1958). For these
as well as mathematical reasons, a return to England seemed increasingly desirable.
Fortunately, Rado was able to offer him a Lectureship at Reading (and was probably
only too keen to do so, since British universities had difficulty in recruiting enough
well-qualified Mathematics staff around that time). Eric took up this appointment in
January 1961. He immediately began work on a PhD thesis ‘Some combinatorial
problems in set theory’, which he submitted as an external student to the University
of London towards the end of 1962. He apparently had no formally appointed PhD
supervisor, but in practice Rado seems to have fully assumed this role. Eric was
awarded the PhD degree in 1963, his examiners (Richard Rado and Roy Davies)
being clearly in agreement that his thesis was ‘of an exceptionally high standard’.

Eric’s selection of his major research field was an extremely gradual process,
and his research perhaps only gained momentum after his move to Reading in
1961 provided a second opportunity to work with Rado. However, his productivity
thereafter more than compensated for a very slow start. His interest and activity in
combinatorial set theory were reinforced by meeting the Hungarian mathematician
Andras Hajnal, who proved to be a kindred spirit, in 1958. Later collaborations with
many other mathematicians also proved very fruitful, as evidenced by the list of
publications below. At the same time, he gave full attention to teaching, to which he
clearly attached great importance even when the subject matter was remote from his
research interests. [ have been told that his undergraduate lectures were very clear and
stimulating, beautifully presented and, indeed, inspiring.

Despite these merits, promotion was hard to come by in England. Meanwhile,
Richard Guy and Peter Lancaster (another of Eric’s former colleagues in Singapore)
had moved to the University of Calgary, in Canada, where Guy became Head of
Department, whilst Oppenheim retired in 1965 from the Vice-Chancellorship of what
was now the University of Malaysia and became Visiting Professor at Reading for
the next three years. Eric’s former colleagues were keen to tempt him to Calgary,
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OBITUARY 93

and in 1967 (with Oppenheim’s encouragement) he accepted a Professorship there,
approximately doubling his income, which must have significantly helped in
supporting a family now containing his daughter Suzanne and three sons, Mark, Paul
and Simon.

By now a distinguished mathematician with a growing international reputation,
Eric spent the rest of his life in Calgary, apart from leaves of absence. He became a
Canadian citizen in 1973. He bore his full share of administrative responsibilities at
Calgary, including four years (1976-80) as Head of Department. He supervised six
PhD students, Scott Niven (1968-70), S. P. Pethe (1970-71), Eva Nosal (1971-75),
W. Lenihan (1972-74), Jean-Michel Brochet (1986-88) and Li Bo-Yu (1990-92), and
several MSc students. He was in frequent demand as an invited lecturer at seminars
and conferences all over the world. In particular, he was a Plenary Session speaker
at the International Congress of Mathematicians in Vancouver in 1974, and was
the Canadian Mathematical Society’s Jeffery-Williams Lecturer in 1989. Further
recognition included election as a Fellow of the Royal Society of Canada in 1976.
Professional responsibilities outside his own University included being Problems
Editor for the Canadian Mathematical Bulletin, Chairman of the National Research
Council Mathematics Grants Committee in 197475, Convener of the Mathematics
Section of the Royal Society of Canada for four years (1977-81), Chairman of its
New Fellows Committee (Mathematics) for three years (1978-81), and Director on
three occasions of Canadian Mathematical Congress Summer Research Institutes.

Eric held visiting appointments at the University of Cambridge (1971-72), the
University of Tel Aviv (1972, 1979 and 1986), Merton College, Oxford (1978-79), the
University of Singapore (1981 and 1984) and the Université Claude Bernard (Lyon I)
(1984 and 1985-86). Notable evidence of his standing was the steady stream of
distinguished visitors who came to work with him at Calgary, including Paul Erdos.

Sadly, Estelle (who had been working for a PhD in the English Department
at Calgary) died of cancer in February 1975. In July 1979, Eric married Elizabeth
Forsyth Borthwick, a school teacher who had formerly taught Innuit children
within the Arctic Circle. Their son Robert was born in January 1985.

In addition to demanding professional duties and prolific research, both
performed to the highest standards, Eric found time and energy for much else, and
enjoyed life to the full. He made two very happy marriages, and his family occupied
a great deal of his attention. He was also a devoted son to his mother, who outlived
him. People tell with particular warmth of the welcome and hospitality extended
to numerous guests in the Milner household (during both of his marriages). His
recreations included rugger, tennis, squash, dancing, chess, Go and other board and
card games, sailing, mountain walking and ski-trekking. He derived much enjoyment
from mountains and, for a number of years, owned an A-frame wooden weekend
cottage in Canmore, near Banff, Alberta.

Clearly, Eric did not let partial deafness (affecting the left ear more severely than
the right) stand in the way of a very full life, and indeed I knew him for several years
before becoming aware of this problem; but I am told that he sometimes failed to hear
questions asked by students in class. He underwent surgery on one ear in 1968, and
soon afterwards on the other, which may have helped to some extent.

Eric retired in 1996 with the title of Emeritus Professor. His many friends were
devastated when he died on 20 July of the following year, at the relatively early age
of 69, after a lengthy battle with cancer, faced calmly but realistically. He will be
remembered for outstanding contributions to research and teaching, but particularly,
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94 ERIC CHARLES MILNER

among those closest to him, as a gentle, caring and exceptionally nice man. Readers
may wish to know of the Eric Milner Scholarship Fund, which has been established
by the University of Calgary to endow a scholarship in his memory: contributions can
be sent to the Development Office, The University of Calgary, Calgary, Alberta,
Canada T2N 1N4.

Mathematical work

As already mentioned, the main theme of Eric Milner’s research was combinatorial
set theory, that is, the study of problems with a combinatorial flavour concerning
(mainly infinite) sets. Within this broad area, his work on a wide variety of
challenging problems shows something of the adventurous spirit which characterised
his approach to life in general. Much of his work was done in collaboration with
others, and probably discussion with other mathematicians often provided the imp-
etus towards particular lines of investigation. The following is an attempt to convey
something of the flavour of the work of Milner and his collaborators by means of
examples.

An early product of Milner’s collaboration with Rado was their joint paper [5]
on ‘The pigeon-hole principle for ordinal numbers’. Dirichlet’s pigeon-hole principle
states that if a finite set of cardinality n is partitioned into fewer than n subsets,
then at least one of these subsets has more than one element. This may not seem a
particularly profound truth. It is scarcely harder to notice that, more generally,
partitioning a finite set of cardinality at least n,+n,+...+n,—k+1 into subsets
Ay, ..., A, must give |4,] = n, for some i. However, Milner and Rado noticed that
replacing positive integers by ordinal numbers in this innocent remark leads to a non-
trivial and interesting problem. In other words, if k is an ordinal and «, is an ordinal
for each xk < k, what is the least ordinal o such that partitioning a well-ordered set of
order type « into sets A, (x < k) must result in tp 4, > o, being true for at least one
K (where ‘tp’ means ‘the order type of’)? In [S], Milner and Rado obtain an explicit
answer when £ is finite, an explicit answer when all the o_are equal, and an algorithm
in the general case which yields the least a after a finite number of well-defined steps.

Erd6s and Rado {10) pointed out that, more generally, the subject of ‘partition
calculus’ might be regarded as studying extensions of Dirichlet’s pigeon-hole
principle which are certainly far from trivial. F. P. Ramsey’s famous theorem states
that if r, s are positive integers, 4 is a countably infinite set, [4]" is the set of all
r-subsets of 4 and [A]" is partitioned into s subsets, then one of these subsets contains
[B]" for some infinite B < A. More picturesquely: ‘if the r-subsets of a countably
infinite set 4 are coloured with s colours, then there will necessarily be a infinite subset
B of A4 whose r-subsets are coloured monochromatically’. In the ‘partition calculus’
notation introduced by Erd6s and Rado {9), this could be expressed more concisely
as Ny = (8, Ry, ..., N,)", where ¥, appears s times between the brackets, or still more
concisely as 8, — (X,).. In general, if a, o, a,, ..., o, n are cardinal numbers, then
o0 — (06, %y, ..., )" means ‘if 4 is an o-set and the set [A]" of all n-subsets of 4 is
partitioned into subsets ,, ,, ...,%,, then for some ie{l,...,s}, there will exist an
o,;-subset B of A4 such that [B]" < %,’. This notation is abbreviated to oo — (f)? if
o, = o, = ... = o, = . The notations a0 — (o, %, ..., &))" and a — (f)? can be similarly
defined when o, «,, a,, ..., o, f are ordinals or, more generally, order types: in this
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OBITUARY 95

case, we take 4 to be an ordered set of order type «. Thus, in [5], Milner and Rado
were investigating the least ordinal « satisfying a condition which, in partition
calculus notation, might be written as ot — (o, o, ...)", where o, &,, ... is deemed to
be a transfinite sequence of length k, or as o — (o _; xc < k).

Given the influence of Erdds, Hajnal and Rado, it is not surprising that partition
calculus features substantially in Milner’s work. His paper [19] brings considerable
technical ingenuity to bear in proving partition calculus results concerning countable
ordinals, mostly of the form w*h+m — (n, 0’ + p)? or w*h+m+ (n, w*+ p)?, where h,
m, n, p denote non-negative integers and o, f denote countable ordinals, and of course
X+ Y denotes the negation of a statement X — Y. For example, he proved that
w* — (3,w*)%. A further result of this sort was proved by Erdds and Milner in [30],
namely, that ™" — (2", w'*")?if h < w and v < w,. In {10), Erdos and Rado proved
that w — (w+k, 4) if k is a non-negative integer and  is a ‘real’ order type, that is,
the type of an uncountable ordered set containing no subset of type w, or w, reversed.
In [61] and [69], respectively, Milner and Prikry proved that w, — (w+k, 4)® for any
non-negative integer k, and that w, — (w2+1,4)* observing also that the truth or
falsity of many similar statements remains unsettled. Their proofs used a somewhat
surprising idea from axiomatic set theory attributed to Baumgartner and Hajnal {3>.
This involves observing that statements of a certain kind (namely statements which
are ‘absolute with respect to countable chain condition forcing extensions’) are
automatically true in ‘ordinary’ set theory (Zermelo—Fraenkel set theory with the
Axiom of Choice) if they are true in a suitable model of set theory which may in-
corporate additional assumptions. Thus, in [61], Milner and Prikry first proved that
w, = (w+k, 4) for every non-negative integer k if Martin’s Axiom MA,, is true, and
then used the idea from (3) to show that the additional assumption MA,, can be
discarded. In [69], they proved that w, — (w2 +1, 4)® if MA,, and o, - (0,, 02+ 1)
are both true, and then used the same device to discard these two additional
assumptions.

In addition to producing numerous papers himself, Milner was unusually diligent
in reading those of others. Proving that w®— (w”,3)* became recognised as a
particularly challenging problem in the partition calculus, and the proof eventually
obtained by Chang <6) was an impressive tour de force. Milner had the stamina to
read this long and difficult proof, and saw how it could be generalised to prove that
w® — (w®, n)? for every positive integer n. (He was much impressed when J. A. Larson
{12 subsequently found a much shorter proof of this.)

Erd6s and Rado <10} introduced an extension of the partition calculus in which
we replace the above set (or ordered set) A by a Cartesian product 4 x B of two sets
(or ordered sets). This leads to so-called ‘polarised partition relations’ such as

()= )

-
B By Bi)’
which (when o, f3, etc. are order types) means that if 4, B are ordered sets of types o,
f, respectively, and 4 x B s partitioned into sets %, 4,, then A, B will necessarily have
subsets 4,, B,, respectively, such that tp 4, = a,, tp B, = f,, 4, x B, < ,, or subsets
A,, B,, respectively, such thattp A, = a,, tp B, = f8,, 4, x B, = . Polarised partition
relations were investigated by Erdés, Hajnal and Milner in [20], [21] and [45].

A somewhat surprising result in [5] states that if o, A are ordinals and 4 < w,,,,
then A (w,, @2, w3, ...)', where the sequence w,, w2, w2, ... has length w (that is, it
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96 ERIC CHARLES MILNER

is an ordinary infinite sequence). This amounts to saying that any well-ordered set
S with tp S < w,,, can be partitioned into N, sets S, (1 < n < w) which are ‘small’
in the sense that tp S, < o} for every positive integer n. We might describe this as a
‘paradoxical covering property’ of the set S. In [20], the authors explain why this

1 w
(@) 1
motivate much of the work in [20] and [45]. The ‘paradoxical covering property’
discovered in [5] raises a host of questions as to which other statements of a similar
kind are true, and such questions are studied in [45]. Some of them have different
answers in different models of set theory.

Transversal theory is another set-theoretic theme which caught Milner’s interest:
it was the subject of his plenary session lecture [38] at the International Congress of
Mathematicians in 1974. A transversal of an indexed family (S;: iel) of sets is a
family (s;: ie 1) such that s,€ S, (iel) and s; # s; when i # j. As Milner points out in
[38], the starting point of transversal theory is the ‘marriage theorem’, which states
that a finite family (S;: ie ) has a transversal if and only if || J,., S| = |K| for every
subset K of I. It is considerably harder to characterise those infinite families of sets
which have transversals. For countably infinite families, the first such characterisation
was established by Damerell and Milner [37], by proving a conjecture of mine. (At a
later date, a somewhat different alternative characterisation for countably infinite
families was proved in {17), and uncountable families were treated in (1) and <{2).)

Since the known necessary and sufficient conditions for infinite families of sets to
have transversals are rather complicated, one might ask whether there are simpler
sufficient conditions which at least cover many cases likely to be of interest. In this
spirit, Milner and Shelah [35] proved that a family (S,: ie/) has a transversal if
|S;| = d(x) whenever iel and x€ S, where d(x) = [{jel: xeS}|.

Two sets A, B are said to be almost disjoint if |[A N B| < min (|4, | B]). A well-known
theorem of Sierpinski states that an infinite set of cardinality « has more than o
subsets which are pairwise almost disjoint. (Perhaps a helpful illustration is given by
a countably infinite tree 7" in which each vertex is incident with at least 3 edges:
uncountably many infinite paths in 7 start at a particular vertex, and the sets of
vertices of these paths are pairwise almost disjoint subsets of the set of vertices of 7".)
Sierpinski’s theorem is easily seen to be equivalent to saying that o disjoint infinite sets
of cardinality o« have more than o transversals which are pairwise almost disjoint. The
papers [14] and [15] investigate the truth or falsity of various other statements of a
similar type concerning pairwise almost disjoint transversals, and related matters.

Experience shows that results in transversal theory can often be generalised to
results concerning matroids. A matroid or independence space is a pair (S, .# ) such that
S'is a set and .# is a non-empty set of subsets of S, called independent sets, such that:

(i) every subset of a member of .# is a member of .7

(i1) if A,Be# and |B| =|4|+1 < N,, then 4 U{b}e.¥ for some be B\ 4;

(iii) .# has finite character, that is, a set is independent if all its finite subsets are

independent.

A theorem of Podewski and Steffens {18) states that a countably infinite family
(S;:iel) has a transversal if and only if there is no pair K < [, ie/\ K such that
S; = Urex S, and every transversal of (S, : k€ K) uses all the elements of | J,., S, In
[41], Milner generalised this theorem to one concerning the existence of a transversal
(s;:iel) of (S,: iel) such that the set {s,: ie [} is independent in a specified matroid.

result is equivalent to saying that (?) +—>( ) if 1 < w,,,; and this appears to
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In a similar sense, Gyori and Milner [43] established a matroid generalisation of a the-
orem of Woodall (24} (closely related to a similar theorem of Brualdi and Scrimger
{5>) which gave necessary and sufficient conditions for (S;: i€ I) to have a transver-
sal in the case in which only finitely many of the sets S, are infinite.

Partially ordered sets feature in many of Milner’s papers, starting with [16]. More
precisely, [16] refers to quasi-ordered sets, but the difference between ‘partially
ordered’ and ‘quasi-ordered’ is an unimportant technicality. A quasi-ordered set
(0, <) is said to be well-quasi-ordered (wqo) if for every infinite sequence ¢, ¢,, ... of
elements of Q, there exist positive integers i, j such thati < jand g, < g;. In [16], Milner
considered any quasi-ordered set (Q, <) such that the elements of Q are transfinite
sequences of ordinal numbers, and g < ¢ means that some subsequence of ¢’
dominates the sequence ¢. He proved that (Q, <) is wqo if every element of Q is a
transfinite sequence of length less than w?, and conjectured that this length restriction
could be dropped. I was grateful to him for posing this interesting problem, because
I was able (in {16)) to prove this conjecture by using ideas that I had just developed
while working on other problems about well-quasi-ordering.

A partially ordered set (P, <) is said to be well-founded if it contains no infinite
descending chain x, > x, > .... Then the height h(x) of an element x of P is the ord-
inal defined recursively by A(x) = sup{h(y)+1:y < x}, and the height of (P, <) is
sup {h(x)+ 1: xe P}. There are well-founded partially ordered sets of arbitrary height
containing no infinite chain (totally ordered subset), but these must contain, in some
sense, a large antichain (set of mutually incomparable elements) if the height is large.
In [46], Milner and Sauer define o — [f5, y] to mean that every partially ordered set of
height o contains either a chain of type f or an antichain A such that the order type
of {h(x): xe A} is y. They prove a number of results about when o — [, 7] is true and
when it is false. They point out that o — (f3, ¥)* implies o — [, y]: so we might think
of the latter as a weakened version of a partition calculus relation.

The depth of a partially ordered set (P, <) is the least ordinal y such that no chain
in P has order type y* (the reverse of y): for example, a well-founded partially ordered
set has depth at most w. The width of (P, <) is the smallest cardinal x4 such that P
contains no antichain of cardinality x4+ 1. In [58], Milner and Prikry study the
question: given an ordinal y and a cardinal /, can every partially ordered set of depth
y be decomposed into A parts of depth less than y? They also prove that for any
cardinal A and any infinite cardinal v, there is a partially ordered set of width v* (the
least cardinal greater than v) which cannot be decomposed into A parts of smaller
width. In [52], they prove some other results about partially ordered sets which might
be harder to summarise briefly, but once again partition calculus conditions of the
form o — (f,7)* play a role. In particular, when x denotes a cardinal number, a
theorem of [52] states that x — (k, k)? is equivalent to the statement: ‘Whenever a
partially ordered set (P, <) contains no antichain of cardinality x and |P| = ., there
exists a cofinal subset of P which is the union of fewer than x chains’. (A subset 4
of P is cofinal if for every x e P there exists ye A such that x < y.) We remark that
a cardinal xk > N, such that x — (x,x)* must (see {7, Chapter 7, Theorem 3.1)) be
strongly inaccessible and hence ‘very large’: the non-existence of any such cardinals
is consistent with the Zermelo—Fraenkel Axioms for set theory and the Axiom of
Choice.

It seems natural to try to extend some of the theory of partially ordered sets to
closure systems. A closure system is a pair (E, ¢) such that E is a set, ¢ is a function
from the set of subsets of E into itself, X < ¢(X) = ¢(¢4(X)) for every X < E, and
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98 ERIC CHARLES MILNER

P(X) < ¢(Y) whenever X < Y < E. A partially ordered set (P, <) can be identified
with the closure system (P, ¢), where ¢(X) = {y: y < x for some xe X} when X < P.

Closure systems appear in the papers [60] and [83] of Milner and Pouzet. In [60],
they extended to closure systems a result of Pouzet which stated that a partially
ordered set must contain an infinite antichain if its cofinality (that is, the minimum
of the cardinalities of its cofinal subsets) is a singular cardinal. A partially ordered set
(P, <) is up-directed if for all x,ye P there exists ze P such that x <z and y < z.
Erdds and Tarski (11) proved that a partially ordered set which contains no infinite
antichain must be the union of finitely many up-directed partially ordered sets, and
in [83] Milner and Pouzet established a neat extension of this result to closure systems.

It is well known that every totally ordered set (E, <) has a cofinal subset 4 < E
such that for every subset B of A, B is cofinal in (E, <) if and only if |B| = |4|. This
motivated Galvin, Milner and Pouzet [75] to make the following definition for a
closure system (£, ¢): a family .oZ of subsets of E is called a cardinal representation of
(E, ¢) if, for every set X = | J .o/, we have

dX)=E < ([XnA|l=|Alforevery Ae.o/).

In [75], the authors proved a number of results about cardinal representations, and
illustrated their possible usefulness by using them to give a new proof of a theorem
of Duffus and Pouzet concerning the gaps in a lattice of finite breadth.

Given a partially ordered set (P, <), we call a function f: P — P order-preserving
if f(x) < f(y) whenever x < y. We say that (P, <) has the fixed point property if every
order-preserving function f: P — P has a ‘fixed point’, that is, an element z € P such
that f(z) = z. Tarski <(23) proved that every complete lattice has the fixed point
property, and Rival (20> and Duffus and Rival {8) explored what can be said on
similar lines about finite partially ordered sets in general. They introduced a notion
of ‘dismantling’ a finite partially ordered set (P, <) by removing, one by one,
elements which are in some sense not essential to the structure of P (or of what
remains of P at the relevant stage in the process). The part of P left at the end of this
process is called its core, and any two cores of P are isomorphic as partially ordered
sets. Moreover, P has the fixed point property if and only if its core has the fixed point
property. In [81], Li and Milner extended this idea to infinite partially ordered sets
which are chain complete, that is, in which every chain has an infimum and
supremum : they defined a transfinite sequence of steps which progressively pick out
smaller and smaller subsets of P until we are left with a ‘core’. If P is chain complete
and has no infinite antichain, then the process behaves nicely: for example, any two
cores of P are once again isomorphic, and P once again has the fixed point property
if and only if its core has the fixed point property. However, this approach is not
particularly useful in deciding whether P has the fixed point property in cases in which
(as can easily happen) the core of P turns out to be P itself. This motivated Li {13, 14)
to introduce a somewhat different procedure for progressively picking out smaller and
smaller subsets of P, the set left at the end of this process being called the ANTI-core
of P. This raised questions as to whether the end result of this process would once
again be unique up to isomorphism, and in what way it might be helpful in deciding
whether P has the fixed point property. Under suitable conditions on P, such
questions are answered fairly satisfactorily by Li and Milner in [90], [91] and [92].

A striking result about fotally ordered sets (which does not seem to extend to
partially ordered sets in any obvious way) was obtained by Aharoni, Hajnal and
Milner in [85]. Let a family of intervals in a totally ordered set S be called a x-cover
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of S if each element of S belongs to at least x of these intervals: then any x-cover of
S contains x disjoint 1-covers of S. The method of proof depends on whether x is
finite or infinite, but is highly non-trivial in both cases.

Milner’s ability to learn and use new techniques is seen in his expository paper
[86], where he describes the concept of ‘elementary substructures’ (compare <{4,
Chapter 4)) and suggests that they provide ‘a powerful technique which can and
should be part of the working mathematician’s toolbox’. A relational structure (4,%)
consists of a set 4 and a collection € of finitary relations on A. By a substructure
of (4,% ), we mean a relational structure (B, %) where B < A and the relations in %
are now (by an abuse of notation on my part) regarded as relations on B. This
substructure is said to be elementary if, roughly speaking, all true statements about
(B, %) which can be formulated in predicate calculus are also true statements about
(A4,%). For example, (Q, <) is an elementary substructure of (R, <) if Q, R denote
the sets of rational and real numbers, respectively. Under suitable conditions, one
can prove that a given relational structure (4, % ) must have elementary substructures
of certain infinite cardinalities (and, if necessary, with certain additional properties)
by starting with any subset of 4 and repeatedly enlarging it to include elements
which would be needed in a substructure of the required kind. In [86], Milner gives
three examples of the use of such ideas in infinite combinatorics. Two of them
use elementary substructures of relational structures of the form (A4, €), where 4 is
a suitable set of sets and € is the usual relation of membership, to prove a result in
partition calculus and answer a question of Pouzet about graphs of uncountable
chromatic number. The third example is a proof of Komjath and Milner in [87] of a
conjecture of R6dl and Voigt (21). This conjecture says that if Ais an infinite cardinal
number, 4" is the least cardinal greater than A, and T is a tree in which each vertex
is incident with exactly 4* edges, then there exists a graph H with exactly A" vertices
such that H — (T)}. The statement H — (T); means that for every colouring of the
vertices of H with / colours, there exist A* vertices of the same colour which, together
with all the edges joining pairs of them, form a graph isomorphic to 7. In fact,
Komjath and Milner proved that, more generally, T can be replaced by any graph
with exactly A* vertices which is the union of finitely many trees.

The volume of high-quality work produced by Milner during approximately three
decades is impressive, and this short account can look at only illustrative samples
of it, selected almost at random. Much important work remains completely un-
mentioned. However, personal interest prompts me to mention one more item. In
{15, I proved that a graph G is decomposable into circuits (that is, there exists a
collection of circuits in G such that each edge of G is in exactly one of them) if and
only if it has no finite cutset of odd cardinality. The proof is easy for finite or
countably infinite graphs, but in the uncountable case very long and complicated
arguments were used to prove this apparently simple statement. One naturally
wondered whether any other approach might work. So far as I know, this matter was
thereafter neglected until Polat {19) discovered a generalisation. He pointed out that
the theorem could be reformulated by defining a matching in a family of sets & to
be a subfamily .# = & whose members are disjoint. Let & be called matchable if
J# = |J& for some matching .# <= &, and finitely matchable if for every finite set
F = |J¢& there exists a matching .# < & such that F = [ J.#. If the members of & are
the sets of edges of the circuits in G, then the theorem of {15) says in effect that &
is matchable if it is finitely matchable. Polat {19) showed that, more generally, the
set of circuits (minimal dependent sets) of any binary matroid (that is, any matroid
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in which every symmetric difference of two circuits contains a circuit) is matchable
if it is finitely matchable. However, both {15 and <{19) used complicated ad hoc
arguments, and one might wonder whether we could invoke the sort of ‘compactness
arguments’ often used to deduce facts about infinite structures from corresponding
facts about their finite substructures. In [67], Komjdth, Milner and Polat proved a
generalisation of Polat’s theorem to arbitrary matroids using (to quote the paper)
‘very general compactness techniques of the kind first used by Shelah’ (22). The
theorem of <(19) as stated above does not extend to general matroids, but a re-
statement of it does. Specifically, call a family of sets & finite matching extendable if
for every xe | J& and every finite matching .# < &, there exists a matching .#' = &
such that .# = .#’ and xe|J.#’. This property is equivalent to being finitely
matchable when & is the set of circuits of a binary matroid, and in [67] the authors
showed that the set of circuits of any matroid is matchable if it is finite matching
extendable.
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