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OBITUARY

Douglas Geoffrey Northcott, FRS, 1916–2005

Douglas Northcott, who held the Town Trust Chair of Pure Mathematics at the University
of Sheffield for 30 years, was an influential figure in the development of commutative algebra
in the twentieth century: he received national and international recognition for his work on
the algebra underlying the ‘pre-Grothendieck’ era of algebraic geometry; he was involved in
many developments, that nowadays are considered central to modern commutative algebra,
in the use of homological algebra as a tool in the study of commutative Noetherian rings; his
seven text books have helped many research workers, both beginning and established; and the
Northcott–Rees theory of reductions and integral closures of ideals, now more than 50 years
old, is still mentioned at most top-level international conferences on commutative algebra.

1. Life and career

1.1. Family background and education

Douglas Northcott was born Douglas Geoffrey Robertson, the son of Geoffrey Douglas Spence
Robertson, who was an electrical engineer, and Clara Freda Behl. Geoffrey Robertson was
killed in an accident soon after the young Douglas was born; Douglas was about 2 years old
when his mother married Arthur Hugh Kynaston Northcott, and he grew up not knowing of
his mother’s remarriage. It was only in his teens that Douglas learnt that Arthur Northcott
was, in fact, his stepfather; Douglas changed his surname by Deed Poll in 1935, and he always
felt himself to be part of the Northcott family and referred to Arthur Northcott as his father.
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At the time when Douglas Northcott first went to school, his family lived in a very poor
area off Gray’s Inn Road in London. Until he was about 101

2 years of age he attended Laystall
Street School, and this gave him an excellent grounding. He was recognized as a good pupil
and received individual attention from some of the masters. He was shown how to solve simple
simultaneous linear equations and introduced to elementary Euclidean geometry. This almost
certainly laid the seeds of his love of mathematics.

In 1927, an opportunity arose for Northcott to be nominated for a ‘presentation vacancy’
at Christ’s Hospital, and he gained admission. The school, which has a fine record in the
production of outstanding mathematicians, recognized the young Northcott’s mathematical
aptitude at an early stage, and he benefited from the teaching of the Senior Mathematics
Master, C. J. A. Trimble. The list of distinguished mathematicians who have been elected
Fellows of the Royal Society and who were educated at Christ’s Hospital includes William
Burnside, Philip Hall, and Christopher Zeeman, in addition to Douglas Northcott. (In fact,
Douglas Northcott became the Royal Society’s representative on the Council of Almoners of
Christ’s Hospital in 1976, and he found this re-establishment of links with the school most
interesting.)

In 1935, Northcott was awarded an open Bayliss Scholarship in Mathematics and entered
St. John’s College, Cambridge; he was a Wrangler in 1937 and obtained a Distinction in Part
III of the Mathematical Tripos in 1938. During Part III, he attended lectures by G. H. Hardy,
the Sadleirian Professor of Pure Mathematics responsible for many major contributions to
mathematical analysis and number theory. Northcott really enjoyed Hardy’s lectures on ‘Fourier
series’ and on ‘Divergent series’, and through them came to know Hardy quite well. He asked
Hardy if he would accept him as a research student. At that time Hardy was already supervising
about six research students, but after a little hesitation he agreed to take Northcott; the year
1938–1939 was the first year of this supervision and during that year Northcott published his
first paper [1]. (The numbering is as in the list of Northcott’s publications given at the end of
this obituary.) He applied for and was awarded a Commonwealth Fund Fellowship to enable
him to study the theory of Banach spaces at the University of Princeton, but on the day that
he was due to sail to the US, Britain declared war on Germany.

1.2. The war years

Douglas Northcott reported to the Cambridge University Joint Recruiting Board in September
1939 and received a certificate recommending that ‘he be held in a pool to be employed
in technical services, and that in the meantime he should continue with his mathematical
research’. However, Northcott felt unable to proceed in this way, and he joined the Royal
Artillery as a volunteer in November 1939. Hardy was very upset when he learnt what Northcott
had done and offered to write to his Commanding Officer about his special qualifications.
Although Northcott did not accept Hardy’s offer, he was touched by his concern.

During Northcott’s first overseas posting in India, he contracted the first of a number of
illnesses. His complaint was never diagnosed, but his condition was so serious that his parents
received a cable to say that he was dangerously ill. While recovering in hospital he began to
think about mathematics again, and in particular about a Tauberian theorem connected with
Hilbert’s double series. The calculations and manipulations were rather involved, but curiously,
and perhaps due to the effects of the illness, Northcott was able to do them all in his head.
Later, in 1947, the results of this mental agility were published as the second of Northcott’s
research papers [2].

Northcott’s regiment was posted to Ipoh in North Malaya. Before the Japanese invasion he
contracted malaria. He rejoined the regiment to take part in a rearguard action from Port
Swettenham down the Malay peninsular; they were on the beach near the Raffles Hotel when
Singapore capitulated.
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166 DOUGLAS GEOFFREY NORTHCOTT

Northcott was fortunate to escape death on several occasions: some colleagues in his regiment
were killed by an air attack, and it was only by chance that he was in a different place; an
RAMC doctor operated on him in a make-shift hospital for what turned out to be peritonitis;
he endured appalling conditions on board ship while being sent, as part of a contingent of
prisoners, to work on an industrial project in Japan; and he somehow survived a camp where
nearly all inhabitants had dysentery and beriberi, and were infested with vermin. He believed
that the atomic bombs saved his life. It was only well into retirement that he talked much
about those years.

In spite of all this there were times, while a prisoner of war, when Northcott was able to
think about mathematics; indeed thinking about mathematics probably helped him to survive
his war experiences. Sometimes he tried to reconstruct proofs of results which he had learnt as
a student; at others he attempted to build up a theory of integration for functions with values
in a Banach space. He recorded his results about this theory in a notebook which he kept in
his gas-mask case. On one occasion his gas-mask was stolen and he never saw it again, and
so he had to start again. His second notebook survived the war and, in due course, provided
material for his PhD thesis and his fellowship dissertation.

1.3. Return to academic life

At the end of the war, Northcott was able to pick up the threads of academic life, although
Hardy had by then retired, and was in fact a very sick man. Hardy disliked shaking hands
with people, and would normally keep his hands firmly in his pockets when a general round of
hand-shaking seemed imminent. However, in Northcott’s case he made an exception, saying ‘I
suppose this is one time when I ought to shake hands’.

The formal position was that Northcott had completed only one year (1938–1939) as a
research student, and so he had to spend a further two before he could submit for a PhD
degree. Frank Smithies became his supervisor in place of the now-retired Hardy. Northcott
spent those two years attending lectures given by J. E. Littlewood and by reading some of the
papers on Banach spaces which had appeared during the war. Also, he developed the material
in his army notebook into a dissertation which he planned to submit for a college fellowship, and
prepared his second paper [2], in which some applications of Banach space theory apparently
went a little way towards shaking Hardy’s scepticism about the value of abstract methods in
mathematics.

Northcott was allowed to take up the Commonwealth Fund Fellowship in 1946; when he
sailed for Princeton (actually on the maiden voyage of the Queen Elizabeth as a passenger
liner), he still had the intention of studying Banach spaces. He left his fellowship dissertation
with his parents who undertook to post it to St. John’s College on the appropriate date.

1.4. Princeton 1946–1948

In 1939, many of the mathematicians at Princeton had been actively interested in the
comparatively new subject of Banach spaces, but when Northcott arrived in Princeton in 1946
this was no longer the case. He apprehensively attended a seminar, run jointly by Emil Artin
and Claude Chevalley, with the title ‘Valuation Theory’. To Northcott’s surprise and delight he
could not only follow the lecture, but he found it extremely enjoyable. At this time, he knew
almost nothing of modern algebra and he caused something of a sensation by interrupting
the (postgraduate) speaker to ask what was meant by the ‘characteristic of a field’. Artin
stepped in and explained the concept, and then the lecture proceeded. This was the first of
many kindnesses shown to Northcott by Artin, who, during the subsequent months, explained
many fundamental algebraic ideas to Northcott, so much so that Northcott became a dedicated
algebraist. Much later, Northcott was very proud to be an invited speaker (along with Bartel
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OBITUARY 167

van der Waerden, Henri Cartan, and Wolfgang Krull) at a memorial meeting in Hamburg in
memory of Emil Artin.

In Princeton, Artin directed Northcott’s attention to André Weil’s famous paper 〈20〉, and
this stimulated Northcott to begin his contributions, some of which are described in § 2.1 below,
to the algebra underlying what might be referred to as the ‘pre-Grothendieck’ era of algebraic
geometry. His first papers in this area, [3, 4], were described by Weil (at the beginning of 〈22〉)
as containing ‘some interesting new theorems’. During the years that followed, Northcott’s
expertise in this area developed rapidly.

1.5. Cambridge 1948–1952

While in the US, Northcott heard that his application for a Research Fellowship at St. John’s
College, Cambridge, had been successful, and after 21 months in the US, he returned to England
in 1948. The fellowship was initially for a three-year period, but it was subsequently renewed
for a further three years. During 1949–1951 he held an Assistant Lectureship at the University
of Cambridge, and in 1951 he was made a full Lecturer.

Northcott organized a very successful working seminar in Cambridge on Weil’s book 〈21〉.
David Rees, a participant in the seminar, was inspired by it to become a commutative
algebraist. In addition, Northcott had become familiar with very recent work of Zariski and
Chevalley on geometry. In particular, he had learnt a great deal about issues related to
completions of local and semi-local rings from Chevalley’s paper 〈7〉. He also became familiar
with the work of F. S. Macaulay as contained in the latter’s Cambridge Tract 〈14〉 published
in 1916.

In 1949, Douglas Northcott married Rose Hilda Austin, a charming and vivacious person;
their first daughter, Anne Patricia, was born in 1950, and their second, Pamela Rose, in 1952.
Among their friends in Cambridge at this time were Frank and Nora Smithies, and David Rees
and Joan Cushen (later Mrs David Rees).

The need for more living space than was provided by the Northcotts’ small college flat in
Cambridge resulted in Douglas’s investigation of posts elsewhere, and he was appointed to the
Town Trust Chair of Pure Mathematics at the University of Sheffield in 1952.

1.6. The first years at Sheffield

A glance at Northcott’s list of publications shows that his first 10 years at Sheffield were
extraordinarily productive: during that time, he published, on average, more than four papers
a year, and also his first two books appeared. He had been encouraged to write the first of
these, the Cambridge tract on Ideal theory [15], in Cambridge by William Hodge. This, on its
publication in 1953, was a great success; its five chapters, on (I) The Primary Decomposition,
(II) Residue Rings and Rings of Quotients, (III) Some Fundamental Properties of Noetherian
Rings, (IV) The Algebraic Theory of Local Rings, and (V) The Analytic Theory of Local
Rings, stimulated interest in commutative algebra. Wolfgang Krull, who had made fundamental
contributions to the subject (Krull’s Principal Ideal Theorem, Krull’s Intersection Theorem,
Krull dimension, . . .), was impressed by Northcott’s book, and encouraged his students to read
the new tract. Krull and Northcott became friends, and Northcott was an invited speaker at
the meeting which marked Krull’s retirement.

1.7. Sheffield in the 1960s and 1970s

When Douglas Northcott first joined the staff of the University of Sheffield, there was a
single Department of Mathematics; he was the only professor, and the administrative head.
Subsequently the department split into four departments, of Pure Mathematics, Applied
& Computational Mathematics, Probability & Statistics, and Computer Science. Northcott
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168 DOUGLAS GEOFFREY NORTHCOTT

remained head of a department for 30 years, until his retirement in 1982. Rose’s unstinting
support helped him to cope with the demands of the headship (and other significant
administrative roles, such as that of Dean of the Faculty of Pure Science (in 1958–1961) and
Vice-President of the London Mathematical Society (in 1968–1969)); she even looked after
babies of members of staff in times of crisis. Even though Douglas served as head for 30 years,
he was, with Rose’s support, able to make time for writing seven books and about seventy
research papers following his PhD. However, the majority of those papers had been written
by the early 1960s, and it is probably fair to say that he concentrated more on his writing of
books during the last 20 years of his professional life.

His writing is characterized by careful attention to detail; his books were principally aimed at
graduate students, but their clarity, detailed discussion of difficult points and reliable accuracy
means that they also serve as informative and reassuring references for experienced researchers.
While Northcott was writing the books, he would present seminars at Sheffield containing some
of the material. Thus, for example, he gave Sheffield seminars on ‘Invariants and resolutions’
in 1973–1974 prior to the appearance of Finite free resolutions [79] in 1976, and seminars on
‘Affine sets and affine groups’ in 1976–1977 while he was preparing [81] for publication in
1980. He said that he wrote books to improve his own understanding of their subjects; for
example, Affine sets and affine groups was motivated by a desire for a greater understanding
of the Hochster–Roberts theorem 〈12〉, that the ring of invariants of a linearly reductive affine
linear algebraic group over a field K acting rationally on a regular Noetherian K-algebra is
Cohen–Macaulay.

Northcott’s seminars, like his books and papers, were always carefully prepared, with
meticulous attention to detail. His audience normally consisted of five or so members of staff,
usually including P. Vámos, T. B. Cruddis, his former research students A. J. Douglas and
D. W. Sharpe, and also, from 1971, the present author, together with two or three research
students. Over the years, members of Northcott’s staff benefited greatly from his seminars, as
well as from the resulting books; for example, the covers of my own copies of Ideal theory [15],
An introduction to homological algebra [46] and Lessons on rings, modules and multiplicities
[65] are all hanging off through much heavy use. Northcott’s own favourite among his books
was Lessons . . . [65]. He was delighted when his two Cambridge tracts, Ideal theory [15] and
Finite free resolutions [79], were reprinted in 2004.

Other notable mathematical events during the later years of Northcott’s professional
life included a visit to Sheffield by David Eisenbud in the early 1970s, when Northcott
showed uncharacteristic excitement about, and enthusiasm for, Eisenbud’s joint results with
Buchsbaum 〈4–6〉 about exactness of finite complexes of free modules; an LMS–EPSRC
Durham Symposium on ‘Commutative algebra’ in 1981, organized jointly by Northcott and
myself, which attracted many distinguished commutative algebraists and at which Hochster
gave a masterly series of lectures on the homological conjectures in commutative algebra (see
〈18〉); and a London Mathematical Society meeting in Sheffield in 1982 in honour of Northcott
as his retirement approached.

The retirement of Northcott in 1982 was followed soon afterwards by the retirement of David
Rees, and it was subsequently always a source of sadness to me that the remaining ‘commutative
algebra base’ at UK universities was not large enough to support another Durham Symposium
on commutative algebra.

2. Mathematical work

Although Douglas Northcott began his mathematical research career with work in mathemati-
cal analysis, and although his first two papers were in that area, it was his work in commutative
algebra, and particularly his work on geometric local rings and the algebra underlying the

 14692120, 2009, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s/bdn097 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [30/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



OBITUARY 169

algebraic geometry of Zariski and Weil, that led to his international recognition. There is a
dichotomy, or even a trichotomy, in Northcott’s approach to commutative algebra. When he
was concerned with applications to geometry, he mainly worked with a geometric ring over a
field k, that is, a ring obtained from the polynomial ring k[X1, . . . , Xn] in n indeterminates by
a sequence of operations each consisting of passage to a homomorphic image or formation of a
ring of fractions. The second part of the dichotomy concerned Northcott’s consideration of how
the results of the geometric case are affected when he allowed the rings under consideration to
be arbitrary (commutative) Noetherian rings. The final part (of the trichotomy) arose when
he dropped the ‘Noetherian’ hypothesis, and considered behaviour over arbitrary commutative
rings.

2.1. Geometric rings over a field

On his return to Cambridge in 1948, Northcott vigorously pursued his new-found interest in
the local algebra underlying algebraic geometry. Before the end of 1951, he completed five
papers [7–10, 12] in the area of geometric rings over a field. We here consider this series of
papers in some detail, because the last of them, [12], resulted in the award to Northcott of the
London Mathematical Society’s 1953 Junior Berwick Prize.

In the following detailed discussion of these papers, we shall denote the completion of a local
or semi-local ring Q by Q̂; thus, the completion of a local ring Q∗

1 will be denoted by Q̂∗
1.

Additionally, the residue field of a local ring Q will be denoted by κQ. Note that, in the case
when Q is a geometric local ring over a field k, then κQ is a finitely generated extension field
of k.

Recall that a local integral domain Q is said to be analytically unramified if its completion
is reduced, that is, has no non-zero nilpotent element, or, equivalently, if the zero ideal in Q̂ is
the intersection of (finitely many) prime ideals, while Q is said to be analytically irreducible if
Q̂ is an integral domain.

Zariski had proved that a geometric local integral domain Q (over a field k) is analytically
unramified. In [7], Northcott established an elementary consequence of this work of Zariski,
namely that the number of minimal prime ideals of Q̂ is equal to the number of maximal ideals
of the integral closure of Q. This complements nicely Zariski’s result that if Q above is actually
integrally closed, then it is analytically irreducible.

Zariski had also proved earlier, by use of the structure theorems for the completions of
geometric local integral domains, that a regular geometric local integral domain Q (over a field
k) is a unique factorization domain. In [8], Northcott gave a short proof of this result which
avoided use of completions. (It must be remembered that the period under discussion here was
well before M. Auslander and D. A. Buchsbaum completed the proof 〈1〉 that every regular
local ring is a unique factorization domain.)

For our discussion of [9], we introduce some notation.

Notation 2.1.1. We consider an analytically irreducible geometric local integral domain
Q (over a field k), with field of fractions F and maximal ideal m; we also consider a finite
extension field F ∗ of F of degree [F ∗ : F ] =: n. We denote by Q∗ the integral closure of Q in
F ∗; note that Q∗ is a semi-local ring which is finitely generated as a Q-module. We denote the
maximal ideals of Q∗ by n1, . . . , nh.

For each i = 1, . . . , h, the localization (Q∗)ni
of Q∗ at ni can be identified in a natural way

with a subring of F ∗; the local integral domains (Q∗)ni
(i = 1, . . . , h) are referred to as the

extensions of Q in F ∗. Note that

Q∗ =
h⋂

i=1

(Q∗)ni
.
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170 DOUGLAS GEOFFREY NORTHCOTT

As the (Q∗)ni
(i = 1, . . . , h) are integrally closed geometric local integral domains over k,

they are analytically irreducible. We denote the fields of fractions of the completions Q̂ and
(̂Q∗)ni

(i = 1, . . . , h) by K and K∗
i (i = 1, . . . , h), respectively.

The completion Q̂∗ of the semi-local ring Q∗ need not be an integral domain, but it is
reduced; its full ring of fractions K∗ is therefore isomorphic to a direct product of fields; in
fact, it follows from 〈7, Proposition 8〉 that K∗ ∼= ∏h

i=1 K∗
i .

Most of the main new results of [9] can be summarized in the following theorem.

Theorem 2.1.2 (Northcott [9, Theorems 4–8]). We use the notation of 2.1.1.

(i) For each i = 1, . . . , h, the topological closure of Q in (̂Q∗)ni
can be identified with the

completion Q̂ of the local ring Q, and (̂Q∗)ni
is a finitely generated Q̂-module. Consequently,

the degree [K∗
i : K] is finite; this degree, denoted by ni, is defined to be the local degree of

(Q∗)ni
over Q.

(ii) We have n = n1 + . . . + nh.
(iii) An element of F is integral over Q if and only if it is integral over Q̂.

(iv) An element of F ∗ is integral over Q if and only if it is integral over (̂Q∗)ni
for all

i = 1, . . . , h.

It should be noted that, in order to prove part (iii) of Theorem 2.1.2, Northcott used a result
from [10] which showed that, for elements θ1, . . . , θn ∈ F , each prime ideal P of Q[θ1, . . . , θn]
for which P ∩ Q = m is the contraction to Q[θ1, . . . , θn] of a prime ideal of Q̂[θ1, . . . , θn].

Paper [12] is the most important of the above-mentioned five papers. It depends on the
results of [9], and so we again employ the notation introduced in 2.1.1, but we here make the
additional assumption that Q is integrally closed. (Recall Zariski’s result, mentioned above,
that an integrally closed geometric local integral domain (over a field k) is automatically
analytically irreducible.) An interesting point about [12] is that some of the results Northcott
obtained in that paper, such as Proposition 2, indicate that Q̂ behaves very much as if it were
integrally closed. Northcott wrote [12] without knowing that Q̂ is integrally closed; however,
by the galley proof stage, a paper 〈23〉 of Zariski containing a proof that Q̂ is integrally closed
had appeared, and Northcott added ‘in proof’ an additional theorem (described below) that
depended on Zariski’s result.

Theorem 2.1.3 (Northcott [12, Theorems 9–11]). Let the situation and notation be as
in 2.1.2. In addition, let F ′ be a finite extension field of F ∗, and note that, then, the set of
extensions of Q in F ′ is precisely the union of the sets of extensions of the h rings (Q∗)ni

(i =
1, . . . , h) in F ′; note also that the extensions of Q in F ∗ are precisely the intersections with F ∗

of the extensions of Q in F ′.
(i) Let Q′ be a local geometric subring of F ′ (over the field k) having F ′ as its field of

fractions. Denote the maximal ideal of Q′ by m′. Then Q′ is an extension of Q in F ′ if the
following four conditions are satisfied:

(a) Q ⊆ Q′;
(b) Q′m is m′-primary;
(c) κQ′ is a finite extension field of κQ; and
(d) Q′ is integrally closed.

(ii) Now suppose that Q is a regular local ring and let Q′ be an extension of Q in F ′ that
is also regular. Then the local degree of Q′ over Q is equal to [κQ′ : κQ]λ, where λ denotes the
length of the Q′-module Q′/Q′m.

 14692120, 2009, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s/bdn097 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [30/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



OBITUARY 171

(iii) Furthermore, if all the extensions of Q in F ′ are regular, then the integral closure of Q
in F ′ can be generated, as a Q-module, by [F ′ : F ] elements.

Northcott pointed out that an important special case of [12, Theorem 9] can be translated
without difficulty into Zariski’s Main Theorem on birational correspondences; he illustrated
his theory by detailed consideration of Bezout’s Theorem.

The additional theorem that Northcott added to [12] at proof stage, after Zariski’s result
that Q̂ is integrally closed had been published, concerned unramified extensions of Q in F ′. In
the situation, and with the notation, of Theorem 2.1.3 above, we say that an extension Q′ of
Q in F ′, having field of fractions F ′ and maximal ideal m′, is unramified if κQ′ is a separable
extension of κQ and the local degree of Q′ over Q is equal to [κQ′ : κQ]; Northcott’s result
‘added in proof’ showed that, if Q′ is an extension of Q in F ′ such that κQ′ is a separable
extension of κQ, then Q′ is an unramified extension of Q if and only if Q′m = m′.

As mentioned earlier, the London Mathematical Society awarded Northcott its 1953 Junior
Berwick Prize for paper [12]. During the remainder of the 1950s, Northcott’s reputation
as an expert in the algebra underlying the ‘pre-Grothendieck’ era of algebraic geometry
continued to grow: he gave an invited lecture at the Algebraic Geometry Symposium at the
1954 International Congress of Mathematicians in Amsterdam on ‘Specialization methods in
algebraic geometry’, and, when he was elected to Fellowship of the Royal Society in 1961, he
was cited as ‘the foremost authority in [the UK] on the modern methods introduced by Zariski
and Weil into the study of abstract algebraic geometry’.

2.2. General commutative Noetherian rings and local rings

Already in the early 1950s, some of Northcott’s work was concerned with general (commutative
Noetherian) local rings. Paper [11] is a brief note that presents a short proof of Krull’s result
that, if a is a proper ideal of a local ring R, and r ∈ R, then r ∈ ⋂∞

n=1 an if and only if there
exists a ∈ a such that r = ar. This has the consequence that, if 0 = q1 ∩ . . . ∩ qt is a minimal
primary decomposition of the zero ideal of R, then

∞⋂
n=1

an =
t⋂

i=1
(1+a)∩√

qi=∅

qi

provides a minimal primary decomposition of
⋂∞

n=1 an.
Paper [13] is a straightforward and clear account of the theory of the Hilbert–Samuel

polynomial in the geometric case, written just after Samuel’s thesis 〈17〉 had become available.
In [16], Northcott gave an alternative proof of Cohen’s Theorem 〈8, Theorem 21〉 that a

proper ideal a of a regular local ring that can be generated by ht a elements must be unmixed.
This presaged Northcott’s later interest in the foundations of the theory of Cohen–Macaulay
rings.

For many commutative algebraists around the world, the names of ‘Northcott’ and ‘Rees’ fit
together very naturally, on account of their joint paper [18], which, citation indices suggest, is
by some distance Douglas Northcott’s most cited research paper. In this paper, Northcott and
Rees introduced reductions of ideals. This concept, and the related concept of integral closure,
have had a major influence on research in commutative algebra in the more than 50 years
since they were introduced; indeed, there have been frequent mentions of them at top-level
international conferences in commutative algebra in the early years of the 21st century, and
Irena Swanson’s and Craig Huneke’s book 〈19〉 Integral closures of ideals, rings and modules
has recently appeared in the London Mathematical Society’s Lecture Note Series.
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172 DOUGLAS GEOFFREY NORTHCOTT

Let R be a commutative Noetherian ring (with identity), and let b and a be proper ideals
of R. The ideal b is said to be a reduction of a precisely when b ⊆ a and there exists s ∈ N0

(the set of non-negative integers) such that bas = as+1; then the least such s is called the
reduction number of a with respect to b. One can view such a b as an approximation to a
which nevertheless retains some of the properties of a: for example, a prime ideal p of R is a
minimal prime ideal of a if and only if it is a minimal prime ideal of b, and when that is the
case, the multiplicity of a corresponding to p is equal to the multiplicity of b corresponding to p.

The ideal b is said to be a minimal reduction of a if and only if b is a reduction of a and
there is no reduction c of a with c ⊂ b (the symbol ‘⊂’ is reserved to denote strict inclusion).
Also, an ideal which has no reduction other than itself is called a basic ideal.

Most of [18] is written under the hypothesis that R is a local ring Q with infinite residue
field, and so that hypothesis will be in force until further notice; also m will denote the maximal
ideal of Q. Northcott and Rees defined the analytic spread �(a) of a; this turns out to be equal
to the dimension of G(a)/mG(a), where G(a) denotes the associated graded ring

⊕
i∈N0

ai/ai+1

of a. They proved that every reduction of a requires at least �(a) generators, that a reduction
of a is a minimal reduction of a if and only if it can be generated by �(a) elements, and that
each reduction of a contains a minimal reduction of a. Thus all minimal generating sets of all
minimal reductions of a have exactly �(a) elements.

They went on to show that �(a) also admits the following interpretation. Elements v1, . . . , vt ∈
a are said to be analytically independent in a if and only if, whenever h ∈ N (the set of positive
integers) and f ∈ R[X1, . . . , Xt] (the ring of polynomials over R in t indeterminates) is a
homogeneous polynomial of degree h such that f(v1, . . . , vt) ∈ ahm, then all the coefficients
of f lie in m. Then if b is a reduction of a, dimQ/m(b/mb) =: t and {v1, . . . , vt} is a minimal
generating set for b, it turns out that b is a minimal reduction of a if and only if v1, . . . , vt are
analytically independent in a. Consequently, �(a) is equal to the largest number of elements of
a that are analytically independent in a, and

ht a � �(a) � dimQ/m(a/ma).

Also in [18], Northcott and Rees established the fundamental connections between reductions
and integral closures. The relevant work in [18] was developed for ideals in the local ring Q
with infinite residue field, but that hypothesis is unnecessarily restrictive, and so we now return
to the general commutative Noetherian ring R. We say that r ∈ R is integrally dependent on
the ideal b of R if and only if there exist n ∈ N and c1, . . . , cn ∈ R with ci ∈ bi for i = 1, . . . , n
such that

rn + c1r
n−1 + . . . + cn−1r + cn = 0.

(In fact, in [18] Northcott and Rees eschewed the terminology ‘integrally dependent’ that had
been used by earlier authors in favour of ‘analytically dependent’; however, the terminology
‘integrally dependent’ became standard.)

Let b ⊆ a be ideals of R. Then b is a reduction of a if and only if each element of a is
integrally dependent on b. Furthermore, the set I of all ideals of R which have b as a reduction
has a unique maximal member, b say: b is the union of the members of I, and this ideal b is
precisely the set of all elements of R which are integrally dependent on b. The ideal b is called
the integral closure of b; it has the property that the ideals of R which have b as a reduction
are precisely those between b and b.

As mentioned above, the appearances in the literature of the concepts of reduction and
integral closure in the half-century since Northcott and Rees published [18] are manifold. One
enduring reason for this is provided by the links between integral closures and the theory of
tight closure introduced by M. Hochster and C. Huneke in 〈11〉. Hochster and Huneke were
able to use their new theory to give a short proof (in the case where the local ring concerned
has prime characteristic) of a generalization (see 〈11, Theorem 5.4〉) of the following result
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OBITUARY 173

of J. Lipman and A. Sathaye, which is itself a generalization of a result of J. Briançon and
H. Skoda 〈3〉 about the ring of convergent power series C{Z1, . . . , Zn} in n indeterminates
Z1, . . . , Zn.

Theorem 2.2.1 (J. Lipman and A. Sathaye 〈13〉). Let Q be a regular local ring, and let a
be a proper ideal of Q that can be generated by t elements. Then an+t ⊆ an+1 for all n ∈ N0.

However, some of the ongoing uses of reductions of ideals in commutative algebra concern
avenues of research that were initiated by Northcott himself. One such concerns the coefficients
of the Hilbert function of an m-primary ideal q in a d-dimensional local ring Q, where m
denotes the maximal ideal of Q and d � 1. For large values of the integer n, the length
LQ(Q/qn) behaves like a polynomial in n; indeed, there exist integers e0(q), . . . , ed(q), called
the normalized Hilbert coefficients of q, such that

LQ(Q/qn) =
d∑

i=0

(−1)iei(q)
(

n + d − i − 1
d − i

)
for all large n.

The positive integer e0(q) is the multiplicity of q. In [43], Northcott used reductions to prove
that, when Q is Cohen–Macaulay, the m-primary ideal q can be generated by a system of
parameters if and only if e1(q) = 0, and, when that is the case, e2(q) = . . . = ed(q) = 0 also.
Over the years since the appearance of [43], numerous mathematicians have published papers
that build on this work of Northcott, and the concept of reduction number appears in quite a
few of them.

2.3. Developments facilitated by homological algebra

The late 1950s saw dramatic developments in commutative algebra, many of which arose
from the use of homological algebra as an effective tool for the study of commutative rings.
Northcott’s papers from the 1950s and early 1960s show that he was also involved, to a
greater or lesser extent, in many fundamental developments where homological algebra can
play a valuable rôle. For example, two further joint papers by Northcott and Rees, [34, 36],
presented arguments very relevant to the development of the theories of Cohen–Macaulay rings
and Gorenstein rings.

Rees had introduced the concept of grade in 〈16〉: in that paper he showed that all maximal
regular sequences in a proper ideal a of a commutative Noetherian ring R have the same
length, and called their common length the grade of a. He achieved this result, which has
turned out to be absolutely fundamental in commutative algebra, by a pioneering use of his
application of homological algebra in 〈15〉, for he showed that grade a is equal to the least
integer i such that Exti

R(R/a, R) 	= 0. In [34], Northcott and Rees provided an elementary
approach to the theory of grade that avoids the use of homological algebra. That paper also
contains a systematic approach to the theory of semi-regular rings (nowadays called Cohen–
Macaulay rings in recognition of seminal works by F. S. Macaulay 〈14〉 and I. S. Cohen 〈8〉),
a theme that had interested Northcott earlier (see [16, 30]), and was to interest him later
(see [44]).

Northcott and Rees also contributed to the basic theory of Gorenstein rings, because the last
of their joint papers, [36], contains the theorem that a local ring in which every ideal generated
by a system of parameters is irreducible must be Cohen–Macaulay, and this theorem was an
important ingredient in H. Bass’s characterization of Gorenstein local rings in his seminal
‘ubiquity’ paper 〈2〉.

In [35], Northcott provided a short and elementary proof of the (already known) fact that
the polynomial ring K[X1, . . . , Xn] in n indeterminates with coefficients in a field K has global
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174 DOUGLAS GEOFFREY NORTHCOTT

dimension n. In [38], he again studied a polynomial ring S := R[X1, . . . , Xn], but in this paper
R is only assumed to be a commutative ring; his main result in [38] is that, if P ∈ Spec(S) and
p := P ∩ R, then SP is a regular local ring if and only if Rp is a regular local ring. Nowadays,
one has the standard theory of fibre rings of flat ring homomorphisms with which to approach
such questions.

Another example of Northcott’s work in this area is provided by his paper [33], where he
showed that, for a d-dimensional Cohen–Macaulay local ring Q, there exists a positive integer
r such that every decomposition, as an irredundant intersection of irreducible ideals, of each
ideal of Q that can be generated by a system of parameters has precisely r terms. Although
Northcott’s proof did not use homological algebra, nowadays the integer r is called the type
of Q, and is known to be equal to the dth Bass number of Q with respect to its maximal ideal
m, that is, the dimension of Extd

Q(Q/m, Q) as a vector space over the residue field of Q.

2.4. The Eagon–Northcott complex and generic perfection

A glance at Northcott’s full list of publications shows that he was involved in comparatively
few collaborations. However, some of them deserve mention in this obituary. The collaboration
between Northcott and David Rees has already been described in some detail in § 2.2 and § 2.3
above. Also noteworthy is the collaboration between Northcott and J. A. (‘Jack’) Eagon that
resulted from substantial visits made by Eagon to Sheffield, the last of which was in 1972–
1973. One result of this collaboration was the famous Eagon–Northcott complex, which was
presented in [53] and which is described as follows.

Let R be a commutative ring (with identity), and let

A :=

⎡
⎢⎢⎢⎣

a11 a12 . . . a1r

a21 a22 . . . a2r

...
...

. . .
...

as1 as2 . . . asr

⎤
⎥⎥⎥⎦

be an s × r matrix with entries in R, where s � r. Let I be the ideal of R generated by the
s × s minors of A.

Let K be the exterior algebra over R generated by X1,X2, . . . , Xr. Then, for each integer k
with 1 � k � s, the kth row of A determines a differentiation Δk on K for which

Δk(Xi1Xi2 . . . Xin
) =

n∑
µ=1

(−1)µ+1akiµ
Xi1 . . . X̂iµ

. . . Xin

for all choices of n distinct integers i1, . . . , in from {1, 2, . . . , r}, where X̂iµ
indicates omission

of Xiµ
.

Next, let Y1, Y2, . . . , Ys be s new indeterminates, and, in the ring R[Y1, Y2, . . . , Ys] of
polynomials, let Φn be the R-module consisting of all forms of (total) degree n. The
Eagon–Northcott complex RA has the form

· · · −→ RA
r−s+1

dr−s−→ RA
r−s −→ · · · −→ RA

1
d0−→ RA

0 = R −→ 0 −→ · · · ,

where RA
q+1 = Ks+q ⊗R Φq for each q = 0, 1, . . . , r − s, and, for q > 0, whenever i1, . . . , is+q are

integers such that 1 � i1 < . . . < is+q � r and v1, . . . , vs are non-negative integers such that
v1 + . . . + vs = q, then

dq(Xi1 . . . Xis+q
⊗ Y v1

1 . . . Y vs
s ) =

s∑
j=1
vj>0

Δj(Xi1 . . . Xis+q
) ⊗ Y v1

1 . . . Y
vj−1
j . . . Y vs

s ;

 14692120, 2009, 1, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s/bdn097 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [30/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



OBITUARY 175

for q = 0,

d0(Xi1 . . . Xis
⊗ 1) = det

⎡
⎢⎢⎢⎣

a1i1 a1i2 . . . a1is

a2i1 a2i2 . . . a2is

...
...

. . .
...

asi1 asi2 . . . asis

⎤
⎥⎥⎥⎦ .

When the original matrix A has only a single row, the Eagon–Northcott complex RA is,
essentially, the Koszul complex generated by that row. Among the applications of this complex
is the elegant result that, when R is Noetherian and I is proper, then grade I � r − s + 1, and,
when grade I = r − s + 1, then the R-module R/I has projective dimension r − s + 1 and the
Eagon–Northcott complex RA provides a free resolution of R/I of shortest possible length.

The work in the area of the Eagon–Northcott complex yielded an example of a ‘generically
perfect ideal’, in the terminology of [64], also a joint paper by Eagon and Northcott. In fact,
generically perfect ideals and modules, and ‘strongly generically perfect’ modules formed a
recurring theme in several of Northcott’s papers from the 1960s and early 1970s, including
[64, 66, 69]. Let Λ be a commutative Noetherian ring, and let S := Λ[X1, . . . , Xn], where
X1, . . . , Xn are indeterminates over Λ. Let M be a non-zero Noetherian S-module. If R is any
(commutative) Noetherian Λ-algebra, then R ⊗Λ M becomes a module over R ⊗Λ S (which is
naturally isomorphic to R[X1, . . . , Xn]) in an obvious way. We use ‘pd’ to denote projective
dimension. We say that M is strongly generically perfect over Λ if M is flat over Λ, and there is
an integer g such that, for every commutative Noetherian Λ-algebra R such that R ⊗Λ M 	= 0,
we have

grade(0 :R[X1,...,Xn] R ⊗Λ M) = pdR[X1,...,Xn] R ⊗Λ M = g.

We say that M is merely generically perfect over Λ if M is perfect, that is gradeS M = pdS M ,
and flat over Λ. Melvin Hochster pursued this line of investigation and showed in 〈9〉 that if
M is generically perfect over Λ, then it is strongly generically perfect over Λ.

Subsequently, in 〈10〉, Hochster extended results from this theory to non-Noetherian situa-
tions; to do so, he developed a theory of grade for non-Noetherian rings that led to Northcott’s
description of ‘polynomial grade’ in Chapter 5 of his book Finite free resolutions [79].

Acknowledgements. This obituary is based on an article by the present author and David
Rees which appeared in Biographical Memoirs of Fellows of the Royal Society 53 (2007) 247–
263, and I am grateful to both Professor Rees and the Royal Society for permission to use that
material.

Prior to his death, Douglas Northcott had prepared some historical notes about his early
life and his experiences during the Second World War, and he left instructions for these to be
forwarded to the Royal Society after his death. I am very grateful to the Royal Society, and to
Douglas Northcott’s daughter Pamela Raynor, for allowing me to use these notes.

The photograph at the beginning of the obituary is reproduced with the kind permission of
the University of Sheffield.
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(1951) 159–205 and 207–274.
〈18〉 R. Y. Sharp (ed.), Commutative algebra: Durham 1981, London Mathematical Society Lecture Note

Series 72 (Cambridge University Press, Cambridge, 1982).
〈19〉 I. Swanson and C. Huneke, Integral closure of ideals, rings and modules, London Mathematical Society

Lecture Note Series 336 (Cambridge University Press, Cambridge, 2006).
〈20〉 A. Weil, ‘L’arithmétique sur les courbes algébriques’, Acta Math. 52 (1929) 281–315.
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