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member of the Edinburgh Mathematical Society. He was made an
honorary member of the London Mathematical Society in 1924.

In preparing this notice I have received valuable assistance from
Dr. Enrico Volterra, Prof. Beniamino Segre, Sir Arthur Eddington, Mr.
L. A. Pars, and Prof. E. T. Whittaker.

EMILE PICARD
J. HADAMARD.

Avec la mort d’Emile Picard, le 12 Décembre 1941, une des plus grandes
personnalités de la science contemporaine a disparu.

Charles Emile Picard* naquit & Paris le 24 Juillet 1856. Au Lycée
Henri IV (en ce temps-1& Lycée Napoléon) ol il fit ses études secondaires,
il excellait en version grecque, en vers latins, en histoire, mais détestait
délibérément la géométrie, qu’il apprenait par coeur, pour éviter les
punitions! Au contraire, & 1’4ge de 15 ans, lorsque, dans la classe de
seconde, il fit connaissance avec ’algébre, il fut aussitét fortement séduit,
tendance qu’il garda toute sa vie. Cependant, deux ans plus tard, dans
la classe de mathématiques, il avait cessé d’étre rebelle & la géométrie;
ses maftres se formérent rapidement une haute opinion de lui: ils eurent
a triompher des hésitations de sa mére pour lui faire poursuivre une carriére
scientifique. Comme tout jeune frangais de notre époque possédant des
dons scientifiques, il eut & choisir entre I'Ecole Polytechnique, préparant
en principe & des carrit¢res d’ingénieurs, et I’Ecole Normale consacrée & la
science pure. Il se décida en faveur de cette derniére, ol il fut regu
premier: on dit que cette décision fut prise aprés une émouvante visite
4 Pasteur, dans laquelle le pére de la bactériologie parla de la science pure
ot désintéressée en termes si nobles que son jeune interlocuteur fut
définitivement convaincu.

Emile Picard passa & I'’Ecole Normale Supéricure les trois années
réglementaires, de 1874 & 1877, puis fut nommé “agrégé préparateur”
pour I’'année scolaire 1877-1878. Entre temps, il avait obtenu le titre de
Docteur avec une thése sur les ‘“ Applications des complexes linéaires &
I’étude des surfaces et des courbes gauches .

Immédiatement aprés sa quatriéme année d’Ecole Normale, il fut
nomms§ & 1'Université de Paris, & titre temporaire cependant : car année

* Cette notice est conforme au texte angl.is qui a paru dans les Proceedings of the
Royal Society. 'Toutefois, ce qui est rel:tif aux cources et surfaces algébriques ainsi
qu’aux trinscend ntes qui leur sont attachées est dfi 4 M. Claude Chevalley, que je tiens
A remercier ici de sa - - cieuse collaboration..
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suivante (Novembre 1879), il était envoyé & 'Université de Toulouse dont
le doyen, Baillaud, avait demandé sa venue et écrivit plus tard que “ cette
nomination avait été la véritable cause du développement scientifique de
la Faculté des Sciences ”’. Mais en Octobre 1881 il fut rappelé 4 1'Université
de Paris, & laquelle il appartint jusqu’a sa retraite: il y fut nommé Chargé
de Cours & peu prés en méme temps que Poincaré et Appell, ses contem-
porains. Peu aprés, tous trois devinrent Professeurs titulaires, & I’dge de
trente ans requis par les réglements. Des nominations aussi rapides &
I'Université de la capitale de la France n’auraient guére été possibles
quelques années plus tard: on doit dire qu’elles eurent lieu non seulement
en raison de la haute valeur des trois savants, mais aussi en raison du
fait que la carriére universitaire était notablement moins encombrée qu’elle
ne 'est devenue depuis.

Les quatre premiéres années qui suivirent le retour de Picard & la
Sorbonne furent consacrées a 1’enseignement de la mécanique rationnelle ;
il en fut de méme de son enseignement a I'Ecole Normale pendant ’année
scolaire 1885-1886, oi1 ’auteur de ces lignes eut la bonne fortune de suivre
ses conférences. Elles étaient pleines d’idées et de théories suggestives,
faisant contraste avec le programme, assez ennuyeux & cette époque, de
la mécanique classique. Picard aimait & dire combien fructueuse avait
été pour son travail ultérieur cette incursion dans le domaine de la
mécanique, comme le fut sa nomination analogue (1934) & I’Ecole Centrale
de Paris.

Aprés avoir été transféré & la chaire de calcul différentiel et intégral
4 la Sorbonne (1886-1897), il occupa, & partir de 1897, la chaire d’algébre
ot analyse supérieures: tlche plus lourde, puisqu’il avait & changer de
sujet chaque année et & passer en revue les parties les plus difficiles de la
science contemporaine, mais tdche des plus intéressantes pour lui, qui lui
permit d’exercer pendant des années une influence puissante sur tous les
jeunes mathématiciens frangais.

Picard devint membre de 1’Académie des Sciences de Paris en 1889
ot fut aussi membre de nombreuses Académies et Sociétés scientifiques
étrangéres. Il fut élu membre honoraire de cette Société en 1898 et de
la Société Royale de Londres en 1909.

En 1917, aprés que sa vie eut été cruellement assombrie par la perte
de son fils tombé au champ d’honneur, un nouveau sphére d’activité
g’ouvrit pour lui par sa nomination de Secrétaire perpétuel de I’Académie
des Sciences. Il était merveillousement qualifié pour ces nouvelles
fonctions, grice & sa vive intelligence capable de s’attaquer et de s’intéresser
a tous les ordres de sujets, et c’est ainsi qu’au cours d’une croisiére en
Egypte il se mit & 1’étude des hiéroglyphes,

12
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Quelques années plus tard (1924), il fut élu & 1’Académie frangaise, &
un siége que cette Académie de destination littéraire a coutume de réserver
& des savants et qui avait été vacant depuis la mort de Poincaré. En
1937, il requt une haute récompense internationale, la médaille Mittag-
Leffler.

Il n’est pas possible de passer en revue tous les aspects de I’ceuvre
étendue et variée de Picard: nous nous limiterons aux productions les plus
marquantes, en omettant parfois des contributions importantes.

Son premier travail, sa thése, traite de questions géométriques. Sans
étre une de ses oeuvres les plus remarquables, elle contient déja plusieurs
resultats élégants et aujourd’hui classiques, tels qu’une propriété impor-
tante de I'équation de Riccati et son application aux lignes asymptotiques
des surfaces réglées. Peu aprés, il démontra que la seule surface algébrique,
4 l'exception des surfaces réglées unicursales, dont toutes les sections
planes soient unicursales est la surface de Steiner. C’était le temps ol
tous les jeunes normaliens étaient séduits par le prestige de Darboux;
mais plus tard, comme Iy portait son tempérament, il devint et resta un
pur analyste. En cela, il peut avoir été quelque peu influencé par Hermite,
qui exerc¢a aussi sur lui une action puissante et durable. Hermite, avec
lequel il ne cessa d’étre en étroite communion d’idées, et dont la fille devint
sa femme (1890), était un fervent de l’analyse plutot que de la géométrie.
En fait, Picard, aprés son résultat ci-dessus mentionné sur la surface de
Steiner, ne s’occupa plus de géométrie, car nous ne saurions compter
parmi les recherches géométriques celles qui concernent la géométrie
algébrique et dont les méthodes appartiennent en réalité a 1’algébre et
I’analyse.

Le caractére distinctif des travaux de Picard sur la théorie des fonctions
algébriques est ’'exploitation systématique de ce que1’on appelle aujourd’hui
les méthodes ‘‘transcendantes”. C’était déja le point de vue auquel
g’était placé Riemann dans la théorie des courbes; par contre, Noether
et les géométres italiens influencés par lui avaient principalement développé
les méthodes algébraico-géométriques, aussi bien dans ’étude des courbes
que dans celle qu’ils avaient inaugurée, des surfaces. Les recherches de
Picard se rapportent au contraire 3 la théorie des intégrales de différentielles
rationnelles sur les surfaces, généralisant les intégrales abéliennes attachées
& une courbe.

Quand on passe d’une & deux variables, les intégrales & considérer se

répartissent en deux catégories: les intégrales simples Isz—{—Qdy, les
intégrales doubles H Pdzdy. Seules celles de la seconde catégorie avaient
ét6 considérées briévement par Noether. La raison en est probablement
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que la considération des intégrales simples n’est fructueuse que si, avec
Picard, on se limite aux différentielles Pdx+@dy qui sont localement
(mais non globalement) des différentielles exactes. Ce n’est que pour de
pareilles intégrales que 1’on peut définir des périodes analogues aux périodes
d’une intégrale abélienne sur une courbe. Encore faut-il pour cela. faire
usage de la topologie de la surface algébrique, considerée comme une
variété & quatre dimensions réelles. C’est pourquoi le second chapitre de
la Théorie des fonctions algébriques de deux variables indépendantes par
Picard et Simart (dont le premier volume parut en 1897) traite de la
Géometrie de situation, & laquelle Poincaré venait, deux ans auparavant,

de consacrer son mémoire bien connu dans lo Journal de I'Eeole Poly-
technique.

Ayant posé la définition correcte des intégrales simples sur la surface,
Picard procéde a leur classification en intégrales de premiére, seconde et
troisiéme espéce. Il constate qu’une surface *“générale” ne posséde pas
d’intégrales de premiére ou de seconde espéce. Il montre que la question
de savoir si une surface donnée admet des intégrales de premiére espéce
dépend de celle de la nature analytique des solutions d’une certaine
équation différentielle attachée & la surface. Si une surface posséde des
intégrales de premiere espéce, le nombre de ces intégrales qui sont linéaire-
ment indépendantes est un invariant birationnel de la surface; cet
invariant g est égal & l'irrégularité de la surface, différence entre son genre
géométrique et son genre arithmétique; il peut aussi se caractériser par le
fait que la surface contient un systeme algébrique de courbes qui se compose
d’une famille & ¢ parametres de systémes linéaires. Le nombre 2g est
égal au nombre des intégrales simples de seconde espéce linéairement
indépendantes ; il est aussi égal au premier nombre de Betti de la surface.
La démonstration des théorémes trés profonds que nous venons d’énoncer
a requis les efforts simultanés de Humbert, Enriques, Severi, "Picard et
enfin (pour le pas decisif) Poincaré.

La considération des intégrales simples de troisiéme espéce a conduit
Picard & la définition d’un nouvel invariant, généralement connu sous le
nom de ‘“‘nombre p’’ (invariant relatif, I'invariance ayant seulement lieu
pour les transformations birationnelles sans singularités).

p courbes tracées sur la surface peuvent toujours étre prises comme
courbes logarithmiques d'une intégrale de troisiéme espéce, tandis qu’il
est impossible de trouver une intégrale admettant p—1 courbes arbitraires
comme courbes logarithmiques. L’invariant p est intervenu & un tout
autre point de vue dans les recherches de Severi (théoréme de la base):

.1l caractérise la structure de 1’ensemble des systémes complets de courbes
sur la surface. Une circonstance surprenante, découverte par Picard, est

LONIPUOD PUe SWIS | 84} 385 *[5202/0T/82] Uo ARiqiTauluo A|IM ‘AIsBAIUN SMBIPUY 1S JO AISIBAIUN AQ ¥TT'2'ST-TSAWII/ZTTT 0T/I0p/W0d A8 | 1M Afe.q 1 Bul U0 00SUeLUpUO |//Sdy WOl papeojumod ‘2 ‘sv6T ‘052269 T

[ AeiqipulL

5UB017 SUOWILLOD) BAIEaID) 3|gea ! [dde auy Aq pausenoh afe sap e WO ‘88N JO sajni Joy Aiq 1 aunuQ £a|1Im uo



118 E. Proagp.

que le nombre p dépend de propriétés arithmétiques des coefficients de
Péquation qui définit la surface.

Le nombre p apparait aussi dans la théorie des intégrales doubles de
seconde espéce. Picard dit que la différentielle double Pdxzdy est de seconde
espéce quand elle est partout (localement) la dérivée extérieure d’une
différentielle simple. Picard a réussi & déterminer le nombre des intégrales
doubles de seconde espéce distinctes; la valeur de ce nombre dépend du
nombre p.

Les travaux de Picard sur la théorie des fonctions algébriques de deux
variables forment aujourd’hui I'un des aspects essentiels de cette branche
des mathématiques. Les résultats de ces travaux se trouvent d’ailleurs
dans une large mesure amalgamés avec ceux des travaux de 1’école pure-
ment géométriste italienne dans les travaux de Severi. Un autre aspect
fondamental de la théorie est I’aspect topologique. Les premiers linéa-
ments de la theorie topologique des surfaces algébriques se trouvent, comme
nous 'avons déja dit, chez Picard. Les résultats essentiels ont été depuis
obtenus par Lefschetz qui a notamment donné une interprétation topo-
logique au nombre p de Picard.

On voit combien féconde pour la marche ultérieure de la science a été
Poeuvre de Picard en géomeétrie algébrique. Independamment des con-
séquences directes dont nous venons d’énumérer les principales, d’autres
plus lointaines peuvent étre signalées. C’est ainsi que la théorie des
intégrales de premiére espéce repose sur la considération de 1’équation
différentielle & laquelle satisfont les périodes de ces intégrales sur une
courbe qui varie dans un faisceau linéaire. Or cette équation, qui est du
type de Fuchs, posséde des propriétés analytiques remarquables.

Tout cela découle des résultats contenus dans le mémoire qui remporta
en 1888 le Grand Prix des Sciences Mathématiques & I’Académie des
Sciences de Paris, ainsi que dans la Théorie des fonctions algébriques de
deux variables independantes en deux volumes, parue en 1897 et 1906,
ouvrages qui ont été fondamentaux dans ce chapitre de la science.

Par la suite, tout en vouant son fructueux labeur & d’autres branches
de I’analyse, Picard ne perdit jamais complétement de vue celle-la. Iy
revint fréquemment dans son enseignement d’‘algébre et analyse
supérieures ”’ & la Sorbonne et, dans la derniére période de sa vie, il lui
consacra son ouvrage intitulé Quelques applications analytiques de la théorie
des courbes et des surfaces algébriques publié dans les Cahiers scientifigues de
Julia (Paris, 1931) et qui, lui aussi, est un instrument de travail essentiel
4 quiconque s’intéresse & ces difficiles théories.

Le titre de cet ouvrage ne correspond pas & proprement parler & son
contenu qui consi-fr plutot dans les :pplications de I’analyse & I’étude des
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courbes et des surfaces algébriques. Il n’est pas inutile de mentionner ce
fait, car, & 'heure actuelle, la Géometrique algébrique a trouvé des applica-
tions analytiques d’un intérét tout particulier. Cette étude des courbes
ot des surfaces algébriques, qui avait longtemps été un domaine fermé
sur Iui-méme, a cessé de 1'étre depuis les travaux de Fredholm et de ses
successeurs—comme Herglotz, Zeilon, Florent Bureau—sur la solution
élémentaire des équations linéaires aux dérivées partielles d’ordre quel-
conque. Se bornant aux équations & coefficients constants dépourvues
de termes d’ordre inférieur (auxquelles le cas général peut se ramener a
Paide d’équations intégrales), Fredholm a montré que, pour les équations
a trois variables indépendantes, la solution cherchée introduit des intégrales
abéliennes étendues & une certaine courbe algébrique. De méme, le
traitement des équations & quatre variables introduirait une surface
algébrique et les intégrales doubles correspondantes et ainsi de suite, la
considération d’hypersurfaces devenant nécessaire lorsque le nombre des
variables dépasse quatre. Ceci, nous le voyons, donne une signification
nouvelle aux recherches de Picard, puisque les propriétés des domaines

algébriques gouvernent des problémes de calcul intégral dont I’énoncé

n’implique pas de domaines de cette espéce.

La théorie des ‘équations différentielles doit & Picard une méthode
nouvelle et des plus fécondes pour démontrer l'existence des solutions.
Cette méthode des approximations successives qui, dans le cas des équations
différentielles ordinaires, remplace avantageusement la méthode dite de
Cauchy-Lipschitz, consiste essentiellement & écrire les équations données,
combinées avec les conditions initiales, sous forme d’équations intégrales
de seconde espéce (linéaires ou non suivant que les équations différentielles
le sont ou non elles-mémes) oti, sous les signes d’intégration, les inconnues
sont, dans chaque approximation, remplacées par leurs valeurs déduites
de lapproximation précédente. Cette méthode se montre d’une re-
marquable puissance*; son application ne se limite pas aux équations
différentielles ordinaires (ou elle a déja été employée & deux sortes de
problémes), mais se montre d’une portée chaque jour plus générale. Avec
son aide, Picard a résolu plusieurs importants problémes concernant les
équations aux derivées partielles et les équations fonctionnellest.

* Sa souplesse o recu une nouvelle extension dans les récents travaux de Hans Levy
(1927-1929).

1 Les solutions sont obtenues dans ces divers cas par approximations convergentes.
Toutefois un fait des plus curieux signalé par Picard est que l'on peut tomber sur deg
approximations qui divergent et conduisent & deux fonctions limites différentes, 1'une
pour les approximations de rang pair, 'autre y our les approximations de rang impair.
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En fait, il n’est pas de chapitre de la théorie des équations aux dérivées
partielles qui ne Iui doive des.progrés essentiels. En ce qui regarde le cas
elliptique, il fut le premier & étendre & des équations de ce type autres que
I’équation ordinaire des potentiels la notion de la solution élémentaire, en
construisant, pour toute équation de la forme Au = C(x, y) », une solution
de la forme v(z, y) log (1/r)+w(z, y), ou v et w désignent des fonctions
réguliéres. Il s’est aussi attaqué a I’équation la plus générale (méme non
linéaire) de ce type et a obtenu pour de telles équations des conditions
suffisantes pour que le probléme de Dirichlet soit déterminé; il a aussi
considéré au méme point de vue le probléme de Neumann relatif & la
dérivée normale. Il put montrer que, dans certains cas trés généraux
dont le plus simple est Au—ku = 0, la théorie se comportait plus simple-
ment que pour I’équation ordinaire du potentiel, grace & la présence d’un
terme en u avec coefficient négatif. Il a également montré que toute
équation linéaire du type elliptique & coefficients analytiques n’a que des
solutions analytiques.

On doit mentionner tout spécialement ses recherches sur 1’équation
Au=¢*, dont les applications sont trés variées: non seulement elles
intéressent la géométrie et la physique mathématique, mais, considérées
sur un surface fermée—plus précisément sur une surface de Riemann—
elles fournissent le meilleur moyen de résoudre un probléme fondamental
de la théorie des fonctions fuchsiennes de Poincaré, permettant d’appliquer
ces fonctions & l’équation différentielle la plus générale a coefficients
algébriques.

Ceci n’est pas le seul cas ol Picard a montré I'intérét qui s’attache
& ’étude d’équations aux dérivées partielles du type elliptique sur des
surfaces fermées: les conditions aux limites disparaissent alors et la
solution est entiérement déterminée, & un facteur constant prés, par la
seule condition d’étre réguliére sur toute la surface.

Mais parmi ces recherches sur le cas elliptique, la plus importante sans
doute est une courte note des Comptes Rendus (1893) sous le titre ‘‘Sur
Péquation aux dérivées partielles qui se présente dans la théorie de la
vibration des membranes”’, note dont la portée n’est pas limitée & cette
équation particuliére, mais s’étend & tout le probléme général des vibrations
harmoniques. Cette question—la question principale de la physique
mathématique depuis le XIXe siécle—était, & cette époque, loin d’étre
résolue. Cependant un premier pas essentiel avait été fait par Schwarz
qui, dans un célébre mémoire, apportant un beau complément aux recherches
primitives de Liouville, avait déterminé la premiére période propre, celle
de la ““ vibration fondamentale ’ ou vibration a fréquence minime. Picard
réussit & étendre ce résultat en formant I’harmonique suivant. Un peu
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plus tard, Poincaré put donner & ce chapitre de la science sa conclusion
en démontrant 'existence de tous les autres harmoniques. Ces mémorables
recherches de Schwarz, Picard et Poincaré forment un tout. Avec le
memoire de Poincaré sur * La méthode de Neumann et le probléme de
Dirichlet ”’, elles ont préparé 'avénement de la théorie des équations
intégrales, qui fut traitée peu aprés (1900) par Fredholm et Hilbert, et a
établi la physique mathématique moderne sur des bases solides. Dans
ce grand résultat, Picard a -eu sa part.

Il se rendit pleinement compte de I'importance de cette nouvelle théorie
des équations intégrales et, dans les années suivantes, I'enrichit de plusieurs
résultats importants. Il étudia plusieurs espéces d’équations de cette
nature qui se comportent de maniére singuliére, ¢’est-a-dire pour lesquelles
la méthode et les résultats de Fredholm ne subsistent plus: il montra,
par exemple, que si l'intervalle d’intégration s’étend & V'infini, il peut
arriver que la nature analytique de la solution dépende du choix du terme
tout connu et cesse d’étre une fonction méromorphe du paramétre qui
multiplie le terme intégral. D’autre part, on lui doit I’étude d’un cas
nouveau et intéressant, I’équation intégrale de troisiéme espece, dans
laquelle la fonction inconnue est, en dehors du signe d’intégration, multipliée
par une fonction donnée de la variable indépendante, fonction susceptible
de s’annuler dans l'intervalle d’intégration. Mais peut-étre sa plus impor-
tante contribution & cette nouvelle branche des mathématiques concerne
la difficile question de I’équation intégrale de premiére espéce, qui au
premier abord se présente sous une forme plus simple que celle de Fredholm,
mais dont, en fait, les propriétés sont beaucoup plus cachées. Picard
réussit & indiquer des conditions nécessaires et suffisantes pout 1’existence
d’une solution.

A la théorie des fonctions harmoniques, il apporta un complément d’une
nature toute différente. Une remarque suggestive d’un jeune géométre,
M. Noaillon, le condusit & rechercher ce qui peut étre affirmé d’une telle
fonction quand on sait qu’elle est de signe constant soit dans tout 'espace,
soit au voisinage d’un point singulier.

Quittant maintenant le type elliptique pour le type hyperbolique,
commengons par une remarque fondamentale sur la méthode de Riemann.
Picard fut le premier & obsérver que cette méthode ne s’applique plus si,
sur la courbe C qui porte les données, les deux coordonnées (I’équation
différentielle étant rapportée & ses caractéristiques) ne sont pas chacune
monotone: la quantité calculée par la formule de Riemann continue &
vérifier 'équation aux partielles, mais non plus les conditions aux limites
sur C.
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En relation avec ce fait fondamental, il fut conduit & résoudre par sa
méthode des approximations successives non seulement le probléme de
Cauchy tel que le traite la méthode de Riemann et celui, & peine distinct
du premier, ou les valeurs de I'inconnue sont données le long de deux
caractéristiques sécantes, mais aussi le probléme, de nature notablement
plus difficile, qui se pose lorsque de telles valeurs sont données le long de
deux lignes sécantes dont une seule est caractéristique: & de tels cas, la
méthode des approximations successives s’applique sans aucune difficulté,
grice au fait que chacun d’eux peut étre ramené & une équation intégrale
du type de Volterra. Il n’est pas inutile de noter que la méthode ne
se limite pas au cas ol I’équation différentielle est linéaire.

Mais en ce qui regarde les équations linéaires hyperboliques & deux
variables indépendantes, un résultat est particuliérement digne d’attention.
Tandis que en général, les théories mathématiques sont de portée lointaine
et ne trouvent leur application qu’aprés des siécles, sinon des millénaires,
il offre un des cas bien rares ol une notion mathématique nouvelle a
immédiatement élucidé et aidé & gouverner un phénoméne observé et
jusque 13 inexpliqué. Il a transformé toute notre conception des ondes.
Considerons par exemple les petites oscillations de 1’air dans un tuyau
cylindrique et supposons que primitivement, & I’origine des temps, le mouve-
ment soit confiné & une petite tranche d’épaisseur . Comme il est bien
connu, ce mouvement initial se propagarera dans les deux sens avec la
vitesse v. Pour les anciens physiciens et jusqu’a une date toute récente,
ceci semblait signifier de maniére évidente qu’a n’importe quel instant
ultérieur ¢, il n’y avait mouvement que dans deux petites tranches de la
méme épaisseur e séparées de la premiére par un distance vt, aucune autre
partie du tuyau, tant du deld de ces tranches qu’entre elles, ne montrant
aucun effet de la perturbation primitive.

Une idée toute semblable était acceptée comme évidente dans la théorie
des ondes sphériques, par exemple en ce qui concerne les perturbations
primitivement confinées au voisinage d’un point, & l'intérieur d’une petite
sphére de rayon e. Pour des ondes se propageant avec la vitesse v, il
semblait évident qu’aprés un intervalle de temps ¢, ’effet de ce mouvement
initial devait intéresser uniquement une couche sphérique d’épaisseur e,
1la couche comprise entre deux sphéres concentriques & la premiére et de
rayons respectifs vz, vi{-¢, & I’exclusion de tout effet aussi bien en dedans
de la sphére intérieure qu’en dehors de la sphére extérieure. Fresnel
lui-méme, I’'immortel fondateur de la théorie des ondes lumineuses, semble
n’avoir jamais congu le moindre doute sur ce point.

Or des perturbations électriques, telles que les produit par exemple
un appareil télégraphique, se propagent aussi le long d’un fil supposé

LONIPUOD PUe SWIS | 84} 385 *[5202/0T/82] Uo ARiqiTauluo A|IM ‘AIsBAIUN SMBIPUY 1S JO AISIBAIUN AQ ¥TT'2'ST-TSAWII/ZTTT 0T/I0p/W0d A8 | 1M Afe.q 1 Bul U0 00SUeLUpUO |//Sdy WOl papeojumod ‘2 ‘sv6T ‘052269 T

[ AeiqipulL

5UB017 SUOWILLOD) BAIEaID) 3|gea ! [dde auy Aq pausenoh afe sap e WO ‘88N JO sajni Joy Aiq 1 aunuQ £a|1Im uo



E. Proasp. 123

parfaitement homogéne avec une vitesse constante v. Un signal émis &
Pinstant ¢{=0 en un point déterminé du fil atteint un poste récepteur
distant de & au bout d’un temps ¢, donné par vt,=d. A ce moment se
produit naturellement l’effet utile: le signal est regu au seconde poste,
aucun effet ne se produisant avant 'instant ¢, Mais les ingénieurs ont
constaté une circonstance tout & fait inattendue, qui est que, aprés cet
effet utile, il en subsiste un autre—effet nuisible naturellement, puisque
susceptible de brouiller les signaux suivants. Ce phénomeéne était com-
plétement imprévu dans les idées. jusque-1d régnantes sur les ondes. Or
Poincaré et Picard montrérent tous deux qu’il y a 14 une conséquence
logique et naturelle des propriétés de 1’équation—*‘équation des télé-
graphistes "—qui régit la propagation. On doit ajouter que le théorie
donnée par Picard de ce phenoméne était plus simple et plus claire - elle
est déduite de la pure et simple application de la méthode de Rierann.

La théorie mathématique de cet effet nuisible a été d’un grand secours
pour trouver les moyens pratiques de la supprimer ou d’en diminuer
Pimportance*. Mais en méme temps que son utilité pratique, cette
découverte est d’une grande importance théorique: le fait ainsi élucidé
concerne non seulement les transmissions télégraphiques mais, de maniére
générale, tout phénoméne régi par une équation aux dérivées partielles du
type hyperbolique. Il ne se présente pas, il est vrai, dans le cas ci-dessus
mentionné des ondes sphériques ordinaires, et ¢’est évidemment pour cela
qu’il n’a pas été pris en considération par Huygens ni Fresnel; mais ce
cas est justement exceptionnel : on peut dire que toute autre équation aux
dérivées partielles donne lieu & des perturbations qui ne disparaissent pas
aprés le passage de 'ondet.

Les équations du type parabolique ne furent pas non plus négligées
par Picard, qui en traita jusque dans ses derniéres publications, étudiant
en particulier l'effet de discontinuités de température.

Quelques résultats relatifs aux équations différentielles ordinaires sont
indépendants de la méthode des approximations successives.

Bien que Picard ait substitué cette méthode & celle de Cauchy-Lipschitz,
¢’est Iui qui a signalé un important avantage de cette derniére : la méthode

* Les conséquences qui apparaissent dans cet ordre d’'idées ont été développées dans
un cours important (malheureusement inédit) de Poincaré 4 1'Licole Supérieure des Télé-
graphes. Notons celle-ci, que l'effet des pertes le long de ligne peut étre d’ameliorer la
transmission.

. t Un trés habile géométre dont nous avons i deplorer la perte, M. Mathisson, a
démontré que toute équation donnant lieu 3 des ondes * pures”, c’est-i-dire telles
qu'aucune perturbation résiduelle ne subsiste aprés le passage de l'onde, est réductible
4 I’équution ordinaire des ondes sphériques.
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de Cauchy-Lipschitz a le plus grand domaine de convergence possible;
les opérations convergent aussi loin que la solution elle-méme existe.

D’autre part, Picard montre que tout systéme d’équations différentielles
ordinaires définit un groupe & un paramétre. Cette proposition, réciproque
du théoréme fondamental de Lie, est, pour les équations différentielles
ordinaires, la forme sous laguelle se présente le principe de Huygens.

Un dernier et trés important résultat est d’un caractére formel. Picard
a obtenu ’analogue de la méthode de Galois pour les équations différentielles
linéaires ordinaires: & chaque équation de cette nature correspond un
groupe dont les propriétés font connaitre ce qui peut et ce qui ne peut pas
étre employé efficacement pour l'intégration. C’est la théorie dite de
Picard-Vessiot, & cause de la forme remarquablement complétée et simplifiée
qui lui a été donnée par Vessiot.

Quelques années plus tard, comme il est bien connu, l’extension la
plus compléte des idées de Galois, entrainant la découverte de cas com-
plétement insoupgonnés ol divers problémes classiques de géométrie et
de dynamique peuvent s’intéger, a été obtenue par Drach. Tandis que
Picard, opérant sur les équations linéaires, a utilisé ’existence d’un systéme
fondamental de solutions & I’aide desquelles toute autre solution peut étre
exprimée, Drach a pu passer au cas général en introduisant, au lieu de
I’équation ou du systéme différentiel, '’équation aux dérivées partielles
du premier ordre correspondante, pour laquelle un tel systéme fondamental
de solutions existe en toute hypothése. On ne peut s’empécher de penser
que ces magistrales recherches de Drach ont été plus ou moins inspirées
par la théorie de Picard, quoique personne, pas méme sans doute Drach
lui-méme, ne puisse dire jusqu’s quel point cette influence s’est exercée.

Outre différents petits traités (publiés dans les Cahiers scientifiques de
Julia) consacrés aux équations fonctionnelles ou aux dérivées partielles
et contenant la plupart des découvertes dont nous venons de parler, Picard
a publié son Traité d’analyse en trois volumes dont le but essentiel est
la théorie des équations différentielles ordinaires, ouvrage fondamental,
donnant un exposé complet de ’état de cette branche de la science au
commencement du XXe siécle et dont 1’étude approfondie reste impérieuse-
ment nécessaire & tout mathématicien.

Nous avons intentionnellement gardé pour la fin de cette énumération
ce qui concerne la théorie des fonctions analytiques, quoique ce sujet ait
été le premier qui ait été abordé par Picard aprés le travail géométrique
qui fait I'objet de sa thése. . Le théoréme ci-dessus mentionné sur les
fonctions analytiques liées par une relation algébrique de genre supérieur
3 un appartient déja & cette catégorie. Il est & noter que ce théoréme de
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Picard semble en opposition avec le résultat fondamental de Poincaré
concernant les courbes algébriques en général et qui précise pour ces
courbes son célébre théoréme d’uniformisation des fonctions analytiques
en donnant le moyen de trouver la variable auxiliaire & 1’aide de laquelle
les coordonnées d’une courbe algébrique donnée quelconque peuvent
g’exprimer. Mais il n’y a aucune contradiction avec le résultat de Picard,
car si le genre de la courbe est plus grand que un, les fonctions uniformes
qui expriment z et y, savoir des fonctions fuchsiennes, n’ont pas des
points singuliers isolés, mais des lignes singuliéres essentielles. En fait,
les fonctions fuchsiennes sont introduites par Picard lui-méme pour prouver
le théoréme en question.

Ce n’est pas le seul travail qu’ait inspiré & Picard la théorie des fonctions
fuchsiennes. Il les a généralisées de deux fagons différentes en définissant
deux grandes classes de groupes discontinus de substitutions linéaires &
deux variables qu’il a nommés groupes hyperfuchsiens et groupes hyper-
abéliens. Certains de ces groupes sont liés & la théorie arithmétique des
formes quadratiques, plus spécialement des formes *“ hermitiennes * (formes
a coefficients et & indéterminées conjugées) ; d’autres aux fonctions hyper-
géomeétriques de deux variables, de la méme maniére que certaines classes
de fonctions fuchsiennes (les premiéres que Poincaré ait découvertes, ainsi
qu’il le relate dans sa célébre conférence sur I'invention mathématique)
peuvent se déduire de 1’étude de la série hypergéométrique ordinaire de
Gauss. La marche de ses théories montre une constante analogie avec
I'analyse méme de Poincaré et cette analogie subsiste sous la forme la
plus générale qui puisse leur étre donnée comme on s’en rend compte dans
le bel exposé publié plus récemment par Georges Giraud.

D’autres transcendantes possédant des propriétés particuliérement
intéressantes ont été découvertes par Picard—par exemple, les fonctions
analytiques f(z) qui, au lieu d’étre doublement périodiques aux périodes
w et ', vérifient les deux équations fonctionnelles

fetw)=f@), fle+o')=~8()f(),

S(z) étant une fonction doublement périodique donnée. Bien entendu,
ce probléme n’est pas déterminé, puisque les deux équations précédentes
ne changent pas si ’on multiplie f(z) par n’importe quelle fonction uniforme
elle-méme doublement périodique.

11 fut conduit par ses études sur les surfaces algébriques et la généralisa~
tion des intégrales abéliennes & s’occuper des fonctions analytiques 2n
fois périodiques de n variables et, tout d’abord, des conditions que doivent
remplir les périodes elles-mémes. Riemann avait déja énoncé que les
périodes d’une fonction méromorphe quadruplement périodiques de deux
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variables complexes ne peuvent pas étre prises arbitrairement. Une
démonstration de ce théoréme fut publiée en abrégé en collaboration avec
Poincaré, puis développée par Picard. Une circonstance surprenante est
le role joué & cet égard par le caractére méromorphe de la question : Picard
réussit en effet a construire une fonction quadruplement périodique de deux
variables ayant des périodes arbitrairement choisies; seulement une telle
fonction a nécessairement des singularités essentielles. Ce sujet est en
relation avec la théorie des fonctions abéliennes et Picard y revient dans
les Legons précédemment citées sur Quelques applications analytiques de la
théorte des courbes et des surfaces algébriques.

Mais la découverte de Picard qui a exercé la plus puissante influence
sur le progrés de la Science mathématique dans ce dernier demi-siécle
date de 1879: c’est le célébre théoreme sur les fonctions entiéres d’apres
lequel une fonction entiére f(z) de la variable complexe z qui ne devient
nulle part égale ni & zéro ni & un ne peut étre qu’une simple constante,
découverte qu’il compléta peu aprés (Octobre 1879) en démontrant que si
chacune des équations f(z) = a et f(z) = b n’a qu'un nombre fini de solutions,
f(z) se réduit nécessairement 4 un polyndme.

I1fournit ces démonstrations & 1’aide des fonctions modulaires elliptiques.
Cette méthode indirecte donne I’étonnant résultat avec une merveilleuse
simplicité. Pour le premier cas (celui ou les équations f(z) =a et fz)=10
sont toutes deux dépourvues de solutions), il suffit de noter les deux pro-
priétés classiques de la fonction modulaire : la premiére, qu’elle n’a d’autres
singularités que 0, 1 et co; la seconde, qu’elle prend exclusivement des
valeurs dont la partie imaginaire est positive.

La recherche de démonstrations directes est au contraire un probléme
qui semble pénétrer profondément dans la nature des fonctions entiéres et
des fonctions analytiques. Depuis ’apparition du mémoire détaillé de
Picard (1880), cette question attirante et quelque peu mystérieuse a
préoccupé toutes les générations successives de mathématiciens. Il n’y
a guére de jeune analyste qui n’ait exécuté ou au moins tenté d’exécuter
des recherches sur ce sujet ; il est & peine exagéré de dire qu’il a indirecte-
ment et plus souvent encore directement inspiré et continue d’inspirer tout
ce qui se fait de travaux sur les fonctions analytiques depuis ce moment.

Borel a réussi (1896) & démontrer, par une étude directe de la distribution
des zéros, le théoréme de Picard et, comme on le soupgonnait, un résultat
quelque peu plus étendu*. Montel, Valiron, Julia, Milloux et d’autres

* Picard lui-meme (1924) a traité le cas ou les seconds membres, au lieu d'édtre des
constantes, seraient des polyndmes ou des fonctions rationnelles,
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E. PICARD. 127

ont déduit des conséquences générales, dont quelques unes trés belles, sur
la distribution des valeurs des fonctions entiéres.

Les fouctions entiéres ne sont pas les seules fonctions analytiques* qui
relévent de ces idées de Picard. Lui-méme a remarqué que la propriété
s’étend & une fonction analytique uniforme au voisinage d’un point essentiel
isolé: dans un tel voisinage, la fonction, & moins d’étre une constante, ne
peut admettre trois valeurs exceptionnelles (ceci donnant la conclusion
primitive quand le point essentiel est rejeté & I'infini, 'une des valeurs
exceptionnalles étant elle-méme o). Des fonctions non uniformes ont
été également considérées sous ce point de vue.

Des résultats d’une nature entiérement nouvelle, quoique toujours
directement inspirés du théoréme de Picard, ont été découverts par des
hommes tels que Landau, Schottky et André Bloch. Au lieu de partir
d’hypothéses relatives & la totalité du plan, ces auteurs considérent une
function f(z) qu’ils supposent simplement définie et analytique dans
I'intérieur d’un cercle déterminé C, par exemple le cercle qui a pour centre
I’origine avec un rayon donné R, et se demandent quelles conséquences on
peut déduire de I'hypothése que, dans ce méme cercle, f(z) ne peut devenir
égal ni & O ni & 1. Ces “interprétations finies du théoréme de Picard ”
sont particuliérement remarquables par la forme précise qu’on peut leur
donner: par exemple, moyennant des conditions simples imposées & f,
la question peut étre de trouver la valeur maxima précise pour le rayon
d’un cercle & l'intérieur duquel cette fonction reste toujours différente de
Oetde 1. Comme il se trouve que les extréma en question correspondent
& des fonction modulaires, la méthode primitive de démonstration de
Picard apparait comme moins artificielle qu’il ne pouvait étre pensé a
premiére vue, et plusieurs analystes contemporains sont portés & la con-
sidérer comme la méthode véritablement naturelle.

Mais des perspectives plus larges et plus suggestives encore, dans cet
ordre d’idées, ont été révélées en Finlande par les travaux de Rolf Nevalinna
et de son jeune successeur Ahlfors. Le principe essentiel de cette puissante
extension des idées de Picard consiste & envisager non seulement des
fonctions entiéres, mais aussi des fonctions méromorphes, de sorte que la
valeur oo pour la fonction est admise aussi bien que n’importe quelle autre:
Si I'on compare la maniére dont la fonction se comporte vis &.wis de
n’importe laquelle de ces valeurs possibles, une curieuse compensation
apparait entre la tendance de la fonction & acquérir exactement cette

* Stoilof & méme considéré, en se plagant au point de vue topylozique, des fonctions
non analytiques. Au premier abord, on serait tenté de penser que le résultat de Stoilof
pourrait fournir ure méthode de démonstration du théoréme primitif; cependant il ne
semble pas que ce goit le cas.
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valeur a—le nombre de solutions de 1’équation f(z) = a dans le cercle de
rayon R—et la tendance & approcher de cette valeur le long de la circon-
férence de ce cercle, de sorte qu’une certaine quantité 7'(R), somme de
deux termes dépendant respectivement de ces deux tendances, sera
asymptotiquement indépendante de a. En second lieu se pose la question
de savoir lequel de ces deux termes prévaudra. En général, ils seront
en gros du méme ordre; mais le contraire peut avoir lieu pour certaines
valeurs exceptionnelles de a, cette circonstance étant caractérisée par un
certain nombre, le *“ défaut”’ correspondant & @ (pour a non exceptionnel,
ce défaut est nul). Pendant que les valeurs exceptionnelles au sens
primitifs de Picard sont en nombre au plus égal & 2 (en comptant la valeur
a = oo qui ne figure pas explicitement dans I’énoncé de Picard), les valeurs
exceptionnelles au nouveau point de vue peuvent étre plus nombreuses,
mais la somme des défauts ne peut pas étre plus grande que 2, et ceci
comprend le résultat de Picard comme cas particulier.

Cette théorie, I'une des plus profondes et des plus puissantes con-
structions connues en mathématiques, met splendidement en évidence la
fécondité de la découverte de Picard, fécondité qui est certainement loin
d’étre encore épuisée.

Un trait frappant de la personnalité scientifique de Picard était la
perfection de son enseignement, I'un des plus merveilleux, sinon le plus
merveilleux, que j’aie connu. On pourrait en dire, en rappelant ce que
Pascal aurait dit de ses proprés ccuvres, qu’ ““il n’y avait pas un mot de
trop ni un de manque”. Ses legons n’appartenaient pas & cette sorte
d’enseignement qui est souvent trés appréciée des débutants, mais que
je suis porté & considérer comme beaucoup moins satisfaisante, ou la
clarté est obtenue par le fait que tout y semble également simple et facile,
de sorte qui rien n’en reste au bout de peu de temps; au contraire, dans
les legons de Picard, la difficulté principale et essentielle apparaissait
toujours en pleine lumiére.

Cette qualité magistrale de son enseignement, & coté de la profondeur
ot de la portée étendue de ses découvertes, a ét6 un élément important
de Pinfluence de Picard sur les générations de jeunes mathématiciens,
influence qui sera aussi durable qu’elle est profonde.
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