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OBITUARY

GEORGE POLYA

His life

George (Gyorgy) Pélya was born in Budapest on 13 December 1887, the son of
Jakab (1844-1897) and Anna (née Deutsch; 1853-1939) Pdlya. Jakab was a lawyer
in the Budapest office of the Assicurazioni Generali of Trieste, a large international
insurance firm. Before joining the company he had had a private law practice. His real
interests, however, lay in economics and statistics and he continued to study these on
the side, in the hope of obtaining an academic position in economics, so that he could
devote full time to research. To help in obtaining such a position, in 1882 he changed
the family name from Polldk to the rustic Hungarian Pdlya (pronounced p5’yaw, or,
more commonly in English, pol’yaw). While earning a living in the law, he wrote a
number of books and pamphlets, and he learned languages as well, including enough
English to translate Adam Smith’s Wealth of Nations into Hungarian, a translation
used as a text in Hungarian schools for decades. Shortly before his untimely death
from a heart attack, he succeeded in becoming Privatdozent at the University of
Budapest.

Pédlya’s mother came from a family claiming residence in Buda since the 16th
century. The family included several professional people; one, a professor of botany,
was a contemporary of Pdlya’s mother.

George was 10 when his father died and left his wife, George, and four other
children, two boys and two girls. Another girl had died in infancy. Pélya’s older
brother by 11 years, Eugene (Jend), studied medicine and became a famous surgeon
and professor of surgery at the University. He was eminent in his field, having
developed a technique of stomach surgery that bears his name, but he loved
mathematics and regretted having chosen medicine over mathematics as a career.
After their father’s death in 1897, the two sisters, Ilona and Flora, had to go to work
for the insurance firm in order to help support the family. Much later, the younger
brother, Laszl6, was killed in the First World War. A few of the descendants of these
have gone on to study mathematics seriously.

Pdlya’s mother urged him to take up his father’s profession so he tried studying
law at the University of Budapest, where he enrolled in 1905, but he found it boring,
50 he continued in the subject for only one semester. From law he moved to languages
and literature for two years and passed an examination for a teacher’s certificate that
allowed him to teach Latin and Hungarian in the lower grades of the gymnasium, a
certificate he never used. Fond of literature—he translated the poetry of Heine into
Hungarian while still in the gymnasium—he was also interested in philosophy.
Fortunately for mathematics one of his philosophy professors convinced him that the
study of mathematics and physics would help in his understanding of philosophy. He
therefore began a serious study of mathematics, a subject that had not interested him
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560 GEORGE POLYA

in his earlier schooling. His interest in physics was shared by his good friend at the
University, the eminent physical chemist and, later, social scientist, Michael Poldnyi.

In light of Polya’s later work in problem solving it is interesting that he was not
particularly attracted to the famous E6tvés Competition that had inspired so many
of his contemporaries. When asked to take the contest Polya neglected even to turn
in his paper.

At the University of Budapest his physics professor was the well-known physicist,
Lordnd Eotvés, but the professor who was to influence him most was the
mathematician Leopold (Lip6t) Fejér. Fejér had an appealing style and personality;
his wit and charming conversations with his students—often in coffee houses—
attracted many to his circle.

So Pdlya was drawn into mathematics and finally abandoned physics and
philosophy. In later years he explained this by saying: ‘I thought I am not good
enough for physics and I am too good for philosophy. Mathematics is in between.’
(1]*

At the University Pdlya was one of the founders, along with Karl Polanyi
(Michael Polanyi’s older brother), of a student society called the Galileo Circle
(Galilei Kor). Their slogan was ‘Do not put religious, social, or political considera-
tions above scientific research and speculation.’” The Circle sponsored lectures,
opened reading rooms and published a journal for young scholars. Polya lectured
to the Circle on Mach. They saw themselves as socialists, but they were not very
revolutionary. And though they heard lectures on Karl Marx and other thinkers not
approved of completely by the government, Polya remembered the meetings as being
dull and innocuous.

Pélya spent the 1910-11 academic year at the University of Vienna, earning
money by tutoring the son of a local nobleman, and in 1912 he returned to Budapest
where he received his doctorate in mathematics. The years 1912-13 were spent in
Gottingen, where he met Klein (then just retired), Hilbert, Runge, Landau, Weyl
(later to be a colleague in Ziirich), Hecke, Courant, and Toeplitz. Originally
scheduled to take an appointment at Frankfurt, he went to Paris at the beginning of
1914, and after a short stay there, he accepted, instead, a position at the
Eidgendssische Technische Hochschule (Swiss Federal Institute of Technology) in
Ziirich, an appointment arranged by Adolf Hurwitz. His relationship with Hurwitz
was short—Hurwitz died in 1919—but very close. Pdlya felt that his mathematical
taste was much influenced by Hurwitz, and he was fond of describing their talks about
mathematics, often on walks near the ETH. He wrote only one joint paper with
Hurwitz [1916, 1], really two separate papers joined together, but after Hurwitz’s
death Polya edited his collected papers. He also credited Hurwitz’s extensive
mathematical diaries for a number of problems that later appeared in the Aufgaben
und Lehrsdtze. These diaries may have influenced Polya in other ways: he kept a
mathematical log himself throughout much of his career, recording mathematical
conversations and keeping track of his own mathematical ideas.

The department head at the ETH when Pdlya arrived was Arthur Hirsch. His
other colleagues there included Franel, Geiser and, later, Plancherel, Kollros,
Gonseth and Hermann Weyl. Even later, Bernays came to the ETH from Géttingen.

* This tribute to George Pdlya consists of a series of essays, both biographical and scientific. Each part
has a list of references at the end and single digits in brackets refer to entries in the list of references for
each short essay. References of the form [date, number] are to works of Pélya and appear in the Pdlya
bibliography given at the end of the whole series.
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OBITUARY 561

With Plancherel he had a close working relationship, and one joint paper of theirs
on Fourier integrals [1937, 2] is considered quite important, being often cited in
subsequent work on the subject. He had less in common with Weyl—Weyl was more
concerned with vast generalizations than Polya—but they were quite close personally.
He wrote two papers to honor Weyl [1961, 2] and [1972, 1], though Pdlya claimed that
mathematically they never quite understood each other. Polya shared with the
logician, Bernays, an interest in problem solving and maintained close contact with
him until Bernays’ death in 1977.

The after-effects of a leg infection, following a soccer injury during his student
days, kept Polya out of the Hungarian army during the early years of the First World
War. Later, when the need for soldiers became more urgent, Pdlya, having fallen
under the influence of the outspoken pacificist, Bertrand Russell, refused to return to
Hungary and serve. Because of this he was unable to return to his homeland for many
years following the First World War.

Polya became a Swiss citizen and in 1918 he married Stella Vera Weber, the only
surviving daughter of Robert Weber, professor of physics at the University of
Neuchitel. Her sisters had died of tuberculosis and Mrs. Pdlya herself spent a year
in Davos, a well-known center for the treatment of respiratory diseases. At the time
of their meeting, Weber, who had suffered a serious stroke, was staying with his
daughter at the Hotel Ziirichberg in Ziirich. It was Polya’s willingness to play
dominos with her father that convinced the daughter that the young Pdlya must be
a very kind man. They had a long and happy marriage—married for 67 years at the
time of Pdlya’s death.

Mrs. Pdlya grew up in Neuchdtel, in French-speaking Switzerland, so French was
always spoken in their home. Pdlya’s native language was, of course, Hungarian, but
he spoke German in Ziirich. Later he learned English, published mathematical papers
in German, English, French, Hungarian, Danish and Italian, and read other
languages with varying degrees of ease. He had learned Latin and Greek in school,
so he could recite long passages of Virgil and Homer in the original. His favorite
author for quoting, however, was Dante, in Italian. His early interest in languages
never left him.,

At the ETH Pdlya rose through the ranks from Privatdozent in 1914 to
Titularprofessor in 1920 and finally to Professor Ordinarius in 1928. In 1924 as the
first international Rockefeller Fellow, he spent a year in England in order to work
with G. H. Hardy, first at New College, Oxford, then at Trinity College, Cambridge.
It was Hardy who had recommended Pdlya when asked by the Rockefeller
administrators to suggest a recipient for the grant. During that time work was begun
on the classic book written with Hardy and J. E. Littlewood, Inequalities, published
by Cambridge University Press in 1934. Intended originally for the Cambridge Tracts
series, the manuscript quickly outgrew that format, running to more than 300 pages.
After more than fifty years it is still a standard reference, and specific inequalities
proved there have inspired numerous subsequent papers. On being asked many years
later about his discovery of his very ingenious proof of the arithmetic—geometric
means inequality that uses the first two terms of the Maclaurin series for ¢* (Theorem
9 in the book, proof in Section 4.2), Pdlya replied, ‘It’s the best mathematics I
ever dreamt.” He apparently did dream about mathematics and even wrote of this in
(1970, 2].

While in England he also met A. E. Ingham with whom he was to collaborate
later. Hardy was at that time trying to reform the Tripos, viewing the problems on
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562 GEORGE POLYA

the examination as out-of-date and largely irrelevant to modern mathematics. In
order to demonstrate his thesis, he arranged for Pdlya to take the examination,
expecting him to do badly, thereby showing that this kind of mathematics was not
what an active research mathematician from the Continent would do well. He
miscalculated. If Pdlya had been officially entered, it is reported, he would have been
named Senior Wrangler.

In 1923 Polya and his slightly younger fellow countryman, Gabor SzegG, whom
he had known in Budapest, started their long collaboration by signing a contract with
Springer for the book that was to be the most acclaimed contribution of each of them,
the masterful collection of problems called the Aufgaben und Lehrsiitze aus der
Analysis. Szegb had received his Ph.D. from the University of Vienna in 1918, six
years following Polya’s, and had then been appointed Privatdozent in Berlin in 1921.
Pdlya had an idea for a problem book in analysis but realized he would need help in
the sort of undertaking he had in mind, so he proposed to Szegd a collaboration.
Polya once remarked that the two volumes of the Aufgaben und Lehrsdtze were the
result of a true collaboration—each knew certain areas the other did not know. This
was a revealing comment because Szegd’s early career was closely tied to Polya’s
work. Szegoé’s first publication in an international journal was the solution of a
problem posed by Pdlya in 1913 [8], and his first research paper was on a question
posed by Pélya involving the determinant of a Toeplitz matrix [10]. This work led to
investigations in orthogonal polynomials, the subject of Szegé’s best known research.

The early years in Ziirich were almost unbelievably productive for Pélya. During
this time he published a large number of papers—up to a dozen each year. But even
more impressive than the quantity is the amazing range. In 1918 he published papers
on series, number theory, combinatorics, and on voting systems. The next year there
were again papers in analysis, number theory and voting systems, but also in
astronomy, probability and pedagogy. All of this was achieved at a time when he was
doing some of his most profound work in the study of integral functions. And in
part of this period, he and Szegé were assembling and writing the Aufgaben und
Lehrsdtze.

The importance of this two-volume set was not only in the range and depth of the
problems contained in it—there must be hundreds if not thousands of citations of the
work in the literature—it was also in the organization. The problems were grouped
not by subject but by method of solution. This was a novelty. The concentration
required to put this together resulted in a period of intense strain for Pélya. His wife
even today recalls her concern for his health over those years. But major mathematical
achievements were made, and in the Aufgaben und Lehrsdtze Pdlya and Szegd
produced a mathematical masterpiece that assured their reputations.

During the 1930s Pdlya worked closely with Gaston Julia on a series of problems,
and this meant regular trips to Paris. Early on, in his 1914 Paris visit, he had
encountered Picard and Hadamard, with whom he shared common interests. On one
of his visits to Paris in the 1930s Pdlya spoke at the jubilee of Hadamard about
Hadamard’s studies of the relationship between coefficients in an expansion of a
function and the properties of the function. Jerzy Neyman recalled much later that
when he heard this lecture he ‘formed the impression that Pélya’s work was somehow
inspired by that of Hadamard. Now after having inspected Polya’s collected papers,
[he] was a little dubious. Could it have been that the situation was the reverse, with
Pdlya’s results inspiring an effort by Hadamard?’

In 1933 Pdlya was again selected for a Rockefeller grant, this time to visit
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Princeton. Though there were no mathematicians at Princeton with whom he
worked closely, he did discuss problems with Oswald Veblen and met with other
mathematicians on the East Coast, including G. D. Birkhoff. Veblen had been highly
recommended by Hardy, who told Pdlya that Veblen had ‘all the American, all the
British, all the Scandinavian virtues.” That summer he visited Stanford, at the
invitation of H. F. Blichfeldt, the department head at that time. A few years later, in
1936, Szegd, who had gone from Berlin to Konigsberg, was forced by the Nazi regime
to leave Germany. He went first to Washington University, St. Louis, and then to
Stanford, where he became department head. This turned out to be relevant to
Polya’s own career.

On their first trip to Stanford in 1933 the Pdlyas decided they liked California,
Stanford in particular. The situation in Europe became ever more threatening, so in
1940 the Pdlyas left Switzerland by way of Lisbon. For the first two years in the
United States Pdlya had a position at Brown University, and then, after a short stay
at Smith College, he left in 1942 for Stanford. That fall Plya and Szeg6 were reunited
and soon resumed their collaboration, this time on a series of papers on mathematical
physics and on a second book, the Isoperimetric inequalities in mathematical physics,
published as part of the Annals of Mathematics Studies by the Princeton University
Press [1951, 2].

At Stanford his colleagues in the Mathematics Department included, in addition
to Szegd, the mathematicians Blichfeldt, J. V. Uspensky, and W. A. Manning. These
were soon to be joined by Menahem Schiffer, Stefan Bergman, and Charles Loewner,
with whom Pdlya had many shared mathematical interests.

With his arrival in America Pdlya started what was, in a sense, a new career
outside the bounds of purely mathematical research. Shortly before coming to
America Polya had written in German a draft of a book on problem solving. When
he later rewrote it in English and told Hardy that he planned to call it How to solve
it, Hardy remarked, ‘It is appropriate that you go to America. It is the country of
“How to” books.” Pdlya went to four publishers before finding one willing to publish
it, Princeton University Press, which brought it out in 1945, Later Doubleday
published it in paperback and it enjoyed enormous success. Again available from
Princeton, both in hardcover and paperback, How to solve it has never been out of
print since 1945 and has sold well over 1,000,000 copies. It has been translated into
17 languages, quite possibly a record for a modern mathematics book. It was followed
in 1954 and 1955 by the two-volume Mathematics and plausible reasoning and in 1962
and 1965 by Mathematical discovery, again in two volumes.

These later works were not evidence of a newly found interest in teaching and in
heuristics. The organization of the Aufgaben und Lehrsditze showed this interest, and
he had written earlier articles on problem solving. But in the 1950s he devoted
considerable time to writing and lecturing on the subject, becoming a prominent voice
in mathematics education in the United States and, indeed, in the world. He became
emeritus professor at Stanford in 1953 but continued to teach and write. From 1955
to 1974 he taught well over one thousand high school and college teachers in a series
of institutes at Stanford supported by grants from General Electric, Shell and the
National Science Foundation. In the summer of 1964 he taught at an NSF-supported
program in Versoix, Switzerland.

In 1946 Szegd and Pdlya started a high school competition at Stanford that was
modelled on the E6tvos Contest in Hungary. By the time the contest was discontinued
in 1965—the Stanford department had decided to shift its emphasis to graduate
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564 GEORGE POLYA

teaching [1974, 2; p. 2}—the contest was being taken annually by 1200 participants
in 151 centers in the western states. Plya and J. Kilpatrick later gathered together the
problems and solutions from the Stanford (later Stanford—Sylvania) Contest and
these were published as a collection in [1974, 2].

Shortly after the Second World War Pélya joined Tibor Radé and Irving
Kaplansky on a committee to make up the first post-war Putnam Examination. Pdlya
was a member of the Putnam Prize Committee from 1948 to 1950. He also served the
Mathematical Association of America as Northern California Chairman in 1947 and
as a member of the Board of Governors from 1958 to 1960.

At the ETH Polya’s Ph.D. students were Alfred Aeppli (1924), Eduard Benz
(1935), Ernst Boller (1932), Albert Edrei (1939), Florian Eggenberger (1924), Fritz
Gassmann (1926), Gottfried Grimm (1932), Reinwald Jungen (1931), Hermann
Muggli (1938), Albert Pfluger (1935), Alice Roth (1938), Walter Saxer (1923), Emil
Schwengeler (1925) and August Stoll (1930). Of these, Saxer and Pfluger later joined
the ETH faculty. He also advised in the role of ‘Korreferent’ the dissertations of
Hans Albert Einstein (1936), Victor Junod (1933), Wilhelm Machler (1932), Hans
Arthur Meyer (1934), Egon Moecklin (1934), Hans Odermatt (1926) and James J.
Stoker (1936). In addition, he assisted in the advising of the Ph.D. dissertations of
Egon Lindwart (with Landau; 1914) at Goéttingen and of Nikolaus Kritikos
(with Fueter; 1920) at the University of Ziirich. At Stanford he was an advisor
for the dissertations of Michael Israel Aissen (1951), Madeleine Rose Ashton (1962),
Donald W. Grace (1964), Madeline Johnsen (1946), Charles McLoud Larsen (1960),
Burnett C. Meyer (1949), Grove Crawford Nooney (1953) and Andrew Van Tuyl
(1947).

The years following his ‘retirement’ were busy ones. He was a travelling lecturer
for the Mathematical Association of America from 1953 to 1956, visiting campuses
in many parts of the country. In 1963 he became a consultant for the Educational
Research Council of Greater Cleveland, participating in their development of
curriculum materials. Part of each year was spent in Ziirich, and there was other
travelling as well. In 1968 the Polyas went to Trinidad to attend a conference at the
University of the West Indies on mathematics in the Commonwealth schools.
They attended International Congresses of Mathematicians (Harvard in 1950,
Amsterdam in 1954 and Edinburgh in 1958) and, of special importance to
Polya, the Second International Congress on Mathematical Education at Exeter,
England, in 1972, where he was specially honored along with Jean Piaget. A happy
surprise at the Congress was the discovery that Mrs. Polya and Piaget had been
classmates as children in dance classes given by an English dancing teacher in
Neuchatel.

While in England for the Congress in Exeter, Polya made a second film; the
first, ‘Let Us Teach Guessing,” had been made in 1968. The 1972 film, ‘Guessing
and Proving,’ was made for the Open University by the BBC. He had first thought
of proving the Pythagorean theorem in a ‘Lecture without Words’—he cited
Mendelssohn—but instead he presented a problem on volumes of polyhedra
inscribed in a sphere. It was followed by a conversation with Maxim Bruckheimer.

Polya taught his last course at Stanford in 1978, in the Computer Science
Department. It was a course in combinatorics wherein Pdlya taught the first part,
Robert Tarjan the second ; these lectures were later written up by Donald Woods and
published by Birkhduser [1983, 1]. The previous year Stanford had given a dinner to
celebrate Polya’s 90th birthday. Several friends and colleagues spoke following the
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OBITUARY 565

dinner: Jerzy Neyman, Peter Lax (then President of the American Mathematical
Society), Donald Knuth, Halsey Royden, and the Nobel laureate and Stanford
physics professor, Felix Bloch, a former student of Pélya’s at the ETH.

In 1980 he was named Honorary President of the Fourth International Congress
on Mathematical Education in Berkeley, but he suffered a severe attack of shingles
a few months prior to the Congress and was unable to attend. Following this illness
Pdlya was less physically active. It was about this time Pélya told his wife that he was
satisfied with what he had accomplished in life. He felt that he had done with his
talents everything he could have done. Following the 1980 illness, in spite of failing
eyesight, he continued to edit and to supervise various projects, until a couple of
months before his death. He died from the effects of a stroke, on 7 September 1985,
in Palo Alto, California. His wife survives him.

At the time of his death he had been a member of the London Mathematical
Society for 60 years and an honorary member for 29 years. In 1947 he had been
elected corresponding member in geometry of the Académie des Sciences, Paris,
occupying a seat previously held by de la Vallée-Poussin and earlier by Klein,
Sylvester and Steiner. Polya was proud to say the seat could be traced all the way back
to Newton. He was also a member of the USA National Academy of Sciences (1976),
the Hungarian Academy of Sciences (1976), the American Academy of Arts and
Sciences (1974) and the Académie Internationale de Philosophie des Sciences,
Bruxelles (1965), honorary member of the Swiss Mathematical Society (1957), the
New York Academy of Sciences (1976), The Mathematical Association of Great
Britain (1972), Society for Industrial and Applied Mathematics (SIAM) (1972) and
of the Council of the Sociét¢é Mathématique de France (1952). In 1963 he was
given the Award for Distinguished Service to Mathematics by the Mathematical
Association of America and in 1968 was presented with the Blue Ribbon by the
Educational Film Library Association for his film ‘Let Us Teach Guessing.’ The
California Mathematics Council awarded him life membership in 1976. He was
awarded honorary doctorates by the Swiss Federal Institute of Technology (Dr.Sc.,
1947), University of Alberta (LL.D., 1961), the University of Wisconsin at Milwaukee
(D.Sc., 1969) and the University of Waterloo (Dr.Math., 1971). In 1962 a group of
his colleagues at Stanford edited a Festschrift to honor Pélya on his 75th birthday
[11]. With 60 articles by eminent colleagues and friends from around the world, its
breadth matched that of Pdlya’s own work.

In recognition of his pioneering work in combinatorics, the Society for Industrial
and Applied Mathematics established a Pdlya Prize in Combinatorial Theory and Its
Applications, to which is attached a handsome medal with Pdlya’s portrait. The
Mathematical Association of America also awards each year a Pdlya Prize for
Expository Writing for outstanding articles in the College Mathematics Journal. In
1987 the London Mathematical Society announced that it is establishing a Pdlya
Prize to be awarded for outstanding work by a mathematician in the United
Kingdom.

As important, perhaps, as his many honors is the fact that he was admired,
respected and loved by his colleagues, former students, and by many friends from
around the world. Evidence of this was the attendance at the memorial symposium
in his honor at Stanford University in May, 1986: research mathematicians, college
teachers and high school teachers all came together to hear talks on his work by
Albert Baernstein, Kai Lai Chung, Albert Edrei, Paul Erdds, Ronald L. Graham,
Dennis A. Hejhal and Alan H. Schoenfeld. In the Mathematics Library at Stanford
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566 GEORGE POLYA

there is only one portrait on the wall, that of Pélya. And the first academic building
on campus named for a mathematician is Pélya Hall.

Jorge Luis Borges once said that ‘when writers die, they become books, which is,
after all, not too bad an incarnation.” At the memorial symposium to honor Pdlya,
Erdés put it more mathematically: ‘In the Arabian Nights, they say, “May the king
live forever.” In Pélya’s case, we can say, ‘“May his theorems live forever.”’

Pdélya the mathematician and teacher

When asked which mathematician of the past he admired most, Pdlya replied
without hesitation, ‘Euler’. In [1] he said: ‘Among old mathematicians, I was most
influenced by Euler and mostly because Euler did something that no other great
mathematician of his stature did. He explained how he found his results and I was
deeply interested in that.” Polya went on to admit that Euler wrote so much, he was
not familiar with all of Euler’s work. He nevertheless knew much of it very well and
had a number of volumes of Euler’s Opera Omnia in his personal collection.

His interest in Euler was consistent with the kind of mathematician and teacher
Polya was. He liked mathematics that was fairly close to its concrete roots. Of the two
kinds of problems described by Poincaré, those ‘qui se posent’ and those ‘qu’on se
pose,” Polya would surely have chosen the former. Albert Pfluger, his Ph.D. student
and successor at the ETH described Pdlya’s taste thus in [7]: ‘Pdlya was attracted
by problems originating in physical sciences and engineering, and many of his
mathematical developments are motivated by such problems. Characteristic is his
special liking for the concrete, but typical, particular case by which the general idea
can be seized and comprehended or a general method can be verified.” Polya was fond
of saying that mathematics is the most abstract of the sciences, so in teaching it (or
writing it) one must be as concrete as possible.

Polya saw good mathematical problems in many fields not traditionally close to
mathematics. At the request of the ETH he recalled in 1978 some of the people he
worked with there. In addition to names one would expect—Weyl, Plancherel,
Bernays, Gonseth, Pauli and Hopf—he pointed out that he knew a number of faculty
in other departments and had taught their students, in architecture, chemistry,
forestry, as well as those in engineering, physics and mathematics. So he became
interested in what people were doing in these departments. He said, ‘The Architecture
Department had an interesting library. I studied there architectural ornaments and
that led to one of my papers: about the analogy of the symmetries of crystals in the
plane. I think one point in it is new. I illustrated the 17 plane symmetries with
ornaments. I must confess the architects were not so much interested in it. But the
professor of mineralogy, Niggli [Paul Niggli], was very much interested in it and he
wrote a parallel paper.’ (See [6].) Pdlya’s paper was his famous work on symmetries
in the plane [1924, 1].

Further, he pointed out that he taught chemists and mentioned that one of his
successful papers is on counting certain chemical combinations. ‘ Again the chemists
were not too much interested in it but Niggli was very much interested. He even used
the ideas of my paper in his [class], which was obligatory for chemists and other
people and he included some of it in his textbook.” This work in chemistry culminated
in Pdlya’s monumental paper on groups, graphs, and chemical compounds [1937, 3].
To describe it as ‘successful’ is to be too modest. It is one of the most celebrated
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OBITUARY 567

papers in the history of combinatorics. In [2] Pdlya’s theory is called a ‘milestone, not
only in graph theory and chemical enumeration, but in mathematics as a whole.’

Another colleague, Paul Jaccard, the biologist, wrote on the distribution of plants
and this led to further work by Podlya [1930, 5]. His work with engineers led to
[1930, 6]. Einstein’s son, Hans Albert Einstein, wrote his dissertation in 1936 at the
ETH on the movement of silt in rivers; Pélya was one of the advisors. (Pdlya was to
write on this subject himself in {1937, 1] and [1938, 2].) The Polyas maintained contact
with the younger Einstein, who became a professor of hydraulic engineering at the
University of California, Berkeley. The Polyas had lived a few doors down the street
from the Einsteins in Ziirich, on the Biichnerstrasse.

The quality of finding good problems in many areas and then turning them into
good mathematics was one of Pdlya’s strengths. But he went beyond finding good
questions. His answers were models of clarity. At Pdlya’s 90th birthday dinner at
Stanford H. L. Royden pointed out that Pélya was not only a mathematician, he was
also a teacher. It was not sufficient for him to solve a problem; he had to study it until
he saw the nature of the solution clearly and simply, in order to put it in a form easily
understood by his readers or listeners.

Polya not only delved into the problem till he achieved full understanding and
then rewrote and reworked his papers for complete clarity, he also found phrases that
stick in the mind, making mathematical ideas simple and memorable. For example,
when describing his theorem on random walks, that a wandering point in a lattice
must return to its starting point in one and two dimensions, given sufficient time, but
that it need not do so in higher dimensions, Polya remarked that in two dimensions,
it is really true that all roads lead to Rome!

In [1947, 1], a paper concerned with estimating electrostatic capacity, Pdlya
discusses the problem of minimizing capacity, in the special case of thermal
conductance, and gives the example of a cat preparing itself for sleeping through a
cold winter night: ‘he pulls in his legs, curls up, and, in short, makes his body as
spherical as possible.” The cat thereby demonstrates knowledge of the theorem: ‘Of
all solids with a given volume, the sphere has the minimum capacity.’

Pdlya used Steiner symmetrization to solve Rayleigh’s problem on the shape of a
drum, and this simple device was then the basis for the solution of many problems in
mathematics gathered together in his book with Szegl, Isoperimetric inequalities in
mathematical physics. Royden has remarked that he thought these techniques ‘too
simple and easy to be very deep’ until, several years after seeing them at Stanford, at
an Eastern graduate school he was taught far more complicated methods for some of
these problems yet they gave far more limited results than the ‘elementary’ methods
of Pdlya and Szegd. Mark Kac was, of course, also interested in problems concerning
the shape of a drum and he once inscribed one of his reprints on the subject to Pdlya:
‘To another drummer. Mark Kac.’

It was Pdlya’s concern for making the mathematics absolutely clear, even
intuitive, that developed early on into an interest in education. As early as 1917, he
was addressing himself to questions of teaching. On 22 November of that year he
spoke at the town hall in Ziirich on mathematical discovery. This was written up and
published in 1919, his first paper on problem solving [1919, 6]. A diagram in this
paper outlining the solution of a problem is strikingly similar to the diagram on the
endpaper of the second volume of his book Mathematical discovery of 1962. Another
early appearance of his ideas on problem solving was in the preface to the Aufgaben
und Lehrsdtze.

a9 ‘/86T '02T2Z697T

36UBD1T SUOLILLIOD 3ANERID 3|t [dde ay) Ag pauenob aJe a1 WO ‘38N JO 3N J0j ARIg 1T UIIUO /8|1 UO (SUONIPUOD-PUR-SLULBI WD A3 IM"ARe.q 1 U1 UO//SANY) SUONIPUOD PUe SWIB | 34} 39S *[SZ0Z/0T/0E] U0 ARiqiT auluO AB[IA ‘30UB|[POX3 328D PUB UIEaH J0Jaimiisu| euoieN ‘IDIN AQ 655°9'6T/AWQ/ZTTT OT/I0P/AL0D AS| 1M



568 GEORGE POLYA

Pdlya was, of course, not the first mathematician to consider the question of how
people solve mathematical problems. Descartes, Euler, Poincaré, Mach, Bolzano and
Hadamard, among others, had certainly thought about mathematical discovery and
creativity and had written on them. But Pdlya made guessing, looking at data,
analogy, generalization and specialization part of the language of every serious
teacher and student of mathematics. He often signed letters with ‘G. P.” and would
playfully note that it stood for ‘guessing and proving.’

In 1963, when Pdlya was given the Distinguished Service Award by the
Mathematical Association of America, Szeg$ wrote in the citation: ‘George Pdlya is
unique among mathematicians for combining, during his distinguished scientific
career, deep research on a very broad front with an ever present interest in
mathematical education.’ [9]

This interest in problem solving not only influenced the course of his later career,
the writing of How to solve it, Mathematics and plausible reasoning, and Mathematical
discovery, among many other works; it also influenced his career as a research
mathematician. His mathematical work spanned real and complex analysis, calculus
of variations, probability, geometry, number theory, combinatorics and graph
theory. When asked how he happened to work in so many distinct branches of
mathematics—something very unusual even among first-rate mathematicians—Polya
responded [1]: ‘I was partly influenced by my teachers and by the mathematical
fashion of that time. Later I was influenced by my interest in discovery. I looked at
a few questions just to find out how you handle this kind of question.’

Hardy apparently did not think this moving from problem to problem was such
a good idea. Polya wrote [1969, 4]: ‘In working with Hardy, I once had an idea of
which he approved. But afterwards I did not work sufficiently hard to carry out that
idea, and Hardy disapproved. He did not tell me so, of course, yet it came out when
he visited a zoological garden in Sweden with Marcel Riesz. In a cage there was a
bear. The cage had a gate, and on the gate there was a lock. The bear sniffed at the
lock, hit it with his paw, then he growled a little, turned around and walked away.
“He is like Pdlya,” said Hardy. “He has excellent ideas, but does not carry them
out.”’

Polya’s taste was always for the intuitive and creative side of mathematics, always
based on specific problems. He became impatient with what he saw in modern
mathematics as excessive generalization, often in his view rather sterile. Though he
liked and admired Emmy Noether as a mathematician, he disagreed openly with her
on one occasion and wrote about it [1973, 3]. It was after a lecture Polya gave in
Gottingen about 40 years earlier. He wrote, ‘It finally turned into a debate on
generalisation and I defended the relatively concrete particular cases. Then once I
interrupted Emmy: “Now, look here, a mathematician who can only generalise is
like a monkey who can only climb UP a tree.” And then Emmy broke off the
discussion—she was visibly hurt. And then I felt sorry. I don’t want to hurt anybody
and especially I don’t want to hurt poor Emmy Noether. I thought about it repeatedly
and finally I decided that, after all, it was not one hundred per cent my fault. She
should have answered: “And a mathematician who can only specialise is like a
monkey who can only climb DOWN a tree.”” In fact, neither the up, nor the down,
monkey is a viable creature. A real monkey must find food and escape his enemies and
so he must incessantly climb up and down, up and down. A real mathematician must
be able to generalise and to specialise. A particular mathematical fact behind which
there is no perspective of generalisation is uninteresting. On the other hand, the world
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OBITUARY 569

is anxious to admire that apex and culmination of modern mathematics: a theorem
so perfectly general that no particular application of it is possible.’

Then too there is the famous Polya—Weyl wager of 9 February 1918, that arose
in discussions of the work of L. E. J. Brouwer. Weyl and Pdlya considered the two
theorems: (1) any bounded set of (real) numbers has a precise upper bound, and (2)
every infinite set of numbers contains a countable subset. Weyl predicted that ‘ by the
end of 1937 Pélya himself or a majority of leading mathematicians will admit that the
concepts of number, set and countable, to which these theorems refer and which we
generally consider basic today are quite vague; and that inquiries into the validity or
falsehood of these theorems are futile...” Further, Weyl predicted Pdlya or the
majority of leading mathematicians would ‘agree that the theorems [above], when
interpreted literally in as reasonable terms as possible, are absolutely false.” There
were further technical details, but the terms specified that Weyl would win if his
forecast came true; otherwise Pdlya would win. Witnesses included T. Carleman,
A. Speiser and A. Weinstein, among others. From our present-day perspective, it
becomes quite clear that Pdlya won. It was admitted privately by Weyl in 1938
[1972, 1].

As a person, Pdlya was gregarious, outgoing and friendly. He was a natural
teacher, obviously enjoying the interaction with students. And he was always
teaching. Even in conversation he would lead one into thinking about questions that
one might not otherwise see. So if one was not learning mathematics from him one
was learning about literature or something else. He loved especially the writings of
Voltaire, Anatole France and, as mentioned earlier, Heinrich Heine. His favorite
authors he could quote at length. He was also interested in pictures and in music,
where his tastes were, by today’s standards, rather conservative. In music, he loved
the 19th century romantics, especially Chopin, Schubert, Beethoven, and their
contemporaries. He also liked the operas of Puccini and remembered fondly the
operas of the Hungarian composer, Erkel, who wrote on nationalistic themes and is
not so well known outside Hungary.

Polya very much enjoyed jokes and stories, which he collected, quite often
classifying them by their country of origin. Of course, a joke was highly prized if it
had a mathematical or logical twist. His love of good stories and his joy in passing
them along to his students and friends suggests, perhaps, the influence of Fejér.

Donald Knuth recalled at the dinner at Stanford to celebrate Pdlya’s 90th
birthday that: ‘A few years ago when I was visiting the home of Professor de Bruijn
in Holland, he and I asked ourselves the question: If we could be any mathematician
in the history of the world (besides ourselves), who would we rather be? After some
discussion we narrowed the choices down to Euler and Pdlya, and finally settled on
George Polya because of the sheer enjoyment of mathematics that he has conveyed
by so many examples.’

This was later echoed by de Bruijn in his retirement address from the
Technological University Eindhoven when he said: ‘A mathematician who possibly
more than anyone else has given direction to my own mathematical activity, is
G. Pdlya. All his work radiates the cheerfulness of his personality. Wonderful taste,
crystal clear methodology, simple means, powerful results. If I would be asked
whether I could name just one mathematician who I would have liked to be myself,
I have my answer ready at once: Pdlya.’ [3]

Frank Harary expressed his admiration for Pdlya in his ‘Homage to George
Pélya’ in a special issue of the Journal of Graph Theory in 1977: ‘ With no hesitation,

a9 ‘/86T '02T2Z697T

36UBD1T SUOLILLIOD 3ANERID 3|t [dde ay) Ag pauenob aJe a1 WO ‘38N JO 3N J0j ARIg 1T UIIUO /8|1 UO (SUONIPUOD-PUR-SLULBI WD A3 IM"ARe.q 1 U1 UO//SANY) SUONIPUOD PUe SWIB | 34} 39S *[SZ0Z/0T/0E] U0 ARiqiT auluO AB[IA ‘30UB|[POX3 328D PUB UIEaH J0Jaimiisu| euoieN ‘IDIN AQ 655°9'6T/AWQ/ZTTT OT/I0P/AL0D AS| 1M



570 GEORGE POLYA

George Pélya is my personal hero as a mathematician...[he] is not only a
distinguished gentleman but a most kind and gentle man: his ebullient enthusiasm,
the twinkle in his eye, his tremendous curiosity, his generosity with his time, his spry
energetic walk, his warm genuine friendliness, his welcoming visitors into his home
and showing them his pictures of great mathematicians he has known—these are all
components of his happy personality.

‘As a mathematician, his depth, speed, brilliance, versatility, power and
universality are all inspiring. Would that there were a way of teaching and learning
these traits.” [4]

Jeremy Kilpatrick, a former student and, later, coauthor of Pdlya’s, wrote shortly
after Pdlya’s death about his spending long summer afternoons in the shaded study
of the modest house on Dartmouth...drinking juice and eating cookies and learning
lessons about being a scholar—the need to avoid self-pity and self-importance, to
take pains with your work; to find the right word, the right idea; to see the fun, the
humor in what you are doing. And when you returned in later years with your family
and saw Pdlya amusing your five-year-old with a folding toy or picking lemons for
you in the yard, you might have caught a glimpse of the truth that great teachers do
not simply teach us to do; they teach us to be.’ [§]
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The essays that follow appear roughly in the order in which Pdlya became
interested in or spent significant time in the field.

POLYA’S WORK IN PROBABILITY
K. L. CHUNG

Pdlya’s first publication, his 1913 Dissertation {1912, 1] in Hungarian, treats a
problem in probability. His lifelong interest in this field is evident from his
Bibliography (see [1984, 2]). Besides the twenty papers reprinted in that volume, some
ten more titles indicate probability and statistics. Some of his contributions to
probability are classified as analysis, others perhaps as combinatorics. The major
items which will be discussed here have long since become textbook material, [1].
Readers wishing to learn more details of the results summarized below should consult
these texts.
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OBITUARY 571

1. Fourier transform and convergence of distributions

The Fourier transform f of a probability measure x in R* given by

1) )= J‘00 e u(dx), teR’,

-0

is known as a characteristic function, a tool used since Laplace, Poisson and Cauchy.
In [1923, 2], Polya showed that it is indeed characteristic in the sense that it uniquely
determines u. Actually he considered an absolutely Riemann-integrable function
(signed density), and said of this result: ‘despite its simplicity it was nowhere explicitly
stressed’. So he gave a neat proof using Fejér’s theorem in Fourier series. This result
has been superseded by Paul Lévy’s inversion formula but the method of proof
remains viable. A better known result of Polya’s, slightly hidden in [1918, 4] (‘On
zeroes of certain integral functions’) but cited and used in [1923, 2], is his sufficient
condition for a given function to be a characteristic function, as follows:

@

fis real-valued and continuous in R';
fI0) =1, f{t) = f(—1) for all ¢,f is convex for 1 > 0, lim f{r) = 0.
t—>w

He returned to it in [1949, 3] and gave several interesting examples. This criterion is
still the only useful one for constructing and recognizing specific characteristic
functions, the *positive-definite’ characterization by Bochner and Khintchine being
too perfect to be of practical utility. It should be pointed out that Pélya considered
only probability density so that the last condition in (2) is necessary by the Riemann—
Lebesgue lemma. For a general measure u as written in (1) that last condition
should be omitted.

Pdlya wrote a number of papers on the ‘Gaussian error-law’, now commonly
known as the ‘normal distribution’. In [1920, 3] he coined the term ‘central limit
theorem’ (in German) and proved a general convergence theorem for a sequence of
distributions, based on the convergence of transforms. Let F be a distribution
function and

©
3) D) = J e"** dF(x)
-0

be the transform. He said: Tschebyscheff and Markoff considered the derivatives of
® at u = 0, whereas Liapounoff considered ® for purely imaginary values of ». But
he would consider @ as an analytic function in the strip —a < Reu < +a,a > 0. This
requires the convergence of the integral in (3) in a neighborhood of the complex
parameter u at the origin, which restricts the general applicability of the resulting
convergence theorem. However, Polya also proved an earlier version of Lévy’s
theorem (1922) at the end of [1926, 9]. Later in 1937 Lévy and Cramér published their
convergence theorem in terms of characteristic functions (namely Liapounoff’s
usage) which is now the principal tool for limit theorems. Pdlya also proved in
[1920, 3] the so-called ‘continuity theorem for the moment problem’: namely if all
moments of a sequence of distributions are finite and converge to those of a given
distribution which is uniquely determined by its moments, then (weak) convergence
of the sequence to the latter follows. This remains a useful and convenient method
in situations where the calculation of moments is more expedient than that of the
transforms. For instance I was able to obtain a central limit theorem for a stochastic
iterative scheme concocted by Robbins and Monro in a medical problem.
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572 GEORGE POLYA

In [1923, 2] Polya made another approach to the Gaussian error-law by
considering a functional equation suggested by the combination of errors in
measurement. In terms of the characteristic function ® of the error-law, it reduces to
the following: for each @ > 0 and b > 0, there exists ¢ > 0 such that

®(ct) = O(at) D(by).

Such a law is called ‘stable’ by Lévy. Pdolya proved that the only stable law having
a finite second moment is Gaussian corresponding to ®(¢) = e*'. He deduced from
this that the function e™ cannot be a characteristic function if « > 2, while it is a
characteristic function if 0 < a < 1, an immediate consequence of his condition (2).
Lévy proved that the same is true for 0 < o < 2 by using his convergence theorem,
and discovered a much larger class of characteristic functions called ‘infinitely
divisible’, and even more profoundly, founded his theory of ‘additive processes’.
See [2].

2. Random walk

Pdlya’s celebrated theorem on random walks appeared in [1921, 7], but important
complements are given in [1938, 2], based on a lecture he gave at a conference in
Geneva in 1937, which was accompanied by a film showing ‘the cartage of stones by
the current’. A point (not a ‘particle’!) executes a walk on the integer lattice of
R?%, d > 1, so each step takes it to one of the 2d neighboring positions with prob-
ability 1/2deach. The steps are independent. Given an arbitrary lattice point 4, will the
point starting from the origin ever reach 4 with probability one? The answer is
‘Yes’ if d=1 or 2, but ‘No’ if d> 3. He stressed the dimensional breakdown
as ‘newsworthy’, not intuitively obvious. For d = 1 the problem is similar to that of
gambler’s ruin treated by Laplace. But the question raised by Polya, that of recurrence
as it is called today, lay hidden in the ruin problem. One might say that the demand
of a quantitative answer, the probability of ruin of Peter before Paul, obscured the
even more fundamental question of the certainty of ruin (of one of them). This
question becomes more prominent in higher dimensions and opens up a new vista. It
can also be formulated as the problem of rencontre (Polya reminded the reader that
he was not speaking of the classical problem of the Marquis de Montmort!) of two
points executing random walks independently. He treated this second problem by
analogy with the first, and added a third one in [1938, 2], that of ‘novelty’: will the
point never pass through the same position twice? He reduced this to the first problem
by an elegant ‘reversal’ argument. Actually the second problem can also be reduced
to the first by reversing the steps of one of the strollers from the site of rencontre. This
kind of reasoning has received some attention lately under the name of ‘coupling’.
Pélya proved his results by using a ‘first passage decomposition’. When 4 = 0, if we
denote the position of the point at time n by S,, and put p, = 1,

p,=P(S,=0), w,=PS,#0forl<k<n;S,=0), n=1;

P(z)= Y p,z"; W@ =) w,z"
n=1

n=0
Then he obtains the relation (known today as ‘renewal equation’):

1

(4) P(Z) = I—-—I/V(Z).
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OBITUARY 573

From this he easily deduces that

o

s) Y w,=1eY p,= oo,
n=1 n=0
Now he calculates p, by Fourier inversion and Laplace’s method (apparently used in
his dissertation). The result is
d aj2
©® p~2() e,

T

from which it follows that the conclusion in (5) obtains if and only if d = 1 or 2. The
general case A # 0 follows from this special case and another relation of the form
P,(z) = W,(2) P(z), with the same P as before.

It is clear in Pdlya’s walk that if return to 0 once is (almost) certain then so also
is return infinitely many times. We now call such a walk ‘recurrent’. Equally clear is
the other side of the dichotomy : if return once is uncertain then return infinitely many
times is impossible. We call such a walk ‘transient’. Thus, ‘not-recurrent’ has a
stronger implication than it logically connotes. The change of viewpoint from *at least
once’ to ‘infinitely often’ might seem specious. It is decidedly not; indeed the switch
is tantamount to converting a supermartingale to a martingale, or a superharmonic
function to a harmonic one. In the present case it yields the following: if N denotes
the total number of returns to 0, and E(N) its mathematical expectation, then

@) P(N = o0) =0 or 1 according as E(N) < 00 or =00.

In this form the theorem constitutes an instance of the Borel-Cantelli lemma, but
since the events (returns) are not independent the result is not covered by the original
assertion. In this light Pdlya’s theorem appeared to be the first significant case of a
‘zero-or-one’ law for dependent events, an outstanding phenomenon in probability.

An extension of Pdlya’s theorem to ‘generalized random walks’ was obtained by
Chung and Fuchs [3). Let {X,,n=1,2,...} be a sequence of independent and
identically distributed random variables in R? and S, = ) i, X,. Thus in Pdlya’s
scheme the X, denote the successive steps, and S, the position at time n, the walk
starting from 0. A punctilious return to 0 is now ruled out in general, and what can
be more natural than to substitute for this a return to an arbitrary neighborhood B
of 0? Note that when the latter is a ball of radius smaller than 1, then in the lattice
case return to the ball means return to 0 precisely. It is rather unexpected that the
dichotomy presented in (7) remains true if N now denotes the total number of visits
to B by the sequence S,,n = 1,2,.... To the unspoiled it may also be surprising that
the dichotomy does not depend on the size of B. To evaluate the sum represented by
E(N) there, Fourier inversion with Abel summability was used. The conclusions are:
if d = 1, the random walk is recurrent if E(X,) = 0; if d = 2, it is recurrent under this
condition and the supplementary condition E(]|X,||*) < co; if d> 3, it is always
transient (unless degenerate into a lower dimension). Further results, along this
direction were given by Kesten, Spitzer, Port, Stone, Dudley, ..., some of which deal
with walks on groups. Extension of Polya’s theorem in the form (7) to homogeneous
Markov chains with countably many states is quite easy. In fact, the method indicated
above generalizes easily with suitable notation, which would have rid Pélya of the
nuisance of ‘periodicity’ pestering him: return is possible only in an even number of
steps. The general notion of recurrence vs. transience in Markov processes in discrete
or continuous time plays a prime role in the theory. It has been investigated by many
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574 GEORGE POLYA

probabilists: Doblin, Harris, Orey, Azéma, Kaplan-Duflo, Revuz.... The case of
Brownian motion in R* deserves special mention. In [1938, 2] Pdlya discussed the
diffusion of molecules as well as Einstein’s study of cartage. He wrote down the heat
equation, a hyperbolic equation (for H. A. Einstein’s cartage problem) as well as the
Laplace equation, by passage to the limit of second order difference equations.
Thereby he indicated a heuristic solution to his old problem by considering positive
harmonic functions, pointing out in particular the solution 1/r (where r denotes the
distance from the origin) conveys the transience in R®. Indeed in the last footnote to
the paper he discussed the probability interpretation of a Dirichlet boundary value
problem with values zero or one on different parts of the boundary. This is essentially
the modern method used to ascertain the recurrence or transience of Brownian
motion in different dimensions. Let us note that the results on generalized random
walks stated above imply the recurrence, but not the transience cases. POlya
considered the application of probability to the ‘transport of solid material by the
rivers’ as ‘serious’, whereas his own scheme of ‘promenade at hazard’ as ‘curious’.
In [1970, 2] he told the story of how he came to conceive of the latter from constantly
running into a couple while strolling in the park. Actually, shortly before he wrote
[1919, 9] he had treated Lord Rayleigh’s problem of random flight in {1921, 7], and
used the same word ‘Irrfahrt’ in both papers. That earlier, no doubt serious,
application apparently did not meet Descartes’ precept, which Polya quoted, of
‘commencing with the objects that are the simplest and easiest to know’, and it
yielded no memorable consequences. On the other hand, half a century since Pdlya
wrote those charming passages, the curious has certainly become curiouser and
curiouser.

3. Urn scheme

This is also known as the Polya—Eggenberger scheme (see [1923, 7] and [1928, 6]).
Eggenberger wrote his thesis in Ziirich under Pdlya in 1924, and did the practical
work. The best exposition of the ideas, however, was given in [1931, 1] which
reproduced the contents of a course Pdlya gave in March 1929 at the Institut Henri
Poincaré, for which he thanked Emile Borel for the invitation. Pélya was seeking non-
Gaussian laws of errors for dependent events, and cited Markov’s chained-events.
The spread of epidemic was mentioned as an example, and led to the following model
of ‘contagion’. An urn contains initially p red and & black balls, and one ball is drawn
each time. After each drawing, 1+ balls of the color drawn are added to the urn,
where 4 is an integer and adding becomes subtracting when the number is negative.’
Call the drawing of a red ball ‘success’. If 6 > 0 then success is contagious as it
reinforces other successes. If 6 = 0 or — 1, the scheme reduces to the classical ones of
drawing with or without replacement, which led respectively to the central limit
theorem (Bernoulli, de Moivre, Laplace, Gauss) and ‘the law of small numbers’
(Poisson). So Pdlya’s extension is certainly very ‘simple’; but is it also very ‘easy to
know’ according to Descartes’ precept? Let us ask the most exigent question about
the scheme: what is the probability of drawing n balls with their colors completely
specified in sequential order? An easy argument gives the answer

pp+9)(p+20)...(p+(r—1)0)o(c+)(6+25)...(c+(s—1)9)

® T+ G+ U+ +0+1D)0)...(+=1)3)’

where r denotes the total number of red balls in the specified sequence, s that of the
black ones, so that r+s = n. Given the initial data ¢ and p, this probability depends
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OBITUARY 575

only on » and r, but not on the specified order in which the two colors appear, so long
as none of the factors in (8) becomes negative. Thus the formula holds for all n > 1
when J6>0. A sequence of random variables x,,x,,...,x,,... is now called
‘exchangeable’ when the joint distribution of any n (arbitrary) of them in any
permutation is the same. If we put x, equal to one or zero according as the nth ball
drawn in Pélya’s scheme is red or black, we obtain such a sequence. This is a
remarkable generalization of a sequence of independent and identically distributed
random variables that constituted the primary structure of classical investigation. The
theory of exchangeability has been developed by Bruno DeFinetti with implications
on the foundation of statistics [4]. The concept implies that of (strict) stationarity, but
even for n = 1 it is not trivial to show that the probability of drawing a red ball at the
nth drawing is the same for all n. In case d = — 1, Poisson had to give a combinatorial
argument not so easy to follow. Pélya gave an elegant proof of stationarity in the
general case by use of a multiple generating function. Clearly, here probability merges
into combinatorics.

Pdlya’s distribution given by (8) can be reorganized by using generalized binomial
coefficients into a hypergeometric form, now known by his name. If we let the
parameters p, ¢ and J grow (or not grow) with n and let n become infinite, we obtain
various limiting distributions including the normal, Poisson (compounded), gamma,
beta, etc. (but not all Pearson types). Applications to special processes have been
made in various areas of practice, too numerous to recount here. For a curious and
serious application, read the title of [S]. This brief discussion must not stop before a
note of dissonance, sounded by Pdlya himself. He noted that if > 0 in his scheme,
failure as well as success tends to reinforce itself. Now in an epidemic each victim
produces many more germs to cause further infection, but why should each
uninfected person also enhance the chance of others being so? Here we must hear his
own voice (translated, italics mine): ‘ In reducing this fact [of contagion] to its simplest
terms and adding to it a certain symmetry, propitious for mathematical treatment, we
are led to the urn scheme.” Judging from the data shown in [1923, 7], theory and
practice fit well enough in the case of Swiss smallpox.

4. Miscellanies

A number of papers reprinted in other volumes of the Collected Papers bear fruits
in probability. [1932, 2] (with A. Bloch) deals with roots of equations with random
(0, +£1) coefficients. Since Pdlya spent a preponderant time studying the roots of
functions (originally as an approach to the Riemann Hypothesis), it is fitting that he
should randomize the problem at least once. This topic was taken up by Littlewood
and Offord later. [1931, 4] (with Szegs) dealing with the transfinite diameter was a
sequel to his earlier work [1928, 5]. It played an important role in the development
of the notion of ‘capacity’, through M. Riesz, Frostman and Choquet. The paper was
roundly commented on by Hille. Since G. A. Hunt, P. A. Meyer and Dellacherie,
capacity has become a germane part of probability. It is possible that we can still
learn something from the old source. [1933, 3] dealing with heat exchange inspired
Schoenberg and Karlin to the study of so-called Pdlya frequency functions with
statistical applications [6].

Among the remaining reprinted papers two early ones belong to geometrical
probability and have been adequately commented on by Santalo, Coxeter and
Kingman. A few others solve special problems such as balloting, coupon-collecting
and clustering of randomly picked points. One is on heuristic reasoning but another
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576 GEORGE POLYA

[1921, 1], which gives an intuitive derivation of the Gaussian law, was not reprinted.
Pdlya presented the latter in my class some years ago, together with a new statistical-
methodological characterization of that law, which he announced at the Bologna
Congress [1928, 8] and later discussed in detail in [1931, 1], cited in Section 3 above.
I recall that he asked in class whether his assumptions for solving the problem
could not be ameliorated. The last item in probability which is reprinted [1976, 1]
contains a simple problem with an empirical twist, highly recommended to teachers of
elementary courses.
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POLYA’S WORK IN ANALYSIS
R. P. Boas

When one looks at Polya’s work as a whole one is struck by his great power and
versatility. He proved many difficult, fascinating and important theorems, and
devised methods that still retain their effectiveness today. It is interesting to see how,
in many cases, he found his problems. Some of them seem to spring up from nowhere,
but he often makes use of the principle (enunciated in the preface to Aufgaben und
Lehrsdtze) that to determine a line one can start at a point and follow a direction, or
interpolate between two points, or draw a parallel. The difference between Pdlya and
other people was that his generalizations were usually both deep and difficult; or at
least, unexpected. He was also quick to see where something interesting was going
on, and step in with an improvement, or even a complete theory. Hardy is supposed
to have said once that Polya had brilliant ideas but didn’t follow them up. There
was some truth in this unkind remark. The Collected Papers include many brief
contributions that contain the germs of substantial theories that were developed later
by others. Nevertheless, it would be unreasonable to complain, considering that at the
height of his career Polya was publishing two or three major papers in analysis every
year, and doing the same thing in probability. He could hardly have had time to
follow up everything that he initiated. In parts of analysis his best ideas were tossed
out as problems (many of which led to substantial theories), or absorbed into
Aufgaben und Lehrsdtze or into Inequalities. He was also very helpful to others. I can
illustrate this trait from my own experience. In the early 1940s I was interested in what
is now known as the Whittaker constant W. It was known that if f is an integral
function of exponential type 7 there is a number W such that if fand all its derivatives
have zeros in the unit disk, then f = 0 if 7 < W but not necessarily if 7 > W; and that
log2 < W < n/4. I wrote to Pdlya about some ideas I had about this problem, and
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OBITUARY 577

he replied with a letter that improved both upper and lower bounds, with suggestions
for how to make further improvements; but he never published anything on the
subject himself.

In discussing Pdlya’s work in Analysis, it seems best to begin with one of the fields
to which he made the most numerous and most significant contributions, namely
complex analysis.

1. Connections between the sequence of coefficients in a power series and properties
of the analytic function determined by the power series. In principle, the sequence of
coefficients contains all the properties of the function; the problem is to make the
sequence surrender information about some particular property. The most interesting
theorems connect an easily-stated property of the coefficients with an easily-stated
property of the function. Pdlya’s own survey of this field is in [1928, 7].

Fatou conjectured, and Pdlya proved [1916, 1; 1929, 1] that the circle of
convergence is ‘usually’ a natural boundary: by changing the signs of the coefficients
one can always make the sum of the series non-continuable. In fact [1917, 7], this
happens for almost all sequences of signs in the sense that the set of sequences for
which it happens is the complement of a nowhere dense perfect set. This must have
been one of the first applications of point-set topology to complex analysis. Pélya also
showed [1950, 4] that it is possible to change the signs so that the sum of the series
satisfies no algebraic differential equation.

Another easily-stated property of the sequence of coefficients is the presence of
many gaps. According to Fabry’s famous gap theorem, a series is non-continuable
if the density of zero coefficients is 1. Pdlya established the definitive character of
Fabry’s theorem by showing [1939, 1; 1942, 1] that no weaker hypothesis than
Fabry’s will allow the same conclusion. If the density of zero coefficients is less than
1 but still positive, Polya showed [1923, 4; 1929, 1] that singular points still occur, but
less frequently; in particular, if the minimum density of the vanishing coefficients is
d, there is no arc of regularity whose length exceeds 1 —9 times the circumference.
(This had been proved by Fabry, but in a less lucid formulation.) In [1923, 5] Polya
proved a much deeper result, the corresponding theorem for Dirichlet series on the
line of convergence.

Pdlya also extended Fabry’s theorem in another way, by considering Dirichlet
series whose exponents are not necessarily real [1927, 10, 11]: here, if n/4, — 0, the
domain of the function is necessarily convex; Fabry’s theorem is an immediate
consequence. This is one of the few known significant results about Dirichlet series
with complex exponents. For the special case of power series with liminfn/A, =0,
Pélya showed that the domain is simply-connected. In [1934, 3] Pdlya extended these
investigations to functions that do not have single-valued continuations. The results
are rather complicated ; the following special case gives an idea of their character. A
function defined by a power series )_ a, z" is of the form F{—log (1 —2z)}, where F is
an integral function at most of order 1 and mean type, if and only if a, = H(n),
where 5

H(z) ={1/T(z+1)} Y 4, T®(2)/k!,
k=0
with limsup |4,|'" < c0.

Instead of considering zeros in the sequence of coefficients, one can connect the
changes of sign in the sequence with the location and nature of the singular points.
The idea appears in its purest form in [1932, 1], where the sum of the power series has
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578 GEORGE POLYA

poles, and no other singularities, on the unit circle; the spacing of the poles is
connected with the variations in sign of the sequence of coefficients. This, together
with results about trigonometric polynomials and about Dirichlet series, follows from
a theorem about Mellin transforms proved in [1930, 3]; it takes someone of Pdlya’s
skill and breadth of knowledge to perceive the connections.

Many relations between the coefficients and the singular points of a power series
are expressed in terms of recurrent determinants formed from the coefficients. Paper
[1928, 4] provides a condition of this kind for the sum of the series to have at least
one regular point on the boundary.

Still different results on singular points are connected with the Hadamard product
Y. a,b,z" of A(z) =Y a,z" and B(z) = ) b, z". The singular points of the product
can in general occur only at products of singular points of 4 and B; Pdlya devoted
three papers [1927, 2, 3; 1933, 5] to the question of when a product of singular points
will necessarily be a singular point of the product.

The coefficients of many familiar power series are integers. The question of the
behavior of the sum of such a series is, as Pdlya remarked in his survey [1922, 3], an
attractive one, because it combines the apparently unrelated concepts of rational
functions, integers, and conformal mapping. Pélya conjectured [1916, 3] and Carlson
subsequently proved [1], that a power series with integral coefficients and radius of
convergence | represents either a rational function or a function with the unit circle
as a natural boundary. In [1923, 1] and [1928, 4] Pélya returned to this subject and
found still deeper results.

The methods that Polya used in proving many of the results mentioned so far were
systematized in a long paper [1929, 1], which Polya himself partially summarized in
[1629, 3]. This very influential paper studies various kinds of densities of sequences
of numbers; convex sets and their supporting functions; and integral functions of
exponential type and their conjugate indicator diagrams (which describe the rate of
growth of functions in different directions). Finally this material is applied to
theorems about the distribution of values of integral functions of infinite order, and
the location of singular points of functions whose power series have a finite radius of
convergence. All these topics have turned out to be capable of generalizations and
extensions that go far beyond those actually presented in the paper. The central
theorem is Pdlya’s representation of an integral function f of exponential type (one
whose modulus grows no faster than exp (4|z[)) as

1 42}
i L F(w) e dw,

where F is the Borel-Laplace transform of £, and C surrounds the conjugate indicator
diagram. This representation has turned out to be important in contexts far beyond
those to which Pdlya originally applied it. For example, expansion of the kernel ¢
in series leads to expansions of functions of exponential type in terms of various data.
Polya applied this idea on a small scale in [1926, 1]; the same idea was applied to more
substantial problems by his students and by many others.

A related paper with Plancherel [1937, 2] was ostensibly concerned with general-
izations to n dimensions of the Paley-Wiener theorem (a function f is of the form

f e g(t)dt, geL?,
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OBITUARY 579

if and only if f is an integral function of exponential type at most T and belongs
to L% — o0, c0)); however, the same paper contains many important results on one-
dimensional problems.

The last chapter of [1929, 1] appears as [1933, 5], which contains a full discussion
of Polya’s results on the singular points of an Hadamard product.

Fabry’s gap theorem and its generalizations do not, of course, apply to integral
functions, for which there is only one singular point. What, then, does a gap condition
for the power series of an integral function imply? Pdlya answered this question in
[1928, 4], although the proofs appear only in [1929, 1]: for each theorem about
singular points on the circle of convergence of a power series there is a parallel
theorem on Julia lines of integral functions.

The theorems on power series with integral coefficients were extended in [1931, 2]
to power series whose coefficients are integers of an algebraic field. Related problems
concern power series Y. a, z* with only finitely many different a, [1931, 2] and those
for which nla, are integers {1921, 6; 1922, 4]. In [1922, 2] Pélya studied power series
whose sums are algebraic functions (and shows how to construct such series). In
[1935, 3] and (1950, 4] Pdlya studied power series whose sums satisfy an algebraic
differential equation. In particular, he proved that a formal power-series solution
must actually converge. Paper [1920, 1] discusses rational functions whose power
series have rational coefficients.

2. The general character of an analytic function as revealed by its behavior on a set
of isolated points. The subject originates with Pdlya’s discovery [1915, 2] that 2 is the
‘smallest’ (in a well-defined sense) transcendental integral function with integral
values at the positive integers. Polya’s further contributions to this topic are in
[1916, 3] and [1920, 4; 1928, 4]; these results have inspired much further work, which
peaked several decades later. The function 2° is (in the terminology introduced later
by Polya) of exponential type log2. For somewhat larger type, an integral function
with integral values at the positive integers must be of the form P(z)2*+ Q(z), where
P and Q are polynomials; this was discovered by A. Selberg [2]. Activity in this field
continued at least into the 1970s (for a survey, see Vol. 1 of the Collected Papers, pp.
771-772).

Paper [1941, 3] is a fundamental contribution to the interpolatory theory of
integral functions: what kinds of function can take, with some of their derivatives,
prescribed values at prescribed points? Papers [1933, 6] and [1937, 2] deal with the
problem of how slow the growth of an integral function can be when it is bounded
on a regularly spaced sequence of points. The problem that inspired [1933, 6] was a
conjecture by Littlewood that an integral function of order less than 2 cannot be
bounded at the lattice points unless it is a constant. This had been proved by J. M.
Whittaker [3], but Pdlya’s method is at the basis of many subsequent generalizations.
Paper [1933, 6] is presented as a commentary on a problem set by Polya in 1931: an
integral function of order 1, type 0, bounded at the integers, is constant (this had been
proved earlier by Valiron [4], although Pdlya was not aware of this). This again has
led to an extensive array of generalizations.

3. General theory of analytic functions. Paper [1926, 3] contains the first proof of
the theorem that if g and 4 are integral functions and g(h(z)) is of finite order, then
either # is a polynomial and g is of finite order, or g is of zero order and 4 is of finite
order. Paper [1926, 4] contains an elegant proof of the ‘cosmp’ theorem (originally
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580 GEORGE POLYA

conjectured by Littlewood [5] and proved by Valiron [6] and Wiman [7]): if fis of order
p, type 0, where 0 < p < 1, or of smaller order, then

limsup [log m(r)}/[log M(r)] = cos np,

where m and M are the minimum and maximum moduli of f.

Paper [1927, 4] and [1928, 2], with Hardy and Ingham, are concerned primarily
with theorems of Phragmén-Lindel6f type for functions that are analytic (or
subharmonic) in a strip. The general question is, what can be deduced about the
growth of f from the growth of

#(x,y) = %r | flx + iw)|? dw

in a strip a < x < f (or its closure). Some of the results are surprising, and most of
the proofs are difficult.

4. Zeros of polynomials and other analytic functions. Polya was particularly fond
of theorems that connect properties of an integral function with properties of the sets
of zeros of polynomials that approximate the integral function. He dealt with this
general problem in [1913, 8, 9; 1914, 3]; a great deal of later work starts from there.
In particular, in these papers he showed that all multiplier sequences that transform
polynomials with real zeros into polynomials with real zeros are generated by the
special entire functions of types I and 1T in [1914, 5] and [1915, 1]. These functions are
defined as follows:

) o) ==X e [[(147,%, 720, 7,>0;
* v=1
an Y(x) = %x’ e[ (148,x) e, d,real, y>0
: vl

(the zero function is considered to belong to both classes). These functions are now
often referred to as Polya-Schur or Laguerre-Pdlya functions. Functions of class I
are characterized as limits of polynomials with only real zeros, all of the same sign;
functions of class II, as limits of polynomials with only real zeros. A power series
Y= o (ya/n!) x™ belongs to class I or I according as the polynomial Y 2_j x"~* y,(%) has,
for all n, either all its zeros real or all its zeros real with the same sign.

There are now many applications of the Laguerre-P6lya functions: they underlie
the general inversion theory of convolution transforms (Hirschman and Widder [8]);
the theory of variation-diminishing transforms [9], interpolation by spline functions
[10], and many other applications. Some more direct applications are given in
[1914, 6; 1915, 4; 1927, 6], these papers require separate notice because they have to
do with two other themes that occur frequently in Pdlya’s work.

Paper [1927, 6] is one of a series dealing with zeros of trigonometric integrals; as
Polya explained in [1918, 4} and [1927, 6], his motivation for this work was that the
Riemann ¢-function is represented by a trigonometric integral, so that a sufficiently
good theorem about the zeros of trigonometric integrals would establish the Riemann
hypothesis. That this hope is almost certainly illusory hardly diminishes the interest
of the theorems that Pdlya found. In [1918, 4] he started with the Fourier transform
of a function supported on [—1, 1], and showed that in certain cases it has only real
zeros. Paper [1920, 5] presents almost everything that one would want to know about
zeros of exponential polynomials, but without proofs; the proofs are available only
in a Zirich thesis by Polya’s student E. Schwengeler [11]. This work led into the
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OBITUARY 581

modern theory of the zeros of integral functions of exponential type, and also into
[1933, 6] and [1937, 2], although Pélya did not contribute very much directly to this
subject. In the main, Pdlya concentrated on trigonometric integrals over (— oo, ),
identifying progressively more general classes of integrals that have only real zeros
[1918, 4; 1923, 8; 1926, 5, 8; 1927, 6, 7]. Although some functions that closely
resemble the &-function do have only real zeros, they do not do much for the Riemann
hypothesis; but these papers and their generalizations have been useful for other
purposes: notably in physics, as Kac brings out in his comments on [1926, 8] in
Vol. 2 of the Collected Papers.

In [1927, 7] Pdlya raised the question of whether a certain family of inequalities
(now known as the Turdn inequalities) are satisfied; since they form a necessary
condition for the truth of the Riemann hypothesis, that hypothesis would be
disproved if any one failed. The first progress on this question was made in 1966 when
the inequalities were proved for a sufficiently large index [12]; the question was finally
settled in 1986 [13].

Polya devoted a great deal of attention to the question of how the behavior in
the large of an integral or meromorphic function influences the distribution of the
zeros of successive derivatives. His principal papers on this topic are [1914, 6; 1915, 4;
1921, 4; 1937, 4]; the survey [1943, 1] covers almost everything that was known up to
1942, He introduced the term ‘final set’ of an integral or meromorphic function for
the set of limit points of the set of zeros of successive derivatives (counting also the
points that are zeros of infinitely many derivatives). In [1922, 1] he determined the
final sets of meromorphic functions: the final set is the polygon whose points are
equidistant from the two nearest poles. It is much more difficult to determine the
final sets of integral functions. Some results up to the early 1970s are mentioned in
the comments on [1943, 1] in Vol. 2 of the Collected Papers; since then there has been
considerable progress. For example, Polya had showed [1937, 4] that for an integral
function that is real on the real axis, and has only finitely many non-real zeros, the
final set is a subset of the real axis provided that the order is less than 4/3; his con-
jecture that 4/3 can be replaced by 2 was established very recently [14]). Polya
remarked [1921, 4; 1922, 1] that when f'is an integral function, real on the real axis,
and f, f* and f” have no zeros, then f is an exponential function. This has been
generalized in various ways; in [13] it was shown that if £, f*, f” and f™ have only real
zeros then either f is an exponential, or of the form A(e'*—e'®) (c,d real), or a
Poélya—Schur function; [15] also contains further results for meromorphic functions.
It appears plausible that a Polya—Schur function, of order greater than 1, real on the
real axis, has the whole real axis as its final set; under some additional restrictions,
this was established in [16].

In [1913, 3] Pdlya gave the first correct proof of Laguerre’s famous theorem,
which states (loosely) that if fis the Laplace transform of ¢,x > x,, and ¢ has V
changes of sign, then f'has at most V zeros on x > x,. More precise results were found
some 20 years later [17]. This is only one of many ‘sign rules’ for zeros; in particular,
Sylvester’s rule [1914, 1; Theorem IV] remained an isolated curiosity and was only
explained in [1958, 3], 44 years later.

Paper [1916, 6] is an ‘omnibus’ theorem on the reality of zeros of a polynomial.
It is worth quoting in full. Let f{x) = }.#_ a, x* and g(x) = Y %7 b, x* have only real
zeros, by, by, ..., b, = 0. Then the curve by Ay)+b, xf' (M) +...+ b, x"f™(y) =0hasn
real intersections with every line sx—ty+u =0, where s 20, ¢ > 0, s+t > 0, u real.
The special cases x = 1, y =0, and x = y are well known.

a9 ‘/86T '02T2Z697T

1IPUOD PUe SLB L 31 385 *[5202/0T/0€] U0 ARiq18uljuO AB|IM '80UB|[POX3 8180 PLE LNESH 40} aInisu| UOHEN ‘IOIN AQ 6559 6TAWIA/ZTTT OT/I0PALOY B |IM

fo|mARiqipullL

8SUB017 SUOLUILIOD BAI1D) 3|qeatdde 8y Aq peuenob a8 Sapoie YO ‘SN J0Sa|ni 10} ARiq1T 8UlUO AB|IM Lo



582 GEORGE POLYA

Paper [1932, 2] is noteworthy as having been the first paper on the zeros of a
‘random’ polynomial.

5. Signs of derivatives and analytic behavior. S. Bernstein [18] was the first to
observe that a C* function on a real interval, with all its derivatives positive, is real-
analytic there; he also showed that the same conclusion follows if a sufficiently dense
sequence of derivatives are positive. Much later, in 1940, D.V. Widder [19]
discovered that if the derivatives of even order alternate in sign then the function is
the restriction of an integral function of exponential type. This discovery inspired a
substantial amount of activity, in which Pdlya participated [1941, 1, 2; 1942, 2, 3] and
which he surveyed in detail in [1943, 1]. The topic is still alive; see the comments on
[1942, 2] and [1943, 1] in Vol. 2 of the Collected Papers; also [20].

6. Conformal mapping. Most of Pdlya’s work in this field is connected with the
notion of transfinite diameter. In [1928, 4] this is connected with the recurrent
determinants of the coefficients, and applied there and in [1928, 5] to Koebe’s §
theorem, to properties of the coefficients adjacent to Hadamard gaps, and the
continuability of power series. Pdlya reformulated the usual geometric statements
about univalent functions, and then generalized them to maps of multiply-connected
regions. In [1931, 4], P6lya and Szegd extended the concept of transfinite diameter to

three dimensions, thereby opening up a new field of research; they made a conjecture
that was proved by Pdlya and Schiffer: the transfinite diameter of a convex curve is
no less than one-eighth of the perimeter [1959, 2]. In [1958, 3] Pdlya and Schoenberg
made a major contribution to mappings onto convex domains by univalent functions.
This seminal paper inspired a great deal of further research.

7. Real analysis. 1t is arguable that Pdlya’s most important contributions to this
area are in his share of the book [1934, 4] Inequalities by Hardy, Littlewood and
Pélya. This was the first systematic study of the inequalities that are used by every
working analyst. Although there are more recent books that contain more material
in certain directions, this one is still a fundamental reference—even though Hardy
was once heard to complain that whenever he needed an inequality, the precise one
that he wanted was not there. Pdlya published little about inequalities himself, but did
propose many problems about inequalities and series. Paper [1923, 3] is about the
structure of real sequences; it is here that Polya introduced what are now called Pdlya
peaks, which form an essential tool in many problems about integral functions. Paper
[1950, 1] contains an inequality that has many applications to eigenvalues of
operators.

Paper [1913, 5] is of interest as the first construction of a Peano curve with at most
triple points (this being the smallest possible number).

Pdlya was much interested in mean value theorems, whether for isolated functions
or for solutions of differential equations. Paper [1921, 5] is a little-known gem in three
dimensions. The theorems in [1922, 3, 4] on mean value theorems corresponding to
a linear homogeneous differential equation are still used extensively. In [1931, 5]
Plancherel and Pdlya studied the mean value

X

lim +Rﬂu) du = ¢(x).

R—- Jz-R
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OBITUARY 583

They showed that if @¢(x) exists for all x, it is necessarily a linear function. They also
discussed a similar problem in two dimensions, where the limit is necessarily
harmonic. Paper [1934, 1] deals with analogues of Rolle’s theorem for partial
differential operators.

Papers [1926, 7; 1927, 3; 1938, 1, 4] deal with moment sequences and the total
indeterminancy of the Hamburger moment problem for functions of bounded
variation, as well as with infinite systems of linear equations.

8. Approximation theory and numerical analysis. Papers [1914, 4; 1968, 1] deal
with Graeffe’s method for solving polynomial equations approximately. Until
recently the method was not highly regarded because of the large amount of
computation it requires, but with modern high-speed machines it is becoming useful
again. Paper [1933, 2] was a pioneering investigation on numerical quadratures and
is still an important result.
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584 GEORGE POLYA

COMMENTS ON NUMBER THEORY
D. H. LEHMER

Pélya knew quite a lot of number theory and remained interested in the subject.
As late as 1968, at the age of 80, he contributed an article about the sign of the error
term in the prime number theorem to a collection of papers in honor of Edmund
Landau [1968, 2]. However, only a few of his papers were entirely number theoretic.
In reading his papers about power series with integer coefficients, for example, one is
struck with the occasional applications of a number theory principle or a theorem
from number theory.

Polya was especially interested in the Legendre symbol (n/p) which is 1 or —1
according as n is a quadratic residue or a non-residue of an odd prime p. In 1912
Fekete announced the conjecture that the polynomial

)+ )+ )+ (B50) 2

has no real root between 0 and 1. Polya [1919, 2] showed six years later that the
conjecture was false for p = 67 and for infinitely many other primes. In the same
paper he announced the conjecture bearing his name:

The excess of the number of integers <x which have an odd number of prime
factors over the number of integers with an even number of prime factors is non-
negative.

In symbols: L(x) <0 for x > 1, where L(x) = )_,,A(n) and where A(n) is the
Liouville function

Aph...pH) = (= 1)utt,

Pdlya himself verified his conjecture for x < 1500. This conjecture had a life of 40
years. By the 1950s it had been tested to 10° and for isolated values of x well beyond
108, Then in 1958 Haselgrove [2] disproved the conjecture by showing the existence
of infinitely many x for which L(x) > 0. Not satisfied by this existence theorem,
R. S. Lehman [3] found in 1960 that (906180359) = 1. In 1980 Tanaka [4] examined
all the numbers less than 10° and found the least failure of the Pdlya conjecture to be
906150257.

Returning to the Legendre symbol, Polya’s name is attached to the useful inequality
[1918, 3]

b

50) <

m=a

In fact this is easily extended to

2 x(m) = O(v'k logk)

m=a

where y(m) is any non-principal Dirichlet character modulo &.

As is well known, Pdlya was very much concerned with plausible and heuristic
reasoning. When visiting Berkeley in 1959 he became aware of the results of an
unpublished study that I had made of the number IT,(x) of pairs of primes (p, p+d)
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OBITUARY 585

for x < 37-10%. As a consequence he wrote an informal account [1959, 3] based on
these data of the steps in a chain of reasoning that led him to the formula

- 11—_1>__£_
I0,(x) 2C2L]d =) Goa

where C, is the ‘twin prime constant’

1
C, = p]l(l —(p— 1)2) = 0.6601618....

This formula was conjectured 30 years earlier by Hardy and Littlewood [1]. The paper
ends with this moral: ‘Mathematicians and physicists think alike; they are led, and
sometimes misled, by the same pattern of plausible reasoning.’

References

1. G. H. HarDY and J. E. LiTTLEWOOD, ‘Some problems of ‘“Partitio Numerorum”. III. On the
expression of a number as a sum of primes’, Acta Math. 44 (1923) 1-70.
C. B. HASELGROVE, ‘A disproof of a conjecture of Pdlya’, Mathematika 5 (1958) 141-145.
R. SHERMAN LEHMAN, ‘On Liouville’s function’, Math. Comp. 14 (1960) 311-320.
. MINORU TANAKA, ‘A numerical investigation on cumulative sum of the Liouville function’, Tokyo J.
Math. 3 (1980) 187-189.

N

POLYA’S GEOMETRY
DORIS SCHATTSCHNEIDER

One of Polya’s greatest strengths was his ability to recognize the importance of
geometry in solving a variety of problems. His appreciation for and use of geometry
is found throughout his work.

One of his earliest papers [1913, 5] exploits the geometry of a scalene right triangle
to construct a Peano curve in which the unit interval [0, 1] is continuously mapped
onto the triangle and its interior. The construction is not well-known, yet is
exceedingly easy to describe, and provides a lovely example of a branching algorithm.
A scalene right triangle has the property that the altitude from its right angle to its
hypotenuse splits the triangle into two smaller right triangles 7}, 7, of unequal size,
both of which are similar to the original triangle. The foot of that altitude is the apex
of altitudes that split each of 7] and T; into two similar but unequal triangles; and so
on. Each a€[0, 1] can be represented in dyadic (binary) form as 0.4, a, a,..., where
eacha,isOor 1;thusa = ) 2, a,2™. This representation of a determines a path along
the infinite binary tree of altitudes constructed in the triangle. Start at the foot of
the first altitude; if a, = 0, choose the altitude of the smaller of 7, and T,. Travel
to the foot of that altitude, where a, determines the next choice (¢, = 0 = smaller;
a, = 1 = larger), and so on. Figure 1 (taken from Pdlya’s paper) shows the beginning
of the path determined by a = 0.1101.... For each a, the path determined by any
dyadic representation of a converges to a unique point in or on the original triangle,
and the function that maps a to that point is the desired Peano curve. Pdlya shows
that the curve passes at most three times through any point of the triangle.

Geometric symmetry, and particularly the question of enumeration of symmetry
classes of objects, was an early and continuing interest of Polya. Although not the first

a9 ‘/86T '02T2Z697T

36UBD1T SUOLILLIOD 3ANERID 3|t [dde ay) Ag pauenob aJe a1 WO ‘38N JO 3N J0j ARIg 1T UIIUO /8|1 UO (SUONIPUOD-PUR-SLULBI WD A3 IM"ARe.q 1 U1 UO//SANY) SUONIPUOD PUe SWIB | 34} 39S *[SZ0Z/0T/0E] U0 ARiqiT auluO AB[IA ‘30UB|[POX3 328D PUB UIEaH J0Jaimiisu| euoieN ‘IDIN AQ 655°9'6T/AWQ/ZTTT OT/I0P/AL0D AS| 1M



586 GEORGE POLYA

FiG. 1

*

FI1G. 2

to enumerate the 17 plane crystallographic groups (Fedorov had published this in
1891), Polya was the first to illustrate each of these with a representative tiling
[1924, 1]. Some tilings he took from classical sources and others he made up. In
following his own familiar pedagogical maxim ‘make a picture’, he provided the
reader with concrete figures in which to examine the differences in the symmetries of
the tilings as well as to discern how, in a single tiling, the congruent copies of the
tiles were related by symmetries. One reader of Polya’s paper for whom the illustra-
tions conveyed all of the essential information was the Dutch artist M. C. Escher.
The paper had been brought to Escher’s attention by his brother, a geologist at the
University of Leiden. In the three years 1937-39, Escher energetically produced over
25 colored periodic drawings of interlocked creatures, and corresponded with Pdlya
about his work [3].

Geometric symmetry, blended by Pélya with the theory of permutation groups
and generating functions, produced one of his landmark theorems [1935, 4], and
indeed, launched a whole theory which has come to be known as Pdlya enumeration.
The problem he attacked had come from the theory of isomers in organic chemistry,
individual chemical species with identical molecular formulae but displaying differing
physiochemical properties (such as different arrangements of atoms). Chemists had
sought, but failed to find, an algebraic technique that would enumerate isomerism
classes of an organic chemical compound. A simple example (Figure 2) is the
enumeration of the potential isomers formed when benzene (which has a hexagonal
molecular ‘frame’) is substituted by a univalent radical *.
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OBITUARY 587

We can explain Polya’s theorem by obtaining this enumeration algebraically,
using ‘Pdlya enumeration’. If G is a group of permutations on n symbols, the cycle
index of G is a polynomial in n variables x,,...,x, which encodes information on
how elements of G can be written as a product of disjoint cycles. Each element
neG determines a monomial m(n) in the variables x,,...,x, as follows. Write
7 as a product of disjoint cycles, and to each cycle of length i associate the variable
x,; m(m) is the product of these variables. The cycle index of G is the polynomial
P(xy,...,x,) = |GI™ Y .o m(m). For example, if G is the symmetry group of a regular
hexagon (with vertices numbered cyclically 1,...,6), then G is the dihedral group
Dy and the element 7 = (135)(246), which corresponds to a rotation of 120°, has
m(n) = xi. The cycle index for Dy is

15 (3 +4x3 4+ 3x% X3+ 2x2 + 2x,).

Labels are attached to the atoms of a molecular structure, and the figure-counting
generating function records the number of ways in which this can be done. Pdlya’s
theorem states that the isomerism enumeration generating function is obtained by
substituting in the cycle index (of the permutation group that leaves invariant the
molecular frame) the figure-counting generating function. We illustrate with the
benzene example (Figure 2) in which there is one type of substituent [so the vertices
of the hexagonal frame have no label (w), or have the = label (b)]. In this case each
variable x, in the cycle index for Dy is replaced by b'+w' from the figure-counting
series. The function so obtained is

= [(B+w)* +4(b% + W)’ +3(b+ w)*(b® + w?)? +2(b° + w’)* + 2(b° + w?)]
= b5+ 6w+ 3b*'w? + 363w + 3b°w* + bw® + wh,

whose coefficients give the numbers of distinct isomers.

The far-reaching implications (and applications) of this theorem were apparent
to Polya, who gave a lengthy discussion and proof in the mathematical literature
[1937, 3], and in addition gave explanations and illustrations of the enumeration
method in several other scientific journals [1936, 1, 2, 3, 4]. Two recent papers by
chemists describe the importance of Pdlya’s result and its many extensions (see [2]
and [4]).

The role of geometric symmetry in minimizing geometric quantities and the
resulting analogous minimization of physical quantities is lucidly explained by Pdlya
in his chapter ‘Circle, sphere, symmetrization and some classical physical problems’
[1961, 1] in a text for engineering students. He begins with the observation of Lord
Rayleigh that of all membranes of equal area, the circle has not only the shortest
perimeter, but also the lowest principal frequency. He then shows how the process of
Steiner symmetrization of a geometric figure, while preserving area or volume, has a
profound minimizing effect on physical quantities such as the Dirichlet integral, the
principal frequency, and electrostatic capacity. The analogy between isoperimetric
problems and certain physical quantities is also considered by Pdlya in [1948, 4;
1951, 2; 1954, 4].

A very different sort of geometric problem, that of sightlines in an orchard, dates
from an early paper [1918, 5] and appears as problem 239 in Pdlya and Szegé’s
Problems and theorems in analysis [1925, 3]. A given circular orchard consists of trees
of uniform thickness which are planted in a uniform array (like an integer lattice).
How thick must the trees grow if, from the center of the orchard, every tree is visible,
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588 GEORGE POLYA

but the view beyond the orchard is completely blocked? A very nice account of the
problem which gives a precise solution (Pélya gave only upper and lower bounds on
the radius of the trees) can be found in [1]. Geometric symmetry plays a small role
here as well—only a 45° wedge of the orchard need be considered.

Pélya used geometry in at least two distinct ways in his various pedagogical
writings (notably, [1945, 2] and [1962, 1]). First, geometry was a favorite source of
illustrative examples from which he could clearly demonstrate his teaching and
problem-solving maxims. His generous use of figures shows the dynamic process of
solution of geometric problems: look at a simple or special case, examine part of the
problem or a related problem, ‘turn it over and over, consider it under various
aspects, study all sides’ [1962, 1; Vol. 1, p. 111], look at it in a higher (or lower)
dimension, embed it in a familiar figure, transform it and obtain information from the
transformation process or from the transformed state. A second, quite different, use
of geometry by Polya was as metaphor and in representation of the solution process
itself. Chapter 7 of Mathematical discovery is entitled ‘Geometric Representation of
the Progress of the Solution’. Here the geometric words connection, bridge, chain and
thread serve as descriptions of the ways in which solutions are built. What follows
then is a detailed solution of a problem (in solid geometry) from which Pdlya develops
a schematic diagram (a digraph!) representing the multilevel process and progress of
solution. This schematic representation of the problem and its solution is emblazoned
on the endpapers of the book.
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POLYA’S ENUMERATION THEOREM
R. C. READ

During his long life George Polya made notable contributions to many different
branches of mathematics; but to combinatorialists he is chiefly known for his
enumeration theorem—the ‘Hauptsatz’ of his 1937 paper [1937, 3] or [1987, 1]. This
paper is remarkable in many ways, not the least being that it is a long paper devoted
almost exclusively to a single theorem and its applications.

Pélya’s theorem, as it is generally called, solves a very general type of
combinatorial problem, which can be expressed in everyday terms as follows.
Suppose we have a number of ‘boxes’ and a store of objects—called ‘figures’—
exactly one of which is to be placed in each box. (It may happen that two or more
boxes receive the same figure.) The resulting structure—boxes plus figures—is called
a ‘configuration’. We further suppose that every figure has a ‘content’, usually a
non-negative integer, and we define the content of a configuration to be the sum of the
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OBITUARY 589

contents of the figures in the boxes. Now, if the boxes are all distinct, it is a simple
matter to determine the number of configurations having a given content.

What will happen if the boxes are not all distinct? In that case a certain
rearrangement of the boxes in a configuration will give a new configuration which is
equivalent, in some sense, to the original. More precisely, we have a certain group G
of permutations of the boxes, and we say that two configurations are equivalent if one
can be obtained from the other by permuting the boxes by some element of G. We
then ask ‘What is the number of inequivalent configurations having given content?’
This is the problem to which Pdlya’s theorem provides the answer.

Pdlya made elegant use of counting series and generating functions in his paper.
The ‘figure counting series’ for a PSlya type problem is the power series in which the
coefficient of x" is the number of figures having content #; this is usually known from
the statement of the problem. The ‘configuration counting series’ is defined similarly
for configurations of content #; this series therefore summarizes all the answers to
the problem. What is the connection between these two series that enables us to
calculate the second from the first?

Clearly it must depend on the group G. Any permutation can be expressed as a
product of disjoint cycles, and this expression is unique apart from the order of the
cycles. For every permutation g of G we form a monomial s s%... where j, is the
number of cycles of length i in g. The average of these monomials over all elements
of G is what Pdlya called the ‘cycle-index’ of G. Pdlya’s theorem then states that the
configuration counting series is obtained by substituting the figure counting series in
the cycle index, by which is meant that if we denote the figure counting series by f{x),
we replace every occurrence of s, in the cycle index by f{x%).

This is the theorem that makes possible the routine solution of a wide range of
problems of both theoretical interest and practical importance. Let us look at some
of these applications.

A typical application is seen in the enumeration of rooted trees. In a rooted tree,
one vertex—the root—is distinguished from the others; suppose there are k edges
incident with this vertex. At the other end of these edges we have again a rooted tree.
Thus we have k ‘boxes’, in each of which we can place a rooted tree. In the basic
problem of this kind the edges at the root, and hence the boxes, can be permuted in
any way, and hence, in applying Polya’s theorem we take the group to be the full
symmetric group S,. The theorem then gives us the counting series for these trees
(with k edges at the root) in terms of the counting series, T(x) say, for all rooted trees.
Summing this result over all values of &, and allowing for the extra vertex, the root,
we reconstruct the counting series 7(x), which is then defined recursively. Such
recursive definitions of a counting series are common in many applications of Pdlya’s
theorem, and though they rarely give rise to an explicit formula for the number of
configurations being enumerated, they are usually quite suitable for the numerical
calculation of these numbers.

Chemical compounds can be represented by their structural formulae which, to
the graph theorist, are simply rather special types of graphs. In particular, acyclic
chemical compounds, having no rings, correspond to trees. By methods similar to
that outlined in the last paragraph, Pdlya carried out the enumeration of various
kinds of acyclic compounds, such as the alkanes (or paraffins), substituted alkanes,
and many other families of compounds, determining the numbers of isomers
(different compounds having the same numbers of atoms of various kinds). By
appropriately choosing the group G he was able to effect this enumeration for the case
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590 GEORGE POLYA

where the shape of the molecule was taken into account (stereo-isomers) as well as
when it was not. In his 1937 paper and in some other papers published in preceding
years [1935, 4; 1936, 2; 1936, 3; 1936, 4] Pdlya also enumerated some kinds of cyclic
chemical compounds, obtained by adding alkyl radicals, or other tree-like figures, to
the atoms of various simple ring structures.

These and many other applications of the theorem make up the bulk of Pdlya’s
paper. In the last section, however, Pélya applied his considerable analytical powers
to derive asymptotic results for the many enumerative problems solved in the earlier
sections. In so doing he was paving the way for much of the asymptotic enumeration
that was to be carried out by later research workers.

Polya applied his theorem to many problems besides those set out in his main
paper. In 1940 he used it to solve a problem in logic [1940, 1], and it is known that
he had successfully enumerated unlabelled graphs with given numbers of vertices and
edges. Strangely enough, he never published his work on this problem, although it is
an elegant and practical application of this theorem. This enumeration can be effected
as follows. For graphs with a given number, p, of vertices, we regard every pair of
vertices in the graph as being a ‘box’ into which we can put one of two figures, namely
‘edge’ or ‘no edge’, with contents 1 or 0 respectively. Since the graphs are unlabelled
there are no distinctions between vertices, which can therefore be permuted by any
element of the symmetric group S,. These permutations induce a group St of the
pairs of vertices, that is, of the boxes for this problem. The cyclic index of S can be
computed without too much trouble, and the required enumeration then follows
directly by means of Pdlya’s theorem. Although Pdlya did not publish this result
himself, he communicated it to Harary, who published it in [2].

In the fifty years since the publication of Pdlya’s paper many advances have been
made in the kind of enumerative combinatorics with which the paper was concerned.
Chemists have found that Pdlya’s theorem can be used in their field, not just for
finding the numbers of isomers of families of compounds, but for many other
problems of a practical nature. Graph theorists with an interest in enumeration have
made great use of Pdlya’s theorem, and in their endeavours to enumerate more and
more complicated graphs have considerably extended Pdlya’s work. Generalizations
of Pdlya’s theorem have been derived by de Bruijn [1], Harary and Palmer [3],
Robinson [5] and many others. Indeed, in the last two or three decades enumerative
graph theory has become a recognized branch of combinatorics (see [4] for further
details).

This then was Pdlya’s outstanding contribution to the theory of enumeration,
a remarkable theorem in a remarkable paper, and a landmark in the history of
combinatorial analysis.
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OBITUARY 591

POLYA’S CONTRIBUTIONS IN MATHEMATICAL PHYSICS

M. M. SCHIFFER

Pdlya’s interest in complex analysis, conformal mapping and potential theory led
him to the study of boundary value problems for partial differential equations and the
theory of various functionals connected with them. This interest was strengthened by
his teaching at the ETH in Ziirich and at Stanford University which brought him
in contact with engineers and their problems in classical physics and applied
mathematics. In most cases boundary value problems for partial differential equations
can be solved only in very special cases and for all other cases only approximate
results can be obtained.

So, Pélya developed various techniques for estimating difficult functionals in
terms of easier accessible quantities, be it other functionals or geometric quantities
like area or volume. He obtained a large number of important and elegant inequalities
and methods of approximation. Instead of enumerating such results, we shall
concentrate on a few characteristic ideas to illustrate his approach.

Symmetrization. In many cases, boundary value problems for a given domain can
be solved easily when the domain has a high symmetry ; for example, when it is a circle
or a sphere. From such a solution, general insights into the solutions for arbitrary
domains can be obtained. As a typical example, let us take the case of the eigenvalues
of a vibrating membrane. That is, consider a plane domain D with boundary C and
the partial differential equation V?u+ Au = 0 with the boundary condition ¥ = 0 on
C. In general, the only solution is the trivial one: u = 0. However, for a series of
positive numbers 4, < 4, < 4, <..., there exist solutions u,(x,y) which are not
identically zero. These A, are called the eigenvalues and the functions u, the
eigenfunctions of the problem. These solutions are known only for a small number
of domains D, in particular for the circle. In 1894 Lord Rayleigh conjectured that
among all domains of given area the circle has the lowest eigenvalue 4, [4]. He justified
this conjecture by considering all domains for which 1, was known and also by a
simple variational argument. However, only in 1923 did Faber give the first proof of
this conjecture [1], while in 1924 Krahn gave an independent proof [2]. On the basis
of this result, the difficult eigenvalue 4, can be estimated from below in terms of the
much more accessible geometric measure of area. This fact plays a role in acoustics
and potential theory.

Inequalities between different domain functionals occurred already in classical
antiquity. The most famous one stated that among all plane domains D with given
area A, the circle has the least perimeter L; that is, for all domains D, we have the
inequality L® > 4nA. This is the famous isoperimetric inequality, which may be
considered as the first result in the calculus of variations. Because of it, we call now,
in general, inequalities between various domain functionals ‘isoperimetric inequali-
ties’. Much effort was made to give a rigorous proof for the classical isoperimetric
inequality. One of the most ingenious methods of proof is due to the Swiss
mathematician Jakob Steiner (see [1961, 1] and [5]). He introduced the concept of
symmetrization of a plane domain D with respect to a given line. Suppose that D lies
in the (x, y)-plane over an interval @ < x < b of the abscissa. Through every point x
in this interval, we draw a vertical line which intersects the domain D in one or more
intervals of total length A(x). On another copy of the interval (q, b), we draw through
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592 GEORGE POLYA

each point x a vertical line of length A(x) which is centered on that axis, that is,
—3A(x) < y < }A(x). The endpoints of these segments determine a closed curve C*
which is symmetric with respect to the x-axis and which determines a domain D* with
the same symmetry. We call D* the symmetrization of D with respect to the x-axis. It
is easy to see that D* has the same area as the original domain D but that the length
L* of its boundary is less than or equal to the perimeter L of D. Thus, the domain of
given area with the least perimeter must have the highest symmetry, that is, it must
be a circle. Precisely the same method of symmetrization works in space with respect
to a plane. It follows that among all bodies with given volume V, the sphere has the
least surface area S, that is, we have the isoperimetric inequality: V* < (1/367) S°.

Now, Pdlya made the ingenious remark that Steiner’s method allows a large
number of applications to the theory of partial differential equations (see [1948, 4] and
[1961, 1]). Consider a domain D in the (x, y)-plane and a function f{x, y) defined in D
which vanishes on its boundary C. This determines a body B in the (x, y, z)-space
which is bounded by the surface z = f{x, y) and the plane piece D. Let IT be a plane
which is perpendicular to the plane z = 0 and symmetrize B with respect to I1. This
gives a body B* of the same type which is bounded by a surface z = f*(x, y) and by
a flat base D* in the (x, y)-plane. Then B* has the same volume as B but a lesser
surface area. Observe also that D* has the same area as D. By the calculus formula
for the surface area, we have therefore:

” (1+f§+f3)%dxdy>” (L +f3+1 ) dxdy.

Now consider the function ef{x, y) with an arbitrary smallness parameter ¢ > 0. The
above inequality holds again and, by passage to the limit ¢ —» 0, we conclude that

[[uzerpaar> [ gesiaay

Now, the integral
o= [[ Uzernanay
D

occurs in many applications in classical physics as the Dirichlet energy integral. Thus,
Pdlya has found a method of symmetrization for the Dirichlet integral in a domain
D for arbitrary functions f{x, y) in it which vanish on its boundary C.

An immediate application of this idea was a new elegant proof of Rayleigh’s
conjecture. Another was a proof of a conjecture of Poincaré that among all
conducting surfaces that enclose a given volume, the sphere has the least electrostatic
capacity [3]. This had already been proved by G. Szegé by an ingenious argument [6],
but now it followed quite easily from a general method.

A large number of further inequalities relating to Dirichlet’s integral could be
obtained. In collaboration with Szegd, Pdolya wrote a monograph Isoperimetric
inequalities in mathematical physics [1951, 2] which is now a classic and has stimulated
many further investigations in this field. Combining various methods with great
analytical skill the authors obtain estimates and inequalities for numerous functionals.
We mention capacity, torsional rigidity, virtual mass, polarization, transfinite
diameter and interior radius. Various new kinds of symmetrizations are invented;
for example, circular symmetrization with respect to a given ray. The whole work
displays the taste of the authors for the concrete and explicit result, for elegance and
ingenious methods.
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OBITUARY 593

Transplantation. Many functionals that occur in classical physics and engineering
can be characterized by extremum problems in appropriate function spaces. Consider,
for example, the torsional rigidity P of a plane domain D. It is defined in terms of
the stress function f{x,y) of D which satisfies in D the partial differential equation
V2f+2 =0 and which vanishes on the boundary C of D. In terms of f{x,y), the
functional P is given as

r-(f o] [ o7 e)

It is then easily seen that for every continuously differentiable function F(x,y) in D
which vanishes on C, we have

P> (2 Jf F(x,y)dx dy)2 . ( JJ (VF)2dx dy)-l.

Thus, we can define P directly by means of a maximum problem within a given
function class and can use every element in that class to obtain a lower bound for
it. ’

But we can use this characterization to a much greater advantage. We may imbed
the given domain D in a one-parameter family of domains D(¢), where D(z) is
obtained from D = D(1) by stretching of the entire (x, y)-plane x" = tx,y" = y,t > 0.
Now let f{x, y) be the correct stress function of the domain D(¢,). Then f{t,tx, y) is
defined in D(¢), vanishes on the boundary C(¢) and is thus an admissible competing
function in the extremum problem which defines P(¢). We call this function the
transplant from D(z,) to D(?) of the extremum function for D(¢,). An easy calculation
shows that the maximum property of P(f) implies

21 J S, y)Pdxdy + f f,(x,y) dxdy
D(ty)

D(ty)

(2 J D(ty) Jle ) dx dy)2

with 7 = ¢7%. The right-hand-side of this estimate has the form at+b and for 7, = 12
we have equality in this estimate. Let us plot the term tP(f)"! versus the abscissa t;
we can assert that through each point on that curve passes a straight line such that
all curve points lie below it. Thus this curve is convex and these straight lines are its
supporting lines. The slope of the supporting line at the point ¢, is

— <
PO ST

a=cit[[ fraxaypuyzo,
D(ty)

so that the curve is non-decreasing. If in the family there is a domain D(¢,) for which
the stress function is known, we obtain estimates for all P(¢).

This example shows clearly the general idea of how we can utilize the extremum
characterization of a functional to study the parameter dependence of the functionals
for a parameter-dependent family of domains. One uses the extremum function of a
given domain in the family as a test function for all other domains in the family by
proper transplantation. This idea was carried out in many cases in an extensive paper
in collaboration with M. Schiffer [1954, 1]. The most useful extremum problems
considered were the Dirichlet and the Thomson principles. Since these principles give,
in general, lower and upper bounds, respectively, for the functionals considered, they
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594 GEORGE POLYA

work very well in combination to bound the functional from below and above. The
functionals discussed in the paper were, for example, virtual mass, capacity,
membrane eigenvalues and outer radius. The paper stimulated much further research
along these lines and was followed by a number of extensions and generalizations of
its results and methods. In particular, J. Hersch and his group at the ETH in Ziirich
were especially active and successful in this direction.

The Method of Difference Equations. Many boundary value problems in the
theory of partial differential equations can be solved numerically and approximately
by studying appropriate difference equations. Pélya made important contributions
in this connection. He combined the approximation by difference equations in an
ingenious way with the Rayleigh-Ritz method (see [1952, 3] and [1954, 3]). He
interpolated the discrete function values obtained by the difference equation method
at the grid points in a linear or bilinear way. Thus he obtained functions defined at
all points in the domain considered and used these functions as particularly good test
functions in the Rayleigh-quotient. These ideas are closely related to the method of
finite elements which has developed to a favorite tool in applied and engineering
mathematics. Again he combined various general techniques to obtain upper and
lower bounds for the eigenvalues in question.

Space does not permit enumerating his many further ideas, conjectures and
methods in this field. But we should mention the number of his colleagues and
collaborators whom he has attracted to this subject and who under his inspiration
have continued in his tradition: to mention only a few, Hersch, Pfluger, Payne,
Weinberger and Weinstein.
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GEORGE POLYA AND MATHEMATICS EDUCATION
ALAN H. SCHOENFELD

It has been noted that ordinary mortals can see a long way when they stand on
the shoulders of giants. Pdlya invoked this image in acknowledging his debt to
Descartes, whose introspections about his own mathematical thinking (see, for
example, Descartes’ Rules for the Direction of the Mind) served as a major inspiration
for Pdlya’s thoughts on the topic (see, for example, How to solve it, the two volumes
of Mathematics and plausible reasoning, and the two volumes of Mathematical
discovery). This homage was made with Polya’s typical humility. The fact is that those
who explore the nature of mathematical thinking stand atop a pyramid of giants—and
their feet are firmly set on Polya’s shoulders.

How strong is Pdlya’s influence? Education lies in the public arena, so there are
two aspects of that influence to explore: (1) the impact of Pdlya’s work and ideas in
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the real world, and (2) the solidity of his work as a base for making scientific progress
on issues related to understanding and teaching the nature of mathematical thinking.
We consider both in order.

How to solve it, Pdlya’s first book-length foray on heuristics and education,
appeared in 1945. (This was hardly his first educational work: Pdlya and Szeg’s
Aufgaben und Lehrsdtze aus der Analysis I appeared in 1925, and it was preceded by
writings on heuristics.) The flyleaf of How to solve it contained the outline of Pélya’s
four-stage approach to the problem solving process: understanding the problem,
devising a plan, carrying out the plan, and looking back (checking the solution). More
than three decades later, the National Council of Teachers of Mathematics (NCTM)
declared, in its 1980 Agenda for Action [3], that ‘Problem solving must be the focus
of school mathematics in the 1980s’. To help this process along, NCTM devoted
its 1980 Yearbook [2] to Problem Solving in School Mathematics. If you open the
Yearbook you will find Pdlya’s four-stage approach to problem solving reproduced
in its inside covers. Continue reading and you will find that the vast majority of
articles are based on Polya’s ideas about mathematical thinking. Such obvious
homage, combined with Pdlya’s position as honorary president of the Fourth
International Congress on Mathematical Education (Berkeley, 1980), testify to
Pdlya’s pre-eminence as a mathematics educator.

Moreover, Pdlya’s influence extends far beyond the mathematics education
community. Just as the ‘back to basics’ movement in mathematics during the 1970s
was symptomatic of the ‘basic skills” movement cutting through education at large,
we find that the ‘problem solving movement’ cuts a wide swath in the 1980s. In
addition to the predictable citations of Pdlya’s work in the American Mathematical
Monthly, the Journal for Research in Mathematics Education, and other journals with
an emphasis on mathematics education, one also finds recent citations of Pdlya’s
writings in the American Political Science Review, Annual Review of Psychology,
Artificial Intelligence, Computers and Chemistry, Computers and Education, Discourse
Processes, Educational Leadership, Higher Education, Human Learning—to name just
a few.

The scientific status of Pdlya’s work on problem-solving strategies has been more
problematic. While in general the quality of one’s contributions to mathematics is
pretty clear, the quality of one’s contributions to the psychology of thinking is less
so. (Consider, for example, the rises and falls of Freud’s reputation through the
years.) It is true that Polya’s writings on ‘modern heuristic’ have generally struck a
resonant chord with mathematicians, and have inspired numerous mathematics
educators to teach problem solving via heuristics—but it is also true that such
attempts, for the most part, have had minimal success. The math-ed literature is
chock full of heuristic studies with ‘promising’ results. That is, students and
instructors alike felt that a heuristics-based approach to course work was worthwhile,
but there was rarely convincing evidence to show that the students’ problem-solving
performance had actually improved as a result of that approach. On the basis of
instructional results, Polya’s theoretical ideas can be challenged.

Perhaps more importantly, those ideas have been challenged by a set of competing
ideas from another discipline. In contrast to the fuzziness of qualitative psychology
and of some educational experimentation, researchers in artificial intelligence (AI)
offered what they would call real science. If one adopts the hardnosed AI point of
view, no statement about cognition is proved until you have a runnable computer
program that embodies that statement—so no problem solving theory is accepted
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596 GEORGE POLYA

until you have a program that solves problems using the theory. By that standard,
Pélya’s ideas fall short. As one leading AI researcher put it, ‘We tried to write
problem solving programs using Pdlya’s heuristics, and they failed; we tried other
methods, and they succeeded. Thus we suspect the strategies he describes are
epiphenomenal rather than real—and even if they are real, they’re far less important
than the ones we use in our programs.’

In both mathematics education and in Al, then, there has been empirical reason
to question the solidity of the foundations established by Pdlya. In recent years,
however, there is increasing evidence of the solidity of those foundations. There is
reason to believe that on both counts—in mathematics education and in artificial
intelligence—the next decade will swing scientific opinion back in Pdlya’s direction.
In essence, the difficulties with the implementation of Pdlya’s ideas were that (a) they
were not specified in adequate detail for implementation, and (b) they appeared to
be superseded by more ‘general’ methods. Recent work in cognitive science has
provided the means of addressing both of these issues. First, cognitive science has
provided methods for fleshing out the details of Polya’s strategies, making them more
accessible for problem solving instruction. There are now studies providing clear
evidence that students can learn problem solving via heuristics, with significant
improvements in their problem-solving performance. (See, for example, [4].) In
addition, the general methods of AI have turned out to be much weaker than had
been thought; methods once thought general and powerful have turned out to have
limited scope and power. Research from the past decade indicates that problem-
solving strategies are much more tightly bound to domain-specific subject matter
understandings than early AI researchers had claimed. In consequence, current
research focuses on the elaboration of problem-solving strategies tied to bodies of
subject matter. With increased sophistication in characterizing ‘the knowledge
structures required to operate on semantically rich domains’ (for example,
mathematical problem solving), the field has reached ths point where it may be
possible to program computer-based knowledge structures capable of supporting
heuristic problem-solving strategies of the type Pdlya described. Should that be the
case—and this author predicts it will—research will provide the tools to implement
Polya’s intuitions about problem solving, which will serve as part of the foundation
for a true ‘science of thought’.
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1 ‘On polar singularities of power series and of Dirichlet series’, Proc. London Math. Soc. (2) 33, 85-101.
(127)
2 ‘On the roots of certain algebraic equations’ (with A. Bloch), Proc. London Math. Soc. (2) 33,
102-114. (128)
3 ‘Wie sucht man die Losung mathematischer Aufgaben?’ Z. Math. Naturwiss. Unterricht 63, 159-169.
(130
4 “Uber einen Satz von Myrberg’, Jahresber. Deutsch. Math.-Verein. 42, 159. (132)
5* Mathematische Werke von Adolf Hurwitz. 1. Funktionentheorie. 11. Zahlentheorie, Algebra, und
Geometrie (ed. G. Pdlya), Birkhduser, 1932, 1933.

1933

1 ‘Abschdtzung des Betrages einer Determinante’ (with A. Bloch), Vierteljschr. Naturforsch. Ges. Ziirich
78, 27-33. (133)

2 “Uber die Konvergenz von Quadraturverfahren’, Math. Z. 37, 264-286. (134)

3 ‘Qualitatives iiber Wirmeausgleich’, Z. Angew. Math. Mech. 13, 125-128. (135)

4 ‘Uber analytische Deformationen eines Rechtecks’, Ann. Math. 34, (2) 617-620. (136)

5 ‘Untersuchungen lber Liicken und Singularititen von Potenzreihen, Zweite Mitteilung’. (Continua-
tion of [1929, 1)), Ann. Math. 34, (2) 731-777. (137)

6 ‘Bemerkung zu der Losung der Aufgabe 105°, Jahresber. Deutsch. Math. Verein. 43, 67-69. (138)

7 Review of Distribution of primes by A. E. Ingham, Math. Gaz. 17, 329-330.

1934

I ‘Quelques théorémes analogues au théoréme de Rolle, liés & certaines équations linéaires aux dérivées
partielles’, C. R. Acad. Sci. Paris 199, 655-657. (139)
2 ‘Sur l'application des opérations différentielles linéaires aux séries’, C. R. Acad. Sci. Paris. 199,
766767 (140)
3 ‘Uber die Potenzreihenentwicklung gewisser mehrdeutiger Funktionen’, Comment. Math. Helv. 7,
201-221. (141)
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602 GEORGE POLYA

4* [Inequalities (with G. H. Hardy and J. E. Littlewood), Cambridge University Press. (New edition,
1952. Translations: Chinese, 1965; Russian, 1948.)

1935

I ‘On the power series of an integral function having an exceptional value’ (with A. Pfluger), Proc.
Cambridge Philos. Soc. 31, 153-155. (142)

2 ‘Zwei Aufgaben aus der Wahrscheinlichkeitsrechnung’, Vierteljschr. Naturforsch. Ges. Ziirich 80,
123-130. (143)

3 ‘Sur les séries entiéres satisfaisant a une équation différentielle algébrique’, C. R. Acad. Sci. Paris 201,
444-445. (144)

4 ‘Un probléme combinatoire général sur les groupes de permutations et le calcul du nombre des
isomeéres des composés organiques’, C. R. Acad. Sci. Paris 201, 1167-1170. (145)

1936

1 ‘Tabelle der Isomerenzahlen fiir die einfacheren Derivate einiger cyclischen Stammkaérper’, Help.
Chim. Acta 19, 22-24. (146)

2 ‘Algebraische Berechnung der Anzahl der Isomeren einiger organischer Verbindungen’, Z. Kristall.
(A) 93, 415-443. (147)

3 ‘Sur le nombre des isomeéres de certains composés chimiques’, C. R. Acad. Sci. Paris 202, 1554-1556.
(148)

4 ‘Uber das Anwachsen der Isomerenzahlen in den homologen Reihen der organischen Chemie’,
Vierteljschr. Naturforsch. Ges. Ziirich 81, 243-258. (149)

5 (Announcement) Comptes Rendus, Congrés International d. Math. Oslo, Vol. 2, 19. (See [1937, 3].)
(152A)

1937

1 ‘Zur Kinematik der Geschiebebewegung’, Mitt. Vers. Wass. E. T. H. Ziirich 1-21. (150)

2 ‘Fonctions entiéres et intégrales de Fourier multiples’ (with M. Plancherel), Comment. Math. Helv. (a)
Erste Mitteilung, 9 (1936/37), 224-248; (b) Zweite Mitteilung, 10 (1937/38), 110-163. (151)

3 ‘Kombinatorische Anzahlbestimmungen fiir Gruppen, Graphen und chemische Verbindungen’, Acta
Math. 68, 145-254. (152)

4 *Uber die Realitit der Nullstellen fast aller Ableitungen gewisser ganzer Funktionen’, Math. Ann. 114,
622-634. (153)

5 ‘Le probléme de Tours’, Sphinx 1, 108-110.

1938

1 ‘Sur P'indétermination d’un probléme voisin du probléme des moments’, C. R. Acad. Sci. Paris 207,
708-711. (154)

2 ‘Sur la promenade au hasard dans un réseau de rues’, Actualités Sci. Ind. 734, 25-44., (155)

3 ‘Wie sucht man die Losung mathematischer Aufgaben?’ Acta Psych. 4, 113-170. (156)

4 ‘Eine einfache, mit funktionentheoretischen Aufgaben verkniipfte, hinreichende Bedingung fiir die
Auflosbarkeit eines Systems unendlich vieler linearer Gleichungen’, Comment. Math. Helv. 11
(1938/39), 234-252. (158)

1939
1 “Sur les séries entiéres lacunaires non prolongeables’, C. R. Acad. Sci. Paris 208, 709-712. (157)

1940
I “Sur les types des propositions composées’, J. Symbolic Logic 5, 98-103. (159)

1941

1 “‘On functions whose derivatives do not vanish in a given interval’, Proc. Nat. Acad. Sci. 27, 216-217.
(160)

2 ‘Generalizations of completely convex functions’ (with R. P. Boas, Jr.), Proc. Nat. Acad. Sci. 21,
323-325. (161)

3 ‘Sur I'existence de fonctions entiéres satisfaisant a certaines conditions linéaires’, Trans. Amer. Math.
Soc. 50, 129-139. (162)

4 ‘Heuristic reasoning and the theory of probability’, Amer. Math. Monthly 48, 450-465. (163)

1942

1 ‘On converse gap theorems’, Trans. Amer. Math. Soc. 52, 65-71. (164)

2 “Influence of the signs of the derivatives of a function on its analytic character’ (with R. P. Boas, Jr.),
Duke Math. J. 9, 406-424. (165)

3 ‘On the oscillation of the derivatives of a periodic function’ (with N. Wiener), Trans. Amer. Math.
Soc. 52, 249-256. (166)
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OBITUARY 603

1943

1 ‘On the zeros of the derivatives of a function and its analytic character’, Bull. Amer. Math. Soc. 49,
178-191. (167)
2 ‘Approximations to the area of the ellipsoid’, Publ. Inst. Mat. Rosario 5, 13 pp. (168)

1945

1 ‘Inequalities for the capacity of a condenser’ (with G. SzegG), Amer. J. Math. 67, 1-32. (169)
2* How to solve it: a new aspect of mathematical method, Princeton University Press. (New printings in
1946, 1948, 1954, 1971 ; Doubleday editions in 1957, 1958. Translations: Arabic, 1960; Chinese,
1984; Dutch, 1974; French, 1957, 1962, 1965; German, 1949, 1957; Hebrew, 1961 ; Hungarian,
1957, 1969, 1971, 1977; ltalian, 1967, 1976; Japanese, 1954; Polish, 1964; Portuguese, 1977;
Romanian, 1965; Russian, 1959; Serbo-Croatian, 1956, 1966; Slovenian, 1976; Spanish, 1965;
Swedish, 1970.)

1946

1 ‘Sur une généralisation d’un probléme élémentaire classique, importante dans I'inspection des
produits industriels’, C. R. Acad. Sci. Paris 222, 1422-1424. (170)

1947

1 ‘Estimating electrostatic capacity’, Amer. Math. Monthly 54, 201-206. (171)

2 ‘A minimum problem about the motion of a solid through a fluid’, Proc. Nat. Acad. Sci. 33, 218-221.
(172)

3 ‘Sur la fréquence fondamentale des membranes vibrantes et la résistance élastique des tiges a la
torsion’, C. R. Acad. Sci. Paris 225, 346-348. (173)

1948

1 ‘On patterns of plausible inference’, Courant Anniversary Volume, 277-288. (174)

2 ‘Exact formulas in the sequential analysis of attributes’, University of California Publications in
Mathematics (New Series) 1, (5) 229-240. (175)

3 ‘Generalization, specialization, analogy’, Amer. Math. Monthly 55, 241-243. (176)

4 ‘Torsional rigidity, principal frequency, electrostatic capacity and symmetrization’, Quart. Appl.
Math. 6, 267-2717. (177)

1949

1 ‘On the product of two power series’ (with H. Davenport), Canad. J. Math. 1, 1-5. (178)

2 ‘Remarks on computing the probability integral in one and two dimensions’, Proceedings of the
Berkeley Symposium on Mathematical Statistics and Probability, University of California Press,
63-78. (179)

3 ‘Remarks on characteristic functions’, Proceedings of the Berkeley Symposium on Mathematical
Statistics and Probability, University of California Press, 115-123. (180)

4 ‘Sur les symétries des fonctions sphériques de Laplace’ (with Burnett Meyer), C. R. Acad. Sci. Paris
228, 28-30. (181)

5 ‘Sur les fonctions sphériques de Laplace de symétrie cristallographique donnée’ (with Burnett
Meyer), C. R. Acad. Sci. Paris 228, 1083-1084. (182)

6 ‘Preliminary remarks on a logic of plausible inference’, Dialectica 3, 28-35. (183)

7 ‘With, or without, motivation?’, Amer. Math. Monthly 56, 684-691. (184)

8 ‘Statement concerning the article by N. Wiener on G. H. Hardy’, Bull. Amer. Math. Soc. 55, 1082.

9 ‘On solving mathematical problems in high school’, Calif. Math. Council Bull. 7, (2) 3, 17.

1950

1 ‘Remark on Weyl’'s note “Inequalities between the two kinds of eigenvalues of a linear
transformation”’, Proc. Nat. Acad. Sci. 36, 49-51. (185)

‘On the harmonic mean of two numbers’, Amer. Math. Monthly 57, 26-28. (186)

‘Sur la symétrisation circulaire’, C. R. Acad. Sci. Paris 230, 25-27. (187)

‘Remarks on power series’, Acta Sci. Math. 12B, 199-203; 14 (1951-52), 144. (188)

‘On the torsional rigidity of multiply connected cross-sections’ (with Alexander Weinstein), Ann.
Math. 52, 154-163. (189)

‘Let us teach guessing’, Etudes de Philosophie des Sciences, en hommage a Ferdinand Gonseth,
Neuchitel: Griffon, pp. 147-154. (190)

7 ‘On plausible reasoning’, Proceedings of the International Congress of Mathematicians, Providence:

Amer. Math. Soc., Vol. I, 739-747. (192)

w AW
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604 GEORGE POLYA

1951

I ‘A note on the principal frequency of a triangular membrane’, Quart. Appl. Math. 8, 386. (191)
2* Isoperimetric inequalities in mathematical physics (with G. Szegé), Princeton University Press.
(Translation: Russian, 1962.)

1952
I ‘Remarks on the foregoing paper’ (by E. T. Kornhauser and 1. Stakgold), J. Math. Phys. 31, 55-57.
(193)
2 ‘Remarques sur un probléme d’algébre étudié par Laguerre’, J. Math. Pures Appl. 31, (9) 37-47.
(194)

3 ‘Sur une interprétation de la méthode des différences finies qui peut fournir des bornes supérieures ou
inférieures’, C. R. Acad. Sci. Paris 235, 995-997. (195)

4 ‘Sur le réle des domaines symétriques dans le calcul de certaines grandeurs physiques’, C. R. Acad.
Sci. Paris 235, 1079-1081. (196) '

1953

1 Convexity of functionals by transplantation (with M. Schiffer), U.S. Office of Naval Research Technical
Report 14. (Compare [1954, 1].)

2 ‘Great and small examples of problem solving’, Proceedings of a Summer Conference in Collegiate
Mathematics, University of Colorado, 48 pp.

3 Two notes on minimum principle approximations, Technical Report 29, Stanford University.

1954

1 ‘Convexity of functionals by transplantation’ (with M. Schiffer), J. Analyse Math. 3, 245-345.
(197)

2 ‘An elementary analogue to the Gauss-Bonnet theorem’, Amer. Math. Monthly 61, 601-603. (198)

3 ‘Estimates for eigenvalues’, Studies in Mathematics and Mechanics presented to Richard von Mises,
Academic Press, pp. 200-207. (199)

4* Mathematics and plausible reasoning. 1. Induction and analogy in mathematics. 11. Patterns of plausible
inference, Princeton University Press. (Second edition of 11, 1968. Translations: Bulgarian, 1970;
French, 1957, 1958 ; German, 1962, 1963 ; Japanese, 1959; Romanian, 1962; Russian, 1957, 1975;
Spanish, 1966; Turkish, 1966.)

1955

1 ‘More isoperimetric inequalities proved and conjectured’, Comment. Math. Helv. 29, 112-119.
(200)

2 On the characteristic frequencies of a symmetric membrane, Applied Mathematics and Statistics
Technical Report 40, Stanford University. (Compare [195, 4].)

3 ‘Sur le quotient de deux fréquences propres consécutives’ (with L. E. Payne and H. F. Weinberger),
C. R. Acad. Sci. Paris 241, 917-919. (201)

4 ‘On the characteristic frequencies of a symmetric membrane’, Math. Z. 63, 331-337. (202)

1956

I ‘On the ratio of consecutive eigenvalues’ (with L. E. Payne and H. F. Weinberger), J. Math. Phys. 35,
289-298. (203)

2 ‘Sur les fréquences propres des membranes vibrantes’, C. R. Acad. Sci. Paris 242, 708-709. (204)

3 ‘On picture-writing’, Amer. Math. Monthly 63, 689-697. (205)

4 ‘Die Mathematik als Schule des plausiblen Schliessens’, Gymn. Helv. 10, 4-8 ; Archimedes 8, 111-114;
‘Mathematics as a subject for learning plausible reasoning’ (translation by C. M. Larsen), Math.
Teacher 52 (1959), 7-9. (206A)

5 ‘Sur quelques membranes vibrantes de forme particuliére’, C. R. Acad. Sci. Paris 243, 467—469.
207)

6 On the eigenvalues of certain membranes (two notes), Applied Mathematics and Statistics Laboratory
Technical Report 58, Stanford University.

1957

1 Remarks on de la Vallée-Poussin means and conformal maps of the circle (with 1. J. Schoenberg),
Stanford University Applied Mathematics and Statistics Laboratory Technical Report 70.
(Compare [1958, 3].)

1958

1 ‘L’Heuristique est-elle un sujet d’étude raisonnable?’, La méthode dans les sciences modernes, ‘ Travail
et Méthode’, numéro hors série, 279-28S. (206)
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OBITUARY 605

2 ‘On the curriculum for prospective high school teachers’, Amer. Math. Monthly 65, 101-104. (208)
3 ‘Remarks on de la Vallée-Poussin means and convex conformal maps of the circle’ (with I.J.
Schoenberg), Pacific J. Math. 8, 295-334. (209)

1959

1 ‘Ten Commandments for Teachers’, Journal of Education of the Faculty and College of Education of
the University of British Columbia; Vancouver and Victoria (3), 61-69. (210)

2 ‘Sur la représentation conforme de I'extérieur d’une courbe fermée convexe’ (with M. Schiffer), C. R.
Acad. Sci. Paris 248, 2837-2839. (211)

3 ‘Heuristic reasoning in the theory of numbers’, Amer. Math. Monthly 66, 375-384. (212)

4 ‘On the location of the centroid of certain solids’ (with C. J. Gerriets), Amer. Math. Monthly 66,
875-879. (213)

1960

1 ‘Teaching of mathematics in Switzerland’, Amer. Math. Monthly 67, 907-914; Math. Teacher 53,
552-558. (216)

2 ‘Two more inequalities between physical and geometrical quantities’, J. Indian Math. Soc. 24,
413-419. (219)

3 “‘On the role of the circle in certain variational problems. In memoriam Lip6t Fejér’, Ann. Univ. Sci.
Budapest Eétvés Sect. Math. 3-4 (1960/61), 233-239. (220)

4 ‘Induktion und mathematische Induktion’, Matematyka [Wroctaw], 13, 283-288 (Polish).

5 ‘Three puzzles and a pattern’, Math. Log 3, (1) 1;3,(3) 1, 5.

1961

1 ‘Circle, sphere, symmetrization and some classical physical problems’, Modern mathematics for the
engineer, 2nd series, McGraw-Hill, pp. 420-441. (214)

2 ‘On the eigenvalues of vibrating membranes, In memoriam Hermann Weyl’, Proc. London Math. Soc.
(3) 11, 419-433. (215)

3 ‘The minimum fraction of the popular vote that can elect the President of the United States’, Math.
Teacher 54, 130-133. (217)

4 ‘Leopold Fejér’, J. London Math. Soc. 36, 501-506. (218)

1962

1* Mathematical discovery; on understanding, learning and teaching problem solving, two volumes, John
Wiley and Sons, 1962, 1965. (Combined paperback edition, 1981. Translations: Bulgarian, 1968;
French, 1967; German, 1966, 1967, 1979, 1983; Hungarian, 1967, 1979; Italian, 1970-71, 1979,
1982; Japanese, 1964; Polish, 1975; Romanian, 1971; Russian, 1970, 1976.)

2 ‘The teaching of mathematics and the biogenic law’, The scientist speculates (ed. I1.J. Good),
Heinemann, London, pp. 352-356. (221)

1963

1 ‘Intuitive outline of the solution of a basic combinatorial problem’, Switching theory in space
technology (ed. H. Aiken and W. F. Main), Stanford University Press, pp. 3-7. (222)

2 ‘On learning, teaching and learning teaching’, Amer. Math. Monthly 70, 605-619; Readings in
secondary school mathematics (ed. D. Aichele, R. Reys), Prindle, Weber & Schmidt, 1971; Neue
Sammlung Géttinger Blétter fiir Kultur und Erziehung 4 (3) (1964), 194-210; Teaching and learning :
a problem-solving focus, National Council of Teachers of Mathematics, 1986. (223)

3* Mathematical methods in science (ed. Leon Bowden), School Mathematics Study Group. (New
Edition, [1977, 1). Translations: Hungarian, 1977, 1984; Italian, 1979.)

1964

1 Introduction, Applied combinatorial mathematics (ed. E. F. Beckenbach), John Wiley and Sons, pp.
1-2. (224)

2 ‘Die Heuristik; Versuch einer verniinftigen Zielsetzung; Vermuten und wissenschaftliche Methode’,
Der Mathematikunterricht 10, (1) 5-15, 80-96. (See [1958, 1].)

1966

1 ‘A series for Euler’s constant’, Research papers in statistics, Festschrift for J. Neyman, ed. F. N. David,
John Wiley and Sons, pp. 259-261. (225)

2 ‘On teaching problem solving’, The role of axiomatics and problem solving in mathematics, Ginn, pp.
123-129. (226)

3 ‘A note of welcome’, J. Combinatorial Theory 1, 1-2. (227)
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606 GEORGE POLYA

1967

I ‘L’enseignement par les problémes’, Enseignement Math., Sér. 2, 13, 233-241. (226A)

2 ‘Inequalities and the principle of nonsufficient reason’, Inequalities (ed. Oved Shisha), Academic
Press, pp. 1-15. (228)

3 ‘Introduction, Training in Applied Mathematics Research’, SIAM Rev., 9, 347; Education in Applied
Mathematics, Proceedings of a Conference, University of Denver, Aspen, Colorado, May 24-27,
1966.

1968

1 “Graeffe’s method for eigenvalues’, Numer. Math. 11, 315-319. (229)

2 ‘Uber das Vorzeichen des Restgliedes in Primzahlsatz, Abhandlungen aus Zahlentheorie und Analysis;
zur Erinnerung an Edmund Landau’ (P. Turdn), Plenum, Berlin, pp. 233-244.

3 Preface, The prime imperatives/priorities in education by Alexander Israel Wittenberg, Clarke, Irwin
and Company Limited, Toronto and Vancouver, pp. v-vi.

1969

1 ‘On the number of certain lattice polygons’, J. Combinatorial Theory, 6, 102-105. (230)

2 ‘Fundamental ideas and objectives of mathematical education’, Mathematics in Commonwealth
Schools, pp. 27-34. (231)

3 ‘Entiers algébriques, polygones et polyédres réguliers’, Enseignement Math. Sér. 2, 15, 237-243.
(232)

4 ‘Some mathematicians I have known’, Amer. Math. Monthly 16, 746-753; Pokroky Mat. Fysiky a
Astron. 17 (1972), 237-244 (Czech); Fiz.-Mat. Spis. Bulgar. Akad. Nauk. (46) 13 (1970), 123-130
(Bulgarian). (233)

5 “On the isoperimetric theorem: history and strategy’, Mathematical Spectrum 2, 5-7. (234)

1970

1 ‘Gaussian binomial coefficients and enumeration of inversions’, Proceedings of the Second Chapel Hill
Conference on Combinatorial Mathematics and Its Applications, University of North Carolina,
Chapel Hill, N.C., pp. 381-384. (235)

2 ‘Two incidents’, Scientists at work: Festschrift in honour of Herman Wold (ed. T. Dalenius, G.
Karlsson and S. Malmquist), Almqvist & Wiksells Boktryckeri AB, Uppsala, Sweden, pp.
165-168. (236)

1971

I ‘Gaussian binomial coefficients’ (with G. L. Alexanderson), Elem. Math. 26, 102-109. (237)
2 ‘Methodology or heuristics, strategy or tactics’, Arch. Philos. 34, 623-629. (238)

1972
1 ‘Eine Erinnerung an Hermann Weyl’, Math. Z. 126, 296-298. (239)

2 ‘Formation, not only information’, Graduate training of mathematics teachers, Canadian Mathe-
matical Congress, Montreal, pp. 53-62. (243)

1973

1 ‘A letter by Professor Polya’, Amer. Math. Monthly 80, 73-74. (240)

2 ‘As I read them’, Developments in mathematical education, Proceedings of the 2nd International
Congress in Mathematical Education (ed. A. G. Howson), Cambridge University Press, pp.
77-78. (244)

3 ‘A story with a moral’, Math. Gazette 57, 86-87. (242)

4 ‘The Stanford University Competitive Examination in Mathematics’ (with J. Kilpatrick), Amer.
Math. Monthly 80, 627-640. (241)

1974

1* Complex variables (with G. Latta), John Wiley and Sons. (Translation: Spanish, 1976.)

2* The Stanford mathematics problem book/with hints and solutions (with J. Kilpatrick), Teacher’s
College Press, New York. (Problems and solutions had earlier been published in the Amer. Math.
Monthly 1946-1953, and the Calif. Math. Council Bull. 1953-1961.)

3* George Polya: collected papers. Vol. ). Singularities of analytic functions (ed. R. P. Boas, Jr.). Vol. II.
Location of zeros (ed. R. P. Boas, Jr.). MIT Press. (See [1984, 2].)

1975

1 ‘Partitions of a finite set into structured subsets’, Math. Proc. Camb. Phil. Soc. 77, 453-458. (245)

1976
1 ‘Probabilities in proofreading’, Amer. Math. Monthly 83, 42. (246)
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OBITUARY 607

2 ‘Guessing and proving’, California Math. 1, 1-8; Two-Year College Math. J. 9 (1978), 21-217.
(247)

3 ‘On the zeros of successive derivatives, an example’, J. Analyse Math. 30, 452-455. (248)

4 ‘As their students see them’, Two- Year College Math. J. 7, (2) 54, (3) 51, (4) 38.

1977

1* Mathematical methods in science (ed. Leon Bowden), New Mathematical Library, The Mathematical
Association of America. (Compare [1963, 3].)
2 ‘A note of welcome’, J. Graph Theory 1, 5.

1979
| *‘More on guessing and proving’, Two- Year College Math. J. 10, 255-258.

1983

1* Notes on introductory combinatorics (with R. Tarjan and D. Woods), Birkhduser. (Translation:
Japanese, 1986.)

2 ‘Mathematics promotes the mind’, Proc. Fourth International Congress on Mathematical Education,
Birkhduser, p. 1.

1984

I ‘On problems with solutions attainable in more than one way’ (with Jean Pedersen), College Math.
J. 15, 218-228.
2% George Polya: collected papers. Vol. I11. Analysis (ed. J. Hersch and G.-C. Rota). Vol. IV. Probability,
combinatorics, teaching and learning mathematics (ed. G.-C. Rota). MIT Press. (See [1974, 3].)

1987 .

1* Combinatorial enumeration of groups, graphs, and chemical compounds (with R. C. Read), Springer.
(See [1937, 3].)

2* The Pdlya picture album: encounters of a mathematician (with G. L. Alexanderson, ed.), Birkhduser.

A list of problems posed and solved is unusual in a bibliography, but because of Polya’s special interest
in and contributions to problem-solving, we list here problems and solutions he published in a variety of
journals. Some of these have been often cited in the literature and led to a number of subsequent
investigations.

P = problem S = solution

Amer. Math. Monthly: 51 (1944), 96, P 4108; 51 (1944), 167, P 4111; 51 (1944), 533, P 4138; 51 (1944),
593, P 4142; 53 (1946), 279-282, S 4138; 53 (1946), 591, P E748; 54 (1947), 107, P E756; 54 (1947), 473,
S E756; 54 (1947), 340, P E780; 54 (1947), 346, P 4255; 54 (1947), 479, P 4264, 55 (1948), 162, P
E780.

Arch. Math. Phys., Ser. 3:20 (1913), 271-272, P 424, P 425, P 426, P 427, P 428 21 (1913), 181-185, S 383;
21 (1913), 288, 290, P 451, P 453, P 454, S 398; 21 (1913), 366-368, S 400; 21 (1913), 370-371, S 427,
S 428; 23 (1915), 289, P 486, P 487; 24 (1916), 84, P 498, P 499, P 500, P 501, P 502; 24 (1916), 282-283,
P 509, P 510, P 511, P 512, P 513; 24 (1916), 369-375, S 386; 25 (1917), 85, P 520; 25 (1917), 337, P 535,
P 536, P 537, P 538; 26 (1917), 65, P 542; 26 (1917), 66, S 500; 26 (1918), 161-162, P 561, P 562, P 563,
P 564, P 565; 28 (1920), 173-174, P 584, P 585, P 586, P 587.

Elem. Math.: 16 (1961), 92, P 408.

Interméd. des Math.: 20 (1913), 57-58, S 3241; 20 (1913), 127-128, S 339; 20 (1913), 145-146, P 4240; 21
(1914), 27, P 4340.

Interméd. des Math., Ser. 2: 1 (1922), 81-82,S2917; 1 (1922), 85-86, S 4240, S 4340, 4 (1925), 74-75, P 5517,
4 (1925), 82-83, S 5100.

Jahresber. Deutsch. Math.-Verein., Sec. 2: 32 (1923), 16, P 11; 34 (1925), 97-98, P 23, P 24, P 25, 35 (1926),
48, P 35, P 36, P 37; 37 (1928), 82-83, S 24,40 (1931), 6, S 23; 40 (1931), 80, P 103 (with R. Nevanlinna):
40 (1931), 80-81, P 104, P 105, P 106, P 107, P 108; 43 (1933), 1415, S 131; 43 (1933), 67-69, S 105.

Math. és. Term. Ert.: 32 (1914), 662-665.

Math. Mag.: 28 (1955), 235-236, S 209.

Nouvelles Annales Math., Ser. 4: 11 (1911), 377-381, S 1579; 11 (1911), 382, S 1580; 11 (1911), 383-384,
S 1661.
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