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OBITUARY

Sir Harry Raymond Pitt, FRS, 1914-2005

H.R.Put

Sir Harry Pitt worked (as H. R. Pitt) with Norbert Wiener in 1938 on Wiener’s general
Tauberian theory. Mathematically, he is best known for Pitt’s form of Wiener’s Tauberian
theorem, and as the author of the first (1958) monograph on Tauberian theory. He is otherwise
best known for having been Vice-Chancellor of Reading University from 1964 to 1978.

Introduction

Sir Harry Pitt was a pure mathematician most prominent for his work on Tauberian theorems.
A pupil of G. H. Hardy FRS, he was much influenced by Norbert Wiener; his best-known
contribution is Pitt’s form of Wiener’s Tauberian theorem. His first book [30]" of 1958 was
until 2004 the only monograph on Tauberian theorems. Pitt was Vice-Chancellor of Reading
University from 1964 to 1978, for which he was knighted on his retirement in 1978. He was a
kind and considerate man, a devoted husband (for 63 years) and father (of four sons).

TNumbers in this form refer to the bibliography at the end of the text.
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Background

Harry was born on 3 June 1914 at Greets Green, West Bromwich, Staffordshire. He was the only
son of Harry Pitt and Florence Harriet (née Draper). His sister Sybil was born in 1921 and died
in 2003. Harry Pitt senior had no opportunity for formal education after the age of thirteen,
when he left school. After completing his engineering apprenticeship he went into motor-car
engineering and was for many years in charge of the inspection and testing department of the
Bear Motor Car Company.

H. R. Pitt’s ancestors were small farmers and craftsmen.

Education and early life

H.R. Pitt was educated at Greets Green Primary School (1919-21), Church of England School,
Wall Heath (1921-24) and King Edward’s School Stourbridge (1924-32). He left the latter with
a Governor’s Exhibition, a Staffordshire County Major, a State Scholarship and a major open
scholarship to Peterhouse, Cambridge.

Harry has written (in his Personal Record lodged at the Royal Society):

King Edward’s had a large sixth form and, particularly in the early thirties, a very
high academic standard. Teaching in Science and Mathematics was excellent and
I do not regret the fact that I spent my last four years at school reading little
else. My response to teaching in humane studies was less satisfactory and my
early introduction to History, Literature and Languages left me with a positive
distaste for these subjects which lasted well into my undergraduate years. I have
since tried to remedy this distortion. This may have been due to the fact that
I was younger by a year and a half than the average for my form and was too
immature to benefit from the sort of approach which was then usual. On the other
hand, many of my contemporaries with a scientific bent had similar difficulties,
and I have come to the conclusion that the normal school examination approach
to general education was (and still is) quite the wrong one. A high degree of spe-
cialization is still imposed on pupils in sixth forms, but moves to allow a broader
range of study are making progress, albeit slowly. My own experience convinces
me that some concentration of study, not necessarily so extreme, is appropriate
for some children and, when it is no longer imposed, should not be forbidden.

Pitt was in Peterhouse as an undergraduate from 1932 to 1935, passing with first-class
honours in Parts I and II and with distinction in Part III of the Mathematical Tripos and
graduating with a first-class BA in 1935.

His tutor and supervisor was J. C. Burkill (FRS 1953), and Harry says that Burkill’s attitude
and approach made a profound impression on him. He was also strongly influenced by lectures,
on functions of a complex variable by A. E. Ingham (FRS 1945), almost periodic functions by
A. S. Besicovitch (FRS 1934), theory of functions by J. E. Littlewood FRS and divergent series
by G. H. Hardy FRS. It was the latter who determined the direction of Pitt’s interest while
a research student (1935-36) and a Bye-Fellow (1936-39) at Peterhouse. Hardy’s supervision
resulted in Pitt’s PhD in 1938, for a thesis on Tauberian theorems. These later became the
subject of his first book [30]. Pitt also gained a Smith’s Prize in the same year. He was a
Choate Memorial Fellow at Harvard University from 1937 to 1938.

Career

In 1939 Pitt moved to Aberdeen University as an assistant lecturer. In 1942 he moved to
London for work at the Air Ministry and the Ministry of Aircraft Production for three years,
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under H. E. Daniels (FRS 1980). Within the Royal Air Force (RAF) Coastal Command he used
probability theory and the newly developing subject of operational research to devise methods
of attacking German U-boats and the most efficient use of RAF resources such as fuel. He
refused a commission because he felt that it would limit his freedom to influence senior officers.

In 1945, with the war ended, Harry was appointed Professor of Mathematics at Queen’s
University, Belfast, at the age of 31 years, jumping from the bottom of the academic ladder to
the top. Clearly his wartime contribution and several distinguished papers had a key role.

In 1950 Pitt moved to the University of Nottingham as Professor of Pure Mathematics.
The Vice-Chancellor was Bertrand Hallward, with ambitions to develop the university. Pitt
succeeded H. T. H. Piaggio, whose textbook on differential equations is still useful (42). Applied
mathematics was coming to the fore in this period, and Pitt persuaded the university to
establish a chair in this subject, to which Rodney Hill (FRS 1961) was appointed in 1953.

Pitt encouraged the Student Mathematical Society, bringing in such speakers as Mary
Cartwright DBE FRS and Charles Coulson FRS.

Mike Sewell and Margaret Joules have written of his inspiration to students, through the
clarity of his lectures introducing the e,0 style of analysis. His enthusiasm and love for the
subject permeated his lectures, and so when the more senior students set out to produce a
mathematical magazine they called it ‘Epsilon’. The Times devoted eleven column inches to a
complimentary review of the first issue. Pitt’s door was always open to any student needing
help or advice. When Michael Sewell wanted to change from mining engineering to mathematics
with inadequate prerequisites in the latter, Pitt made it possible. He also supervised the PhD
of Clive (later Sir Clive) Granger, Nobel laureate in Economics in 2003. Another challenge that
Pitt had to meet was to see that the new Mathematics and Physics Building, which he had
played a big part in planning, was ready for occupancy on the scheduled date.

Nottingham University made full use of his administrative skill. He became in turn a member
of Council, Vice-Dean and Dean of the Faculty of Science, and Deputy Vice-Chancellor.

Pitt spent the year 1962—-63 on leave of absence as Visiting Professor at Yale University.

Reading

Harry Pitt was Vice-Chancellor of Reading University from 1964 to 1978. It was a period of
rapid expansion for universities, in which Reading participated fully. During Pitt’s period of
office, student numbers grew from 2000 to 6000. Growth has continued ever since, and the
numbers now stand at 17000 and are still rising.

There was an interregnum of 18 months between the summer of 1963, when Wolfenden left
to become the Chairman of the University Grants Committee, and Pitt’s arrival in 1964. The
Acting Vice-Chancellor, Professor J. M. R. Cormack, set up a Committee of Deans to help
him, and this committee continued with increased strength under Pitt, dealing with expansion,
financial and other policy matters. The Deans were elected by the Faculties, and so Reading
University enjoyed a truly democratic government. This was very much Pitt’s wish. He wanted
to be primus inter pares. One of his first acts was to ask Professor Ronald Tuck, Senior Steward
of the Common Room, to remove the Vice-Chancellor’s chair from the dining room. Pitt’s
authority was to be without artificial aids. This meant that committee meetings took rather
longer than under Wolfenden, but a genuine communal decision was reached in the first instance
with senior academic staff. Michael Sewell says that Pitt conducted meetings in such a way
that the participants realized only afterwards that the conclusions reached were what Harry
Pitt had wanted to happen all along. Perhaps the system resulted in too many departments.
Now physics, sociology and most of engineering are closed.

However, during the student troubles of the early 1970s, Pitt, displaying masterly inactivity,
weathered the storm well, although at one stage the Vice-Chancellor and the Registrar were
locked up by the students and had to escape with a spare key.
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A Department of Applied Statistics was started in 1963, with separate funding.

Harry’s wife, Catherine Lady Pitt, played a full role in all social staff and student activities.
A perhaps apocryphal story has it that Harry was once introduced as the Vice-Chancellor’s
wife’s husband. They generated enormous liking and respect. He was calm and thoughtful as
a Vice-Chancellor and as a man.

The university absorbed the National College of Food Technology at Weybridge in the 1960s,
and also the College of Estate Management in South Kensington.

During Pitt’s period as Vice-Chancellor the move to the large parkland setting at
Whiteknights was completed, and so there were many opportunities and associated duties
for Pitt. He had the skills and diplomacy that were needed.

During the student disturbances many colleagues noted that the registration plate of Pitt’s
car began with the letters WOE, but the university came out strongly from this period and
many new buildings were completed.

Pitt served on many committees, of which the following is a selection. He was Vice-Chairman
of the Committee of Vice-Chancellors and Principals (1976-77), President of the Institute of
Mathematics and its Applications (1983-85), Chairman of the Universities Central Council for
Admissions (1975-78), and a member or chairman of many other bodies such as the governing
body of Reading School, chairman of Section A of the Royal Society (1960-61) and of the
Royal Society Education Committee (1980-85). Pitt was knighted in 1978, the year in which
he retired from the Vice-Chancellorship. He received honorary doctorates from Aberdeen and
Nottingham (1970), Reading (1978) and Belfast (1980).

Retirement and family

On Pitt’s retirement from being Vice-Chancellor, he and Lady Pitt moved to a house close
to the campus, but they took care never to interfere with Harry’s successor. They moved to
Epsom in 1992 and to Derby in 2002. In his last three years he was wheelchair bound, having
had a fall in Epsom and thereafter problems with his balance.

During his long life Harry was always a devoted family man. He had a strong bond with
his sister Sybil (1921-2003). He was married on 5 April 1940 to Clemency Catherine Jacoby,
second daughter of Henry Charles Edward Jacoby MIEE and Bertha (née Dubois). Henry
Jacoby was for many years a member of the research staff of the General Electric Company
and contributed substantially to the early development of the alternating-current motor. Harry
and Catherine stayed together for 63 years, until Catherine died in 2004. They had four sons,
Mathew (1945), John (1947), Daniel (1954) and Julian (1958).

Harry has said that his home life was very happy and secure, and so was the life that he
and Catherine provided for their sons. In return the sons have clocked up a 100 years of happy
marriage between them. They had lovely parties, especially on New Year’s Eve, when they
acted out little sketches, doing impressions of their colleagues. They went on marvellous family
holidays, especially near Snowdonia and Cader Idris, from their cottage in Abergynolwyn.
Harry would climb Cader, 2927 feet, well into his late seventies.

Harry had cycled in Czechoslovakia in 1938, and took the family on European holidays after
the war. He would always take Catherine’s side, stayed calm and never got cross.

Harry had total personal integrity. If he said he would meet the family at the end of a climb
with the car and a Thermos flask of tea he would always be there. He was practical as well
as a theoretical pure mathematician, making a valve radio in the 1920s. Then in the 1960s he
helped Daniel do the same, tactfully suggesting a missing connection to make the set work.

He was never pompous, and it was said of him by one of his colleagues that ‘his power
was only equalled by his modesty’. He was shrewd in the ways of the world. His advice on
restaurants was to choose the cheapest menu at the most expensive place, and in considering
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whether to purchase a house, to think about what you can change (so do not let that put you
off), and what you cannot (so, if it matters to you, stay clear).

Pitt was ‘a communicator extraordinaire’, able to convey difficult concepts and to summarize
complex histories. However, he also listened to the views of others, felt where they were coming
from and so, in many walks of life, resolved conflict.

As his sons have said, Harry Pitt was a man blessed with all the ‘gifts of the spirit’ listed
by St Paul in his letter to the Galatians (5:22): ‘love, joy, peace, patience, kindness, goodness,
faithfulness, gentleness and self-control’.

Mathematical work

Tauberian theorems

Pitt was a research student under G. H. Hardy from 1935 to 1938. It was Hardy who introduced
Pitt to the subject of Tauberian theorems, in which he was to do his deepest work.

The precursor of Tauberian theorems is Abel’s continuity theorem for power series (1827),
that if a power series > o~ a,z™ converges for x =1, its value converges to 280 an as its
argument z increases to 1. Writing

n
Sp = E ag
k=0

for the partial sums and using partial summation, this may be recast as saying that

implies
(l—m)anx” — s (z711).
n=0

The converse implication is false, as examples readily show. However, in 1897 Alfred Tauber
proved a partial converse, under the additional condition a,, = o(1/n), improved by Littlewood
in 1911 to a,, = O(1/n) (see (35,48)). Hardy and Littlewood worked on results of this type from
1913 onwards, and introduced the term ‘Tauberian theorem’ for them. The conditions above
are the prototypes for o- and O-Tauberian conditions, respectively; the O-case is typically much
harder. Hardy and Littlewood studied specific summability methods (those of Cesaro, Abel,
Euler, Borel and Riesz, for example) and relatives such as Laplace transforms. The Hardy—
Littlewood approach to the Tauberian theorem for Laplace transforms was greatly simplified
in (29).

The whole area of Tauberian theorems was revolutionized in 1932 by Norbert Wiener’s work,
which was quite general. Wiener worked with convolutions [~ k(z —t) f(t) dt, where k is a
Lebesgue-integrable function, k € Ly, thought of as a kernel, and f is a function, bounded,
say (so that the convolution exists). Wiener’s favourite tool was the Fourier transform, and as
k € Ly its Fourier transform k(t) := [ e**'k(x) dz exists, at least for ¢ real. The key to Wiener’s
approach was his approximation theorem, or closure theorem (‘Wiener’s theorem’): that linear
combinations of translates of k are dense in L; if and only if k has no real zeros (see (54,
Chapter I; 55, Chapter II)). From this, one obtains Wiener’s general Tauberian theorem, that
for such k and f, if

o0

ro k(x—t)f(t)dt—>AJ k) dt (z — o),

— 00 — 00
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then also
oo

J gl —t)f(t) dtHAJ‘ g(t)dt (x — o0)
for any function g in L1, by an approximation argument. Here the Tauberian condition f € L.,
is This approach is very fruitful, with many extensions and variants; almost all known Tauberian
theorems for special kernels or summability methods could be deduced from these general
results.

Wiener had spent time at Cambridge, both as a student in 1913-14 (see (56; XIV)) and as a
visiting professor in 1931-32 (see (57, Chapter 7)), and knew both Hardy and Littlewood, and
their work, well. Hardy suggested that Pitt should study Wiener’s work on Tauberian theorems.
In Pitt’s final year as a PhD student, 1937/38, he was awarded a Choate Memorial Fellowship
at Harvard University. There he worked with D. V. Widder and with Wiener, a professor of
mathematics at Massachusetts Institute of Technology, also in Cambridge, Massachusetts. In
1938 Pitt received his Cambridge PhD. It was his annus mirabilis, during which he published
eight papers, a quarter of his whole corpus.

Generalized harmonic analysis [12]. Slightly predating the Wiener Tauberian theory, and
leading naturally to it, is Wiener’s theory of generalized harmonic analysis (GHA); see (53).
This is devoted to the harmonic analysis of functions that need not be periodic (as in Fourier
series), nor in Lo (as in the Parseval-Plancherel theory), nor in L;, the case Wiener studied
by systematic use of the Lebesgue integral. It is crucial to prediction theory and the spectral
analysis of time series (see, for example, (9, Chapter XII), which is based on Wiener’s work).
Another prime use is for almost periodic functions, the prototypes of functions with discrete
spectrum. Under suitable conditions, a function f may be represented as a Fourier—Stieltjes
transform (FST) f(z) = [~ _ e~ %* ds(x), where s may be obtained from the function

— 00

o, () = ﬁly Eo Fo—u) (W}Q du.

General Tauberian theorems [5,6,7,9,14,16,24]. Pitt’s first major work here was his
long paper [5] on general Tauberian theorems, written in 1937 but published in 1938 (an
announcement is given in [6]). One aim was to extend Wiener’s methods to some areas of
Tauberian theory, such as gap or high-indices theorems (treated below), in which they had
not been fully used; but the most important contribution was to show that Wiener’s general
Tauberian theorem followed from a variant, in which the above hypotheses are retained: there
is an additional Tauberian condition of slow decrease,

flu+z)— f(r)—0 (xr—o00, u=0, u—0),

and the conclusion becomes
fl@) — A (z — o0).

Tauberian conditions of this type were introduced by Robert Schmidt in 1925 (see (44)),
and were used by Wiener to pass from the conclusion of his general Tauberian theorem, a
statement on asymptotic behaviour of convolutions, to conclusions on pointwise convergence.
Thus Pitt’s result is equivalent to Wiener’s general Tauberian theorem.

In the first textbook account of Wiener’s Tauberian theory, Widder calls Pitt’s result Pitt’s
form of Wiener’s theorem (see (52, V.10)) and uses it to derive Wiener’s general Tauberian
theorem (see (52, V.11)). In Hardy’s book on the subject (see (19, Notes to Chapter XII}),
he points out that much of Widder’s treatment, and of his own, is based on Pitt’s work. Later
textbook accounts are in (4, Chapter 4), where Pitt’s form of Wiener’s theorem is called the
Wiener—Pitt theorem, and in (31, Chapter II).
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Slow decrease, and slow increase, defined similarly, are the prototypes of one-sided Tauberian
conditions in the real case (thus in Littlewood’s theorem above, it is enough to have a, =
Or(1/n), or na, bounded below). This is typically the case with real non-negative kernels,
as Pitt showed in [7]. In [14], the sequel to [5], Pitt develops one-sided Tauberian conditions
further, using his work [12] on GHA.

Much of [5] is devoted to Tauberian classes, a classification of Tauberian conditions. The
ideas introduced there were so clearly important that they came under detailed scrutiny, and
it turned out that the paper contained errors. These were pointed out by the American analyst
R. P. Agnew; Pitt wrote his brief paper [16] to correct his results.

In addition to Fourier transforms, the FST,

[e9)
K(t) := J et dK (x),
— 00

is also important in the Wiener Tauberian theory for functions K of finite variation (all integrals
here are Lebesgue—Stieltjes, and so absolutely convergent). Here the basic role of non-vanishing
of the Fourier transform (on the real line) is replaced by boundedness away from zero. Note that
the presence of a discrete or a continuous singular component in the Lebesgue decomposition of
K is necessary here: were K absolutely continuous, its transform would tend to zero at infinity
by the Riemann-Lebesgue lemma, and so could not be bounded away from zero. It turns out
that a discrete component is essential, and that if a continuous singular component is present,
it must be dominated by the discrete component, in the sense of the following condition. If
D(t) =Y, dne™ is the Fourier transform of the discrete component, dg is the continuous
singular component if present, then one requires

gl = j | dg(a)| < inf{|K ()] : € R},

the Wiener—Pitt condition. In Pitt’s first paper with Wiener [9], it is shown that if this condition
holds, and also inf{|K (t)|:t € R} > 0, then the reciprocal 1/K (t) is itself an FST. Conversely,
the Wiener-Pitt condition is necessary here (see [9]; see also Pitt’s book [30, Chapter V,
Theorems 6 and 8]). It was shown further by Kahane and Rudin (26) that if F(.,.) operates
on FSTs, in the sense that F(ERX,JK') is an FST whenever K is, then F is real entire. Thus
the example 1/z of the reciprocal above is excluded.

The existence of such measures, whose FSTs are bounded away from zero but are nonetheless
not invertible, is called the Wiener—Pitt phenomenon. It has attracted much interest in modern
harmonic analysis, and its natural setting is now known to be non-discrete locally compact
groups, rather than the line as in [9]. Textbook accounts are in (3, Theorem 2.4.4; 43, Theorem
5.3.4) (see also (23, pp. 519, 574)). The algebraic aspects were first studied by Sreider (47),
who also corrected the Wiener—Pitt proof in [9] (see (28, pp. 116, 400); as remarked there,
the relevant ideal structure is extremely complicated). Accordingly, some authors call this
the Wiener Pitt-Sreider phenomenon. Quantitative versions are now known, and there are
interesting links with the corona theorem in Hardy space theory (see (40)). We return to
algebraic aspects and ideal structure later in connection with Pitt’s book [30].

In [24], Pitt considers transforms g(u) = [ k(u, y)s(y) dy not necessarily of convolution type.
Results along the lines of [5] are given.

Mercerian theorems [8,17]. It was shown in (37) that for a sequence s,
1 11
58n+§'5;5k*>8 (n— o) <= s, —s.

The point of interest here is that, although the statement has some of the features of
a Tauberian theorem, no Tauberian condition is needed. The result is thus not Tauberian.
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Hardy and Littlewood introduced the term Mercerian for results of this type, which go from a
hypothesis on a function (or sequence) and some average or smoothed form of it to a conclusion
on the function alone, with no Tauberian condition. The Wiener Tauberian theory was applied
to Mercerian theorems by Paley and Wiener (41, IV.18). In [8], Pitt applied his work [9] with
Wiener to a study of Mercerian theorems in full generality. This was continued in [17], which
also used GHA as in [12]. This work later formed the basis of Chapter V of Pitt’s first book
[30].

Ikehara’s theorem [13]. With 7(z) the function that counts the number of primes p up
to some positive value z, the prime number theorem (PNT) is the statement that w(x) ~
x/logx as & — oo. This was conjectured by Gauss, and only proved in 1896, independently by
Hadamard and de la Vallée Poussin, both using complex analysis (16,49). Their work, and that
of Landau, showed the crucial role played here by the Riemann zeta function ((s) := Y .- n™*.
Two properties are particularly relevant here: that ¢ has a simple pole at s = 1 of residue 1,
and that ¢ has no zeros on the line 9s = 1. Chapter III of (55) gives an account of PNT
and includes two proofs via the Wiener Tauberian theory. The first uses Lambert series, as
in Landau’s treatment. The second uses Ikehara’s theorem. S. Tkehara was Wiener’s first PhD
student; his paper of 1931 proves PNT via Wiener Tauberian theory, essentially by subtracting
off the pole of the zeta function at s =1 and analysing the remainder (25). In Pitt’s second
paper with Wiener [13], Tkehara’s theorem is generalized.

For recent developments, using the language of Schwartz distributions and applied to the
twin primes conjecture, see (32).

Abel and Cesaro methods [27]. Pitt was also interested, as were Hardy and Littlewood
before him, in special summability methods. Prominent among these are the Abel method on
power series and the family of Cesaro methods based on arithmetic means. The Tauberian
theory for all these methods is very similar. However, in [27], Pitt finds a condition that is
Tauberian for the Cesaro method but not for the Abel method.

The Borel method [5,28]. One says that a sequence s, converges to s in the sense of
the Borel summability method, s, — s(B), if Yo" ;sp.e"“z"/n! — s as & — oo. The Borel
method is perhaps the most important summability method after those of Cesaro and Abel.
However, whereas the Wiener Tauberian theory concerns convolutions, and both the Cesaro
and Abel methods are reducible to convolutions (for the latter, the 2™ becomes e™*" after a
change of variable, and the product xn becomes the argument = — ¢ for a convolution after a
further change of variables), the Borel method does not lend itself to reduction to convolution
form so readily. One needs an approximation procedure to effect this reduction; see [30, §4.3]
for a textbook account, or [5] for the original paper. Pitt’s work involves the Borel method in
two additional ways. The first concerns the classical ‘Borel-Tauber theorem’, that s, — s(B)
and a, = O(1//n) or Or(1/y/n) imply s, — s. In [28], Pitt proves the closure in L;(9R) of
translates of e~ by elementary means; that is, without use of the Wiener closure theorem
(the Fourier transform of e~® is an exponential, and so non-zero; thus with the Wiener closure
theorem there is nothing to prove). The second concerns the ‘Borel gap theorem’. A gap
theorem, or high-indices theorem, is a result in which, if the terms a,, of a series are known to
vanish except on some subsequence ny, convergence of the sequence s,, := Zg ap under some
summability method implies ordinary convergence. Here the point is that there is no Tauberian
condition (beyond a,, vanishing off the sequence n = ny,). Sometimes such additional Tauberian
conditions are imposed; such results may still be called gap theorems, but results of the earlier
type are then called pure gap theorems. A textbook account of gap theorems from the point
of view of the Wiener theory was given by Wiener’s pupil Levinson (34). A pure gap theorem
for the Abel method was obtained by Hardy and Littlewood in 1926, the gap condition being
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Ng+1 — Nk = hny for some positive h (see (21)). Examination of the Borel method suggested
that the relevant gap condition here was ngi1 — ng = hy/ny for some positive h. One of the
aims of Pitt’s first major paper [5] in this area was to bring the field of gap theorems more
into line with the Wiener Tauberian theory. Unfortunately, [5] contained further errors, beyond
those addressed in [16]. Not detecting the error relevant to the Borel gap case, Meyer-Konig
(38) gave a ‘Borel gap theorem’ under the additional Tauberian condition s,, = O(e“") for some
positive ¢. The proof, once Pitt’s error was detected, was incomplete. The result was proved
under the stronger additional Tauberian condition s,, = O(e“V™) for some positive ¢; see [30,
Theorem 31]. However, even this reveals less than the full truth. The pure ‘Borel gap theorem’
is actually true, that is, no additional Tauberian condition is needed; but this was proved only
considerably later, by Gaier (13). This followed several earlier partial results, for example, by
Erdés for the related but easier case of the Euler method. Other approaches were later given
by Gaier himself, by Mel'nik and by Turan. The matter is subtle. For example, if one changes
the continuous variable 2 — oo in the definition of the Borel method to an integer n — oo (the
‘discrete Borel method’), no pure gap theorem holds, as was shown by Meyer-Konig and Zeller
by functional-analytic methods.

Elementary proof of the PNT [29]. One striking feature of the approaches above to PNT is
that they involve complex analysis, because to formulate the problem one needs only integers,
and to formulate its solution one needs only reals (via the logarithm). It had been a standing
problem of great interest to prove PNT by ‘elementary’ methods, that is, avoiding complex
analysis (it was clear that any such proof would be harder than the existing ones, and so
the word ‘elementary’ must be used with some care here). A very ingenious elementary proof
of PNT was found in 1949 by Erdés (12) and by Selberg (45,46) (extended to the PNT for
primes in arithmetic progression by Selberg). In his last paper on Tauberian theory [29] in 1958,
Pitt obtains an elementary proof of PNT, using the Stieltjes kernel K (x) := Zlogpgx logp/p,
essentially along the lines followed by Selberg. This work was done while Pitt was writing his
first book ([30], see below), which also appeared in 1958. The approach of [29] is also used in
the last section of [30].

Analysis

Inequalities [1,3,10,11]. It was natural for Pitt to become interested in inequalities, in
view of the book by Hardy et al. (22), and two of his earliest papers are in this area. In [1],
he considers infinite double sums Z” a;j;y;, obtaining results on the space [p, q] (p,q > 0)
of sequences with |z|, < 1 and |y|, < 1. In [3], he obtains integral analogues of the results of
Hardy and Littlewood on the convolutions ¢ = (¢,) of the non-negative sequences a = (a,)
and b = (b,), of the form C < KAB, where A =3 7"n"'(n%a,)P and B and C are defined
similarly in terms of further parameters ¢, r, 3 and . In [11] he links a = (a,,) € I, for p € [1, 2],
with f € B, the space of Besicovitch almost periodic functions with index ¢, where p and ¢ are
conjugate and f has the Fourier series Zan e with A, real.

In [10], Halperin and Pitt, following the work by Halperin (18), consider the subclass
Dy of L,(a,b) consisting of functions f satisfying differential recurrence relations of the
form fo = qof, fro1 = fr+ ¢ f(r=0,1,...,n — 1), with the functions ¢ suitably restricted,
and f(a) = f,(b) = 0. This space is shown to be dense in L,(a,b). Operators T' of the
form Tf = >0 prfr + ¢f and their adjoints T*, are studied, via inequalities on L, and L.
Pitt’s collaborator here was the Canadian mathematician Israel Halperin (1911-2007), von
Neumann’s only graduate student and one of the founders of the study of von Neumann
algebras.

Fourier analysis [2,4,23]. Let f be a function with Fourier coefficients ¢,,. For p € (1,2]
Paley obtained comparisons between |f|, and (3, |ca|PnP~2)1/P (see (59, § XI1.5)), following
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earlier work by Hardy and Littlewood ({20, Comments, pp. 313, 399)). In [2], Pitt extended
these results, and gave analogues for power series. ‘Pitt’s inequality’ has recently been
sharpened by Beckner (1,2).

In [4], Pitt gives a simplified proof of a result of Cameron Beckner (6), that if f is almost
periodic with an absolutely convergent Fourier series and ¢ is complex analytic on the range
of f, then g(f) also has an absolutely convergent Fourier series.

Three classes of interest are the classes of functions that are (i) Fourier transforms of
integrable functions, (ii) FSTs of functions of finite variation and (iii) periodic functions with
absolutely convergent Fourier series. Consider the three classes of functions equal in some
neighbourhood of a point, say z,, to a function in each of the classes (i)—(iii). It is shown in
[23] that these three classes coincide, that is, the local aspects of the three properties are the
same.

Integro-differential equations [20,22]. The equations studied are of the form

R

S 0@k = o

r=0"v

in [22], with the corresponding homogeneous equation in [20], the summands on the left being
convolutions of the derivatives of a function f with Stieltjes kernels k,. Crucial here is the
function K(w) = Zé% w” [ e7“Y dk,(y). Under weak conditions, solutions f have expansions of
the form >° A, (z)e“*  with A,, polynomials and w,, the zeros of K.

Conditions for the convergence almost everywhere of Fourier series. Pitt mentions in his
autobiographical notes to the Royal Society that ‘The last of these problems occupied the major
part of my time for several years. My efforts so far have been completely unsuccessful. [The
problem was solved by Carleson in 1964.]” For the mathematical background to the Carleson—
Hunt theorem, see (7,24). This episode, clearly coming between his election as FRS in 1957
and his becoming Vice-Chancellor of Reading in 1964, may partly account for Pitt’s motivation
in his career change.

Probability, statistics, ergodic theory

Probability [15,19, 21, 26]. Wiener was a great probabilist as well as a great analyst;
his Wiener measure of 1923 is the key to a mathematical treatment of Brownian motion, for
example. Through Wiener, Pitt became interested in probability, which achieved its modern
measure-theoretic form through the work of Kolmogorov (30). Pitt’s first paper in this area [15]
concerns stochastic processes with stationary independent increments, or Lévy processes. He
focuses on the fairly simple case, of compound Poisson processes (only finitely many jumps in
finite time intervals). This is extended from the real-valued to the G-valued case in [19], where
G is a locally compact abelian group. In [21], on storage models, Pitt considers a stochastic
model for the amount held in store or inventory, giving a comparison between two different
replacement policies. As the paper dates from 1946, this was presumably motivated by Pitt’s
wartime work on operations research. In [26], Pitt addresses the question of defining measures
in function space. The motivation is the theory of stochastic processes, where (as with Brownian
motion, or Wiener measure) the set of time-points is uncountable. Care needs then to be taken
to ensure that sets of interest are measurable (‘are events’, that is, that their probabilities are
defined). Foundational work on such problems was done by J. L. Doob in a series of papers,
the earliest of which were known to Pitt, but the area received a definitive treatment only in
the classic book (9). As S. Kakutani points out in his review (27), [26] contains some errors.
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Statistics [25]. Pitt’s paper [25] addresses foundational questions in statistical decision
theory. He starts from the work of Abraham Wald in 1939, citing also work of the 1920s by
Fisher on maximum-likelihood estimation and by Neyman and Pearson on testing statistical
hypotheses (50). Unfortunately, later work by Wald is also relevant, as was pointed out by
J. Wolfowitz in his review (58). The game-theoretic ideas of von Neumann and Morgenstern
(39) had a decisive influence on the areca, as was seen in the books by Wald (51) and Blackwell
and Girshick (5), and later by many others.

Pitt’s interest in statistics had important consequences in econometrics, through his
supervision of the doctoral thesis of C. W. J. (later Sir Clive) Granger at Nottingham (PhD
1959; Granger was Pitt’s only doctoral student, according to the Mathematics Genealogy
Project). Granger and R. F. Engle received the Nobel Prize in Economics in 2003, for their
work on cointegration and other aspects of econometric time series analysis. For background,
see (11) and the books by Granger and Hatanaka (14) and Granger and Newbold (15).

Pitt’s interest in statistics had effects in his later career as Vice-Chancellor of Reading
University. The first head of the Department of Applied Statistics there, Professor Robert
Curnow, writes (see (8, p. 12)):

The title of the Department needs explanation. The original title was to be
Statistics. Shortly after his arrival the new Vice-Chancellor, Harry Pitt, a
distinguished mathematician and probabilist, told me that statistics was a branch
of mathematics, as in many senses it is, and we should therefore be a part of
the Department of Mathematics not an independent Department. Fortunately
we had many friends in the University who appreciated our attempts to teach
courses on statistical methods appropriate to their students. They feared that
this and the consultancy service would be lost if we were administratively part of
a mathematics department. These friends convinced a reluctant Vice-Chancellor
that we needed independence. He insisted on the compromise that the title of the
Department should be Applied Statistics. A year or so later Harry Pitt told me
that he now realized that we were mathematicians by training and our interests
and teaching covered the underlying mathematics of our subject as well as its
applications. We could therefore drop ‘applied’ from our title. He was surprised
but, I think, content when I told him that we now liked the title of Applied
Statistics. ...

The interface between mathematics and statistics is interpreted in different ways in different
universities in the UK; all three of the obvious solutions, separate departments, statistics within
mathematics as a formal entity, and statistics treated as part of mathematics on a par with
pure or applied, are found.

Ergodic theory [18]. Wiener’s interests were remarkably broad, and included ergodic theory,
to which he made several contributions (see, for example, (33)), and through him Pitt became
interested in the area. In [18], he gave what Dunford (10) describes as a new and elegant proof of
the Yosida—Kakutani maximal ergodic theorem. From this he derived the Birkhoff-Khintchine
almost-everywhere ergodic theorem, without use of the mean ergodic theorem and Wiener’s
ergodic theorem in n dimensions (see (33, p. 203)). He also obtained the first random ergodic
theorem. For later work by Ulam and von Neumann and by Kakutani, see (28, pp. 364-378,
445-446); for textbook accounts, see (17; 33, §8.2.3).

Books, etc.

Tauberian theorems [30]. This classic book is the first monograph exposition of Tauberian
theorems. As the author said, by 1958 the field had grown to the extent that one could not
cover it fully in a book of this length (174 pages). Accordingly, Pitt limits himself to ‘the
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topics and methods which follow most naturally from the work of Hardy, Littlewood and
Wiener; and my debt to them will be apparent.” After a brief introduction, Chapter I deals
with elementary Tauberian theorems, Chapter IIT with classical Tauberian theorems (special
summability methods, such as Cesaro, Abel and Borel) and Chapter IV with Wiener theory.
Chapter V is on Mercerian theorems, regarded as a limiting case of Tauberian theorems (this
remained the only textbook chapter on the subject until Chapter 5 of (4)). Chapter VI is on
Tauberian theorems and the PNT, as in [29].

The Lebesgue space L; has the structure of a Banach algebra under convolution, and on
taking Fourier transforms, one obtains a Banach algebra under multiplication, in Ly,. Wiener’s
theorem shows that the presence or absence of zeros in the Fourier transform is crucial, and
the presence of zeros is preserved under multiplication (or of zeros in the transform, under
convolution). The ideal structure of the Banach algebra is thus relevant. One of the first
spectacular triumphs of modern functional analysis, as distinct from classical analysis, was the
exploitation of ideal structure in Banach algebras to simplify and extend Wiener Tauberian
theory. This was carried out by I.M. Gel’fand in the 1940s, and also by R. Godement. For
an early textbook account, see (36, p. 85) ‘As a corollary of this theorem we can deduce the
Wiener Tauberian theorem, but in a disguise which the reader may find perfect’). Pitt refers
to Gel'fand (and to Sreider, though not to Godement), but confines himself to the classical
methods with which he had himself worked.

Integration, measure and probability [31]. This brief book (110 pages) deals with the
three topics in the title, starting from scratch. Unlike [30], which is unambiguously a research
monograph, the book reads like a student text. Part I is on integration and measure. Chapter
1, on sets and set functions, is presented in modern notation and terminology (in contrast to
[15]). In Chapter 2, integration is developed first, and measure is deduced from it. This is the
route followed by P. J. Daniell in 1917-20, and later by Bourbaki, but it is not the usual route,
and Pitt does not discuss his reasons for choosing it. Chapter 3 includes Stieltjes integrals and
convolutions. Part II is on probability. Chapter 4 gives a measure-theoretic framework going
as far as conditioning. Chapter 5 covers convergence of random series, infinite divisibility and
self-decomposability, and the Poisson process.

Integration for use [32]. This book, also brief (143 pages), is again a student text. In the
first three chapters, Pitt covers the basics of integration, including the Lebesgue theorems,
Fubini’s theorem and the Radon—Nikodym theorem. He again deals with integration first and
measure second. Chapter 4 is on geometric theory, including the theorems of Gauss, Green
and Stokes. Chapter 5 is on harmonic analysis, and covers Fourier series and transforms, FSTs
and spectra. The final chapter gives a selection of topics on probability.

Obituary: John Charles Burkill [33]. J. C. Burkill (1900-93; FRS 1953) was Pitt’s tutor
and supervisor at Peterhouse. In addition to his obvious debt to Hardy, Pitt acknowledged
a deep debt to Burkill; he was also influenced while at Cambridge by Littlewood, Ingham
and Besicovitch. His obituary of Burkill describes Burkill’s life and work, and discusses his
27 papers and six books under six main headings: integration and differentiation; functions of
integrals and the Burkill integral; derivatives of interval functions; the expression of area as an
integral; approximate differentiation and extension of the Perron integral; and other topics.

Conclusion

Pitt’s output was unusual in that so much of it was done early, in or around the year 1938,
when the influence of his early mentors, Hardy and Wiener, was still strong. His name is best
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known for Pitt’s form of Wiener’s theorem [5]. Pitt’s other most important papers include
[2] (Pitt’s inequality), [9] (the Wiener-Pitt-Sreider phenomenon) and [18] (random ergodic
theorem). His book [30] served from its appearance in 1958 to that of Korevaar (31) as the
only general monographic treatment of the very important subject of Tauberian theorems.
Pitt will also be remembered as the last grandmaster of analysis from the Hardy—Littlewood
school (Titchmarsh, Ingham, Offord, Burkill and Cartwright having predeceased him). He will
be remembered in the university world for his Vice-Chancellorship of Reading. His colleagues
recall a kind man who led by consensus.
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