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W. W. RoGOSINSKI.

In quick succession death has taken, in recent years, a heavy toll of
the great and internationally recognized masters who, like bright stars,
illuminated the mathematical sky of the first half of this century.
Among them, Frederic Riesz, the great Hungarian mathematician, who
died, 76 years old, on 28th February in Budapest, is perhaps the one
whose name says most to the younger generation of analysts since he was
foremost amongst the founders of Functional Analysis.

His life was long and full of success. Frigyes (Frederic) Riesz was
born on 22nd January, 1880, at Gyor (Hungary). His father Igndcz
was a physician, and his mother was Szidénia née Nagel. His brother,
Marcell Riesz, stands in his own right as a great mathematician. F. Riesz
studied at Budapest, Gottingen, and Ziirich. In Budapest, in 1902, he
obtained the degree of Dr. phil. with a geometrical thesis [1]*. After
two years of teaching at grammar schools he was appointed, in 1911, as
Professor at the University of Kolozsvar which, in 1920, was moved to
Szeged. Here—with A. Haar—he founded, in 1922, the Janos Bolyai
Mathematical Institute and its famous journal, the Acta Scientiarum
Mathematicarum. In 1946 he was called to the University of Budapest.

Recognition of his outstanding contributions to Mathematics did not
fail. He was a member of the Hungarian Academy of Sciences and was
awarded, in 1949, its Kossuth Prize. He was also a member of the Royal
Physiographic Society in Lund (Sweden) and a corresponding member
of the Paris Academy of Sciences; and he was an Honorary Doctor of the
Universities Szeged, Budapest, and Paris. The London Mathematical
Society is proud to have had him as a member since 1922 and to have
published several of his paperst.

The mathematical productivity of F. Riesz was fairly large and always
distinguished by its importance. We must not go here into details of his
work and should rather point out its main trends and outstanding achieve-
ments. It concerns, almost always, real variable theory, usually in
connection with Lebesgue measure and integral. His first famous result,
in 1907, was the proof of what is now known as the Riesz-Fischer
theorem [15] which is fundamental in the Fourier Analysis of Hilbert
space. Then follow, from 1910 on, his pioneering researches in Functional

* The numbers refer to the (probably) complete list of publications at the end of
this obituery. It is reprinted from Mathematikai Lapok V (Budepest, 1954), 260-266.

t For 2ll biographical data, and the list of publications, T am greatly indebted to
Prof. B. Sz.-Nagy.
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Analysis which, I think, must be considered as his most outstanding
achievement. He studied, in particular, the spaces of continuous functions
[20] and the Lebesgue spaces LP [23], determined the form of the
continuous linear functionals on them, established relationships between
strong and weak convergence, and applied his results in a new fashion to
moment problems and to linear equations in an infinity of unknowns.
Concerning the latter he wrote a well-known account in the Collection
Borel [27]. Tt follows the study of completely continuous operators [35]
with applications to linear functional equations, in particular to integral
equations, and their eigenvalues. Here he opens up, and leads deeply
into, problems of much current interest. In this connection his several
important contributions to the theory of Hilbert space ([65], [73], [77],
[88]) must be mentioned.

The second great achievement of F. Riesz is the theory of sub-
harmonic functions ([49], [54], [66]) which is his own creation and to which
he contributed many of the first important results and applications.
Connected with the name of F. Riesz is also the “ constructive >’ approach
to the Lebesgue integral ([40], [91]) which requires only the notion of
measure zero and leads, starting from “simple functions ”’, by a com-
pletion process rapidly to the integral and its fundamental features. This
approach is much preferred by modern writers to the slower measure-
theoretic approach of Lebesgue himself and the geometrical one of
Carathéodory. Here we should mention also his famous elegant proof,
in 1931, of Lebesgue’s theorem on the derivation of monotone functions
(f69], [70]), his equally simple proof of Egoroff’s theorem [58], and his
elementary proof of the mean ergodic theorem ([80], [85]). He also
contributed much to the theory of Fourier series, and there is his famous
joint paper, with his brother Marcell, on the boundary values of analytical
functions [37], together with several other important contributions to
complex variable theory.

The work of F. Riesz is not only distinguished by the genuine
importance of his results, but also by his aesthetic discernment in mathe-
matical taste and diction. It is nowadays, as in other forms of art—and
Pure Mathematics is an art rather than a Science—fashionable to be
severely abstract to the extent of killing all artistic pleasure. The more
leisurely mastership of F. Riesz’s style, whether he writes in his native
Hungarian, or in French or German, conveys such pleasure and is to the
older mathematician a nostalgic reminder of what we are in danger to
lose. For him there was no mere abstraction for the sake of a structure
theory, and he was always turning back to the applications in some more
concrete and substantial situation. We are lucky, indeed, that he gave us,
in 1952, his masterly book Legons d’Analyse Fonctionelle [96] which he
wrote jointly with his outstanding pupil B. Sz.-Nagy. Here, in the first
half written by himself, we find the old master picturing to us Real Analysis
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as he saw it, lovingly, leisurely, and with the discerning eye of an artist.
This book, I have no doubt, will remain a classic in the treasure house of
mathematical literature. With it, and with all his other work, will live
the memory of Frederic Riesz as a great and fertile mathematician for
long in the history of our art.
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