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II: NEYMAN AND THE THEORY OF STATISTICAL INFERENCE

BY M. S. BARTLETT

1. Background

Jerzy Neyman began his statistical career before he came to England in 1925; but
it was his professional encounters with British statisticians, especially the Pearsons
(father and son) and R. A. Fisher, that were to be the catalyst stimulating his interest
in statistical problems, and in particular in the theory of statistical inference. Among
his many contributions to statistical inference, the most important resulted directly
from his personal collaboration with E. S. Pearson (cf. also [R3], and indirectly
from the powerful stimulus of R. A. Fisher, about whom Neyman acknowledged
[III14, p.ix]:

'Even though, in a quarter of a century long dispute, I combated certain
views of Fisher, there is not the slightest doubt that his many remarkable
achievements had a profound influence on my own thinking and work'.

Neyman's introduction to probability and statistics started, however, in Russia
and Poland.t His teacher in probability was Serge Bernstein, who had suggested to
Neyman that he read Karl Pearson's Grammar of science. In 1915, while still a
student at the University of Kharkov, he studied measure theory at the instigation of
another of his university teachers, C. K. Russyan, reading in particular Lebesgue's
Leqonssur ^integration. After the revolution, Neyman moved in the summer of 1921
to Poland, where he acquired a post as statistician at the Agricultural Research
Institute in Bydgoszcz. His initiation into the use of statistical methods in
agricultural experimentation might be compared with Fisher's when appointed in
1919 to a statistical post at Rothamsted Experimental Station, though Neyman's
acceptance of the Polish post was a much more reluctant one forced on him by his
lack of a job.

One or two papers published during this period earned Neyman a doctorate in
1923; and in 1925 he took up a post-doctoral Fellowship granted by the Polish
National Culture Fund for study abroad. The first of his two years abroad was spent
at University College London, in Karl Pearson's department; and here he first met
Karl Pearson's son Egon, who had not long joined his father's staff. His encounter
with E. S. Pearson appears at first to have stimulated Pearson more than Neyman,
for Pearson refers [R6, p. 4] to a conversation at the end of Neyman's stay in
London about a 'general statistical problem' which Pearson had been puzzling over,
with the suggestion of future collaboration. Neyman, on the other hand, reports
about gravitating to Paris in his second Fellowship year abroad, attending
Lebesgue's lectures, and added [1160, p. 151]:

'... were it not for Egon Pearson, I would have probably drifted to my earlier
passion for sets, measure and integration, and returned to Poland as a
faithful member of the Warsaw school, and a steady contributor to
Fundamenta Mathematicae?

t See David Kendall's biographical account for further details of Neyman's early education.
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2. The Neyman-Pearson collaboration

However, E. S. Pearson, who had been struggling for some years trying to
perceive the principles underlying the statistical methodology he had grown up with,
and who found it helpful to formulate his difficulties at some length in
correspondence with W. S. Gossett, J. Neyman and others, wrote a letter to Neyman
apparently towards the end of 1926, on the logic of statistical tests. Neyman has
noted [1160, p. 151]:

'I am afraid I was not very helpful in my reply. Frankly, prior to this letter of
Pearson, and also for a period thereafter, I did not notice the existence of the
problems that bothered him. Later on, ... I understood the issues. The
general question was how to formulate the problem of statistical tests so
that it would have a mathematical meaning. The problem was that of
delineating the contents of mathematical statistics as a proper discipline'.

To understand the scientific climate at the time, it should be recalled that the
concept of probability, on which statistical theory depended, was still somewhat
nebulous. R. A. Fisher had just published the second of his two influential papers on
statistical estimation [R7, R8], these being based on the objective statistical notion
of probability as a relative frequency in a 'large' population, as noted by Fisher in a
preface to his 1925 paper.

The mathematical theory of probability was put a few years later on a firm
measure theory basis in the fundamental monograph by A. N. Kolmogorov [R14],
and Neyman's own earlier studies made it particularly natural for him to adopt such
a basis. The logical approach of writers like Harold Jeffreys to the general problem of
inductive inference [R12], in which probability was regarded as a 'degree of
reasonable belief obeying certain axioms, was rejected both by Fisher and by
Neyman. Nevertheless, it is important to distinguish between a valid mathematical
basis and an acceptable logical basis; and Neyman's rigorous mathematical
formulations of the principles of statistical inference did not in themselves ensure
scientific validity and acceptance. The summary below of his main contributions
includes commentary on their logical content.

To return first, however, to the cooperation between Neyman and Pearson, it
seems clear that Pearson raised the problems and Neyman developed their
mathematical formulation and solution. Fisher's theory of estimation, in which
Fisher had stressed the role of the likelihood function, and of further important
concepts such as statistical information and sufficiency, represented a considerable
advance; but Pearson felt that the logic of statistical tests still required elucidation.
Fisher tended to discuss significance tests purely on the basis of what he termed the
null hypothesis, and it was Neyman and Pearson who first formulated an approach
explicitly introducing the class of 'alternative hypotheses'. Pearson himself has
acknowledged (cf. [R3, p. 433]) that the idea of introducing the class of alternatives
was suggested in a letter from W. S. Gosset to him dated 11 May 1926.

At first the results were still somewhat tentative. In a long paper [114] in 1928,
Neyman and Pearson introduced (at Pearson's suggestion) their generalization of
the likelihood ratio criterion to cover composite hypotheses, in which the null
hypothesis Ho, say, is not fully specified.

Let us suppose observations x1,x2, •••, xn define a sample point £ in the sample
space W, with probability density pH(xi> *2> •••> X J depending on the hypothesis H.
If pH is completely specified by H, the hypothesis H is called simple. If its functional
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form is known, but involves c unspecified parameters dli...,0c, it is termed a
composite hypothesis with c degrees of freedom. The set of admissible simple
hypotheses is denoted by Q. The null hypothesis Ho will belong to Q if simple; if
composite, it defines a subset co of Q. Let Az be the set of probabilities pH determined
by simple hypotheses in Q, and let the upper bound of Az be denoted by pn(I). If Ho

is composite, denote by Az(a>) the subset of Az corresponding to the subset a>, and by
pw the upper bound of A^w). Then the generalized likelihood ratio associated with
the composite hypothesis Ho is defined by

In the special case when Ho is simple, Xi reduces to A = po(Z)/pn(Z), where p0 is the
probability density for Ho.

The authors remark [114, p. 265]:

'The value of this criterion in the case of testing composite hypotheses will
perhaps be questioned. It may be argued that it is impossible to estimate the
probability of such a hypothesis without a knowledge of the relative a priori
probabilities of the constituent simple hypotheses. But in general it is quite
impossible even to attempt to express our a priori knowledge in exact terms.
Can we then get no further? Certainly we are faced with a problem whose
solution cannot take the same form as that which is possible when a simple
hypothesis is tested, yet we are inclined to think this ratio of maximum
chances or frequencies of occurrence provides perhaps the best numerical
measure that can be found under the circumstances to guide our judgement.

'As for X, so in the case of Al5 a knowledge of the ratio alone is not,
however, sufficient. It has been pointed out that the errors of judgement
which must inevitably occur will be of two kinds (1) we sometimes reject the
hypothesis when it is in fact true, and (2) we sometimes accept it when I has
been drawn from some population not belonging to the subset co. The form
of the criterion Xt has been chosen to minimize the effect of (2), but it is
necessary to know also the probability distribution of Ax in sampling from
the members of co in order to control the source of error (1). In the cases
which we have so far come across this distribution has possessed the
essential property of being the same or approximately the same whatever
member of co may have been sampled'.

In their 1933 Phil. Trans, paper [133], the authors attempted a more formal and
systematic development; and though the nature of the problem prevented a complete
solution in the framework of sampling theory they were able to obtain an imposing
set of general results. Their own summary includes the following [p. 185 of III15]:

'1. A new basis has been introduced for choosing among criteria suitable
for testing any given statistical hypothesis, Ho, with regard to an alternative
Hv If 0X and 62 are two such possible criteria and if in using them there is
the same chance, 8, of rejecting Ho when it is in fact true, we should choose
that one of the two which assures the minimum chance of accepting Ho

when the true hypothesis is H^
2. Starting from this point of view, since the choice of a criterion is

equivalent to the choice of a critical region in multiple space, it was possible
to introduce the conception of the best critical region with regard to the
alternative hypothesis Hx. This is the region, the use of which, for a fixed
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172 KENDALL, BARTLETT AND PAGE

value of E, assures the minimum chance of accepting Ho when the true
hypothesis is Hv The criterion, based on the best critical region, may be
referred to as the most efficient criterion with regard to the alternative Hv

3. It has been shown that the choice of the most efficient criterion, or of
the best critical region, is equivalent to the solution of a problem in the
Calculus of Variations. We give the solution of this problem for the case of
testing a simple hypothesis.

To solve the problem in the case where the hypothesis tested is
composite, the solution of a further problem is required; this consists in
determining what has been called a region similar to the sample space with
regard to a parameter.

We have been able to solve this auxiliary problem only under certain
limiting conditions; at present, therefore, these conditions also restrict the
generality of the solution given to the problem of the best critical region for
testing composite hypotheses'.

The quantity F. above was termed the size of the test. The Neyman-Pearson
Fundamental Lemma established that the chance of rejecting Ho when a single
possible alternative hypothesis H t was true was maximized in the case of simple
alternatives when the critical region was based on A. In a subsequent paper [134] this
chance was called the power of the test, and the test based on X the most powerful
test.

Further elaboration, including the notions of uniformly most powerful tests [134],
'unbiased' tests [151], in which the power is never less than the size e, etc., resulted in
a considerable theoretical superstructure which overall made quite an impact. The
unequivocal mathematical basis for the theory rendered it in particular attractive to
many university teaching departments of statistics, and, in due course, to writers of
textbooks. Nevertheless Fisher, while apparently a referee of the 1933 paperj, became
one of its strongest critics. This may partly have been because he considered the
development of the Neyman-Pearson theory of testing statistical hypotheses ab initio
tended to obscure the fundamental role of his own concepts of likelihood and
sufficiency, even though the importance of the former had been vindicated by the
Neyman-Pearson Fundamental Lemma, and the latter, if appropriately extended,
was related to their idea of similar regions. However, a more basic difference of
viewpoint was to emerge, associated with the notion of 'repeated sampling'.

This is a fundamental problem, which will arise again later, as it impinges
strongly on Neyman's subsequent work and general attitude. For the moment this
problem will be discussed, not in relation to Fisher's criticisms, as Fisher was far
from consistent or objective in these, but to the critique by I. Hacking [Rl l ] .
Hacking notes that uncritical appeal to the concepts of size and power alone (the
foundation of the Neyman-Pearson theory) is inadequate, and could lead to
absurdity—for example, if an event with zero probability on Ho, but non-zero on
H1} has been included in the acceptance region for Ho, but has actually occurred.
Hacking distinguishes between the value of tests before and after a trial has been
carried out. The Neyman-Pearson theory is very valuable for 'before-trial'
assessments, but not necessarily so relevant after the results of the trial are known
(unless it has been decided to ignore the further details of the data, given that the
sample point has fallen in the acceptance region). While the above counter-example

tSee, however, Constance Reid's remarks in her biography Neyman—From life (Springer-Verlag, 1982,
p. 104).
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JERZYNEYMAN 173

could be judged inadmissible, as its acceptance region corresponds to a test in
conflict with the Fundamental Lemma, more subtle examples of conditional
inference, in which the sampling distribution envisaged is conditional on what Fisher
termed ancillary information, cannot readily be discussed within the Neyman-
Pearson framework.

The 1933 paper [134] on the testing of statistical hypotheses in relation to
probabilities a priori is of interest not only for its introduction of the concept of
power, but also for its recognition of problems where the economic consequences of
decisions may be sufficiently relevant to be introduced explicitly into the analysis,
thus being to some extent a forerunner of 'statistical decision theory'.

3. The theory of confidence intervals

A few years after the development of the Neyman-Pearson theory of statistical
tests, Neyman published another paper [156] in Phil. Trans, on interval estimation.
This set out systematically his own theory of 'confidence intervals', and had arisen
from attempts to describe the accuracy of estimates of parameters independently of
the formal Bayes solution involving the assignment of prior probabilities. The
solution may be illustrated in terms of a simple and familiar example. Suppose a
sample of n independent observations x l 5 x2, . . . , xn from a normal population with
true (but unknown) mean p. has sample mean m with variance o2

m = o2/n, where a2 is
the (known) variance per observation. Then we know, say, the probability 0.95 that

M-n < 1.96am

(or alternatively the probability 0.90 that \M — p\ < 1.96<rm) from the sampling
distribution of the random quantity M, of which m is the realized value. If therefore
we assert that \i > M — 1.96am (or alternatively that |// — M\ < 1.96crm), we shall be
correct in repeated sampling on 95% of occasions (in the alternative 'two-tailed'
version, on 90% of occasions).

The misunderstandings that such statements generated were remarkable, but
were partly due to ambiguous discussion in this context by Fisher, who had already
in 1930 published a note [R9] in which he first proposed what appeared to be the
above form of statement under the name of fiducial probability. Unfortunately, while
Fisher had always been careful to distinguish between a population parameter such
as ^ and a sample estimate such as m, he did not distinguish in his notation between
the observed value m on a particular occasion, and the random quantity M, of which
m is a realization. At the time his discussion in terms of repeated sampling seemed,
however, clear enough. For example, in the 1930 note when discussing the case of an
unknown correlation coefficient p, Fisher said [p. 535]:

'...if we take a number of samples... from the same or different
populations and for each calculate the fiducial 5 per cent value of p, then in
5 per cent of cases the true value of p will be less than the value we have
found'.

Both Neyman and Pearson have referred to other early discussion on the
problem of interval estimation. In 1927 Pearson was already engaged in
correspondence (I am indebted to Professor G. A. Barnard for showing me a copy of
this correspondence) with W. S. Gosset on intervals defined by relevant significance
tests, and Neyman [1160, p. 154] refers to a question by Pytkowski, a student of his
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174 KENDALL, BARTLETT AND PAGE

in Warsaw, about 1930, on the precision of an estimated regression coefficient, which
stimulated his own theory of confidence intervals. However, Fisher's 1930 note
appears to have priority in print, and Neyman many years later has acknowledged
[1160, p. 155]:

'in the first paper in which I presented the theory of confidence intervals,
published in 1934 [135], I recognized Fisher's priority for the idea that
interval estimation is possible without any reference to Bayes's theorem and
with the solution being independent from probabilities a priori'.

It was not until later that controversy over the interpretation of Fisher's theory
was accentuated by my own criticism (on the assumption that a valid frequency
interpretation was intended) of some of Fisher's extensions of his fiducial theory to
more than one parameter [Rl]. This controversy led to eventual general acceptance
that Fisher's fiducial theory and Neyman's theory of confidence intervals must be
distinguished. Thus in a critical review in 1941 [169] Neyman concluded:

'the only thing that the present author ventures to profess is that the
theory of fiducial probability is distinct from that of confidence intervals'.

Nevertheless, I was always rather surprised to find no explicit reference to
Fisher's 1930 note in the 'review of the solution of the problem of estimation
advanced hereto' in Neyman's 1937 Phil. Trans, paper [156, and p. 258 in III14].

Fisher's equivocal stance was not entirely without substance. In a Bayesian
approach the inference on an unknown mean n would be conditional on the
observed m, though at the cost of introducing 'probabilities a priori'. Hacking
[Rll , p. 159], when discussing Neyman's theory of confidence intervals, remarks that

'...it may be helpful to examine its relation to the fiducial argument. This
is especially necessary, since Fisher's original expression of the fiducial
argument is couched in terms more suitable to Neyman's theory than his
own'.

What Hacking in effect emphasizes, in terms of our specific example, is that an
inference in terms of the observed mean m, as distinct from the random M, implies a
'principle of irrelevance.' Indeed Jeffreys claimed [R13]:

'In fact the fiducial argument when completed, and the inverse
probability argument, are simply different ways of saying the same thing'.

Hacking, however, did not go as far as this, pointing out that while the
irrelevance principle might imply a 'prior distribution', this did not mean the whole-
hearted acceptance of the machinery of prior distributions involved in the Bayesian
approach. Neyman defended his theory of confidence intervals purely in terms of
'long-run behaviour'; but, while this is a consistent attitude, it is difficult (as noted for
the Neyman-Pearson theory of tests) to uphold a particular inference in such terms if
the inference is obviously false on that particular occasion. To put it bluntly, an
engine driver perceiving a large obstruction on the railway line ahead naturally
applies his brakes, and does not argue that if he ignores such obstructions he will be
correct on most occasions. The difficulty here is that a statistical inference as such
cannot be expected to cope efficiently with a unique, or even a very rare class of,
event, but becomes merely part of a wider type of inductive inference which Neyman
might reasonably have claimed was no longer classifiable within the discipline of
statistical inferences.
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4. Other papers on statistical methodology and inference

In addition to the main work on hypothesis testing and confidence intervals,
Neyman published some other important papers during his period in England as a
member of staff in E. S. Pearson's new Department of Statistics. These included a
paper in 1934 [135] on sampling theory presumably largely prepared while Neyman
was still in the Biometric Laboratory, Warsaw, which is given as his address; this
paper has already been cited in §3 for its acknowledgment of Fisher's theory of
fiducial probability. Perhaps because of this, Fisher's attitude to the paper was
reasonably amicable, in sharp contrast to the controversial exchanges following
Neyman's second paper [143] to the Royal Statistical Society in 1935, in cooperation
with K. Iwaszkiewicz and S. Kolodziejczyk, on statistical problems in agricultural
experimentation. In this paper Neyman had the temerity to question the theory
underlying the statistical analysis of randomized blocks and Latin Squares, pointing
out in particular that if the treatments reacted differently to differences in soil
fertility, then the standard test of significance of treatment effects could be biased in
the case of Latin Squares. Fisher's defence was to emphasize his own null hypothesis
that the treatments had no effect on the yields; and, like the more permanent
controversy that was to develop over the rival merits of fiducial and confidence
intervals, there was some right on both sides. As I myself noted at the time
[143, p. 169]:

'it would ... have been simpler if Dr. Neyman had stated in words exactly
why it was that the Latin Squares appeared to be giving a biased estimate of
error; he had assumed that the treatments were having an effect on the
yields, and if one made the "null hypothesis", that was not necessary for a
test of significance. It was only fair to Dr. Neyman to mention that although
on the null hypothesis the z test would be unbiased for testing the effects of
the treatments, one would still get the possibility of bias in a t test for testing
the difference between only two treatments, since usually one would be using
the whole of the error for that particular comparison'.

In later years Neyman continued to publish on theoretical aspects of statistical
inference, but his most important contributions in this area had been completed. One
paper [176] published in 1949, but dealing with work started several years earlier,
developed the theory of what Neyman called 'best asymptotically normal estimates',
which were a generalization of Fisher's maximum likelihood estimates having the
same asymptotic properties but intended to be more convenient to use. In 1959
[1106; cf. also 90] he developed the theory of what he termed C(a) tests, which were
asymptotically optimal for testing a null hypothesis 0^ = 0, say, against the
alternative class 61 ± 0, when other parameters 92,...,9k were unknown.

Suppose a sample of n independent observations xl5..., xn has density function

flf(xt\elt...tek)
i = l

n

with log likelihood function L = £ log /(x,). Neyman considers the statistic

T = { / J
j=2
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176 KENDALL, BARTLETT AND PAGE

evaluated at 6l = 0, 9j = §j (j > 1), where 6j are maximum likelihood estimates
(more generally, estimates with what Neyman termed 'local root-n consistency'), and
(Ij are the regression coefficients of dL/d91 on the dL/dOj, as estimated from the
second-order derivatives. Neyman's procedures were, however, subsequently
examined by P. A. P. Moran [R17], who showed that they were asymptotically
equivalent to the use of the likelihood ratio test and to tests using maximum
likelihood estimators, and noted that they had also previously been discussed by
myself [R2]. Moran also noted the generalization to the case where the null
hypothesis involved more than one parameter e.g. 0X = 92 = ... = 9r = 0
(1 < r < k).

Neyman's wide-ranging contributions to applied fields are referred to elsewhere
in this memoir; but within the framework of the general theory of statistical inference
it might be added that his avowedly behaviouristic approach to inductive problems
[e.g. 1132] did not inhibit his emphasis on the need for specific stochastic models
applicable to the particular problem under investigation. As his interest in
applications developed, model-building became an even more important aspect of
his researches. At the end of his own review of his illustrious and influential research
career he notes [1160, p. 162]:

'particularly in the more recent decades, the delight I experience in trying
to fathom the chance mechanisms of phenomena in the empirical world'.

III. NEYMAN AS ASTRONOMER

BY THORNTON L. PAGE

I'd like to contribute as much as possible to the Royal Society Memoir on Jerry
Neyman. He was a true friend, as well as my statistical mentor. As you may
remember, he put me up in his house on Amherst Avenue; then, after I suffered a
serious auto accident, arranged for me to spend a quarter doing research and editing
several books at Berkeley. I have strong memories of his humour and devotion to
work. One evening he joined us for supper in our Berkeley apartment, and I served
herring snacks on crackers with 6 o'clock drinks. Jerry said, 'Oh, I like dead fish', and
herring snacks have been 'dead fish' to us ever since. When we were working on the
statistics of double galaxies, he would often terminate supper with 'It's time to get to
work\ which he pronounced to rhyme with York.

Jerry was intensely Polish. I first got to know him after the I.A.U. Congress in
Moscow when we (together with 16 other western astronomers) toured southern
Russia, visiting several Soviet observatories. At one point we were taken to a Soviet
resort on the Black Sea for swimming and boating. I was swimming while Jerry and
several others drank coffee in a small seaside restaurant. When I joined them, in my
bathing suit, the Soviet police moved in and arrested me. It seems that there is a
strict Soviet law against entering a public restaurant in a bathing suit. Jerry
persuaded them that I was just a dumb American, but told me that I must change my
clothes then and there under police escort. I was embarrassed as I did this in full view
of several lady astronomers, but it satisfied the police.

On another occasion, Neyman showed his understanding of Russians and their
language. At each observatory we were given a ceremonial luncheon highlighted by
toasts in wine by the hosts 'to our guests from overseas', and by one of us 'to our
hospitable hosts'. We took turns making the responses, and in Burakan, Soviet"
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