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Harold Stanley Ruse, Emeritus Professor of the University of Leeds, died in
Leeds General Infirmary on 20 October, 1974, three days after suffering a stroke,
from which he did not regain consciousness. He had been a member of the Society
since 1929, serving on the Council from 1938 to 1945 and being Vice-President in
session 1942-43.

He was the third son of Frederick and Lydia Ruse of Hastings and was born on
12 February, 1905. He frequently returned to Hastings during university vacations
to visit members of his family; his sister still lives there.

Educated at Hastings Grammar School and Jesus College, Oxford, he went in
1927 to the University of Edinburgh as Bruce of Grangehill research scholar. From
1928 to 1937 he was a lecturer in mathematics at the same university, spending
session 1933-34 as a Rockefeller Research Fellow at Princeton University; he visited
Princeton again in 1952-53.

In 1937 he became Professor of Mathematics in University College, Southampton
and left there for Leeds in 1946, when he was appointed to the post of Professor of
Pure Mathematics. He was Head of the Department of Mathematics in the University
of Leeds from 1948 to 1968. On the creation of the School of Mathematics in 1968 he
became its first Chairman, remaining in this position and continuing as Head of the
Department of Pure Mathematics until his retirement in 1970.

He was elected to a Fellowship of the Royal Society of Edinburgh in 1931 and
won the Keith Prize of this Society for the period 1935 to 1937. During session
1935-36 he was President of the Edinburgh Mathematical Society.

Ruse's most productive period as a research mathematician was during the time
he spent in Edinburgh. Here he was a member of E. T. Whittaker's lively team of
first rate mathematicians. With Whittaker's encouragement, he developed a keen
interest in relativity, tensor calculus and the generalisation of problems of mathe-
matical physics to non-Euclidean spaces. Thus he studied partial differential equations
in relation to Riemannian spaces and this led to an interest in Riemannian geometry
for its own sake: in other words, he became a differential geometer. He developed an
elegant method of describing certain aspects of Riemannian spaces in terms of
projective geometry and this proved fruitful in illuminating some technically com-
plicated ideas.

However, his researches did not terminate when he left Edinburgh. Despite the
responsibilities of his post in Southampton and despite the difficulties of maintaining
a department during war-time restrictions and dangers (it must not be forgotten that
for several years Southampton was very much a front-line town) he lost neither his
creative powers nor his enthusiasm for mathematical research. It was of course
impossible to carry on in the style of the Edinburgh days and certainly it was not in
the national interest to do this, but when the war ended the opportunities for research
returned and the unsolved problems were attacked with renewed vigour.

So it was at the height of his powers that Ruse went north to Leeds to his second
appointment as a professor of mathematics. Here he found a small department,
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housed in No. 1 Beechgrove Terrace, a Victorian dwelling-house that may once have
been desirable accommodation but now looked less than attractive with its black
deposit from years of atmospheric pollution. The department, however, had great
potential. Built up over the years by W. P. Milne and S. Brodetsky, it was now poised
for a new era, in which one of the main themes was to be expansion. Research was to
be given a boost by the return of members of staff from war service and some very
good new appointments. C. W. Gilham, who had given long and devoted service to
the department, continued as Senior Lecturer; he and Ruse soon established a close
working relationship which was to be of great value to mathematics at Leeds. In
1948, Brodetsky, who had been Head of Department, retired and Ruse succeeded
him in this position. The new Professor of Applied Mathematics was T. G. Cowling,
who occupied this post with distinction until he too retired in 1970.

No department, however distinguished its members, can be successful unless its
head is reliable, efficient and understanding. Harold Ruse had all these qualities and
more. He was ever thoughtful for others, going out of his way to help students,
graduates or members of staff as much as he possibly could. He always showed
particular consideration for anyone in trouble, whatever it was and whoever was to
blame; there were no exceptions. Mathematics students at the University of Leeds
came to like and respect him. Above all he was to them a personal friend, a far cry
from the remote, inaccessible and superior being that they might have expected him
to be.

Under Ruse's energetic leadership mathematics at Leeds expanded, sometimes at
a breath-taking rate. The small department, with an honours school of under 50
students and with research students something of a rarity, increased until it was too
big to be a department and had to become a school; there are now nine professors,
160 honours students and 46 postgraduate students. No. 1 Beechgrove Terrace gave
way to part of the second floor of the Parkinson building. This in its turn proved to
be far from adequate and from 1967 the department, and then the school, occupied
an extensive modern building. Particularly rapid developments took place in 1963,
when new chairs in both Pure and Applied Mathematics were created, largely at
Ruse's instigation. The reputation of Leeds as a centre of excellence for mathematics
was considerably enhanced as a result.

An expansion of this magnitude and with such rapidity is not possible without
sacrifice on the part of those who are involved. Characteristically Ruse did not spare
himself. Because he was always so willing to undertake work of any kind to help
others, he found that his services were much in demand, both inside and outside
the department. The time available for mathematical research diminished and he
had fewer and fewer opportunities to devote his undivided attention to it and to
follow all the latest developments. It was his generosity and unselfish nature that
brought this about, but, for one whose main work in life was mathematics, the price
that had to be paid was a dear one. His multifarious duties and commitments, together
with the natural process of growing old, diminished his flow of mathematical research
papers, which brought him at times to despair. He became worried when he en-
countered words in lectures on differential geometry which were unfamiliar to him,
but relieved when he found that he was not the only person in this position, especially
if it transpired that the mysterious terminology was merely a fancy way of describing
some simple and familiar idea. But he was never able to recover the fire of his
Edinburgh days. Like Hardy, he seems to have found the process of growing old
and losing his creative powers a bitter experience.
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Soon after Ruse went to Leeds, his friend and fellow differential goemeter
A. G. Walker (who had been a research student in Edinburgh) was appointed to the
Chair of Mathematics in the University of Sheffield. Although their only joint
publication is the book on Harmonic Spaces (38), which they wrote in conjunction
with T. J. Willmore, there was much collaboration and exchange of ideas between
Ruse and Walker. Together they instituted the Leeds-Sheffield Colloquium, which
has evolved through various stages over the years as the number of universities in
Yorkshire has grown and has now become the Yorkshire Pure Mathematics Colloquium
and the Yorkshire Applied Mathematics Colloquium, taking in the Universities of
Bradford, Hull, Leeds, Sheffield and York. Ruse and Walker were amongst those
responsible for the inauguration of the British Mathematical Colloquium, which first
met in Manchester in September 1949. Both played prominent parts in the organisa-
tion of this and were speakers at the meeting. Ruse went to as many meetings of the
B.M.C. as he could, he was a regular attender at the International Congress of
Mathematicians and he retained his interest in the Edinburgh Mathematical Society
through visits to the St. Andrews Colloquium. As late as the summer of 1974 he
attended the first Durham symposium, on differential geometry, preceding this by
going to a short meeting at Liverpool held to mark the occasion of Walker's retire-
ment. He always believed firmly in the value of meetings of mathematicians for the
exchange of results and ideas.

Ruse was an excellent lecturer, who made a genuine effort to convey his subject
to his audience. He had a feeling for mathematical elegance which showed up in his
research papers as well as his lecture courses. This was particularly in evidence in
those papers devoted to the geometrical interpretation of tensors and related objects.
In (12), the first paper of this type, he applied the methods and notations of spinor
algebra to obtain a large number of theorems on conies in a three-dimensional
projective space. He followed this with papers (14,15) in which the approach was
from a different point of view; he applied the concepts and methods of three-
dimensional projective geometry to four-dimensional Riemannian spaces, with parti-
cular reference to relativity, where the interpretation of four-dimensional space-time
in terms of three-dimensional projective geometry seemed particularly appropriate.

The central idea here is that at any point P of a Riemannian 4-space the tangent
space gives rise to a 3-dimensional projective space S3, in which the homogeneous
coordinates of a point correspond to the components of a contravariant vector at P.
The tangent space is a centred affine space and S3 is obtained as the hyperplane at
infinity in this space. A change of coordinates in the Riemannian space induces in
a natural way a linear transformation in the projective space. A covariant vector at
P gives rise to a plane in S3; if the covariant vector has components cot {i = 1, 2, 3, 4)
then the plane has equation (oiX

il = 0 (where the summation convention is used).
A symmetric second order covariant tensor at P gives rise to a quadric in S3; if the
components of the tensor are aiJt the equation of the quadric is axi X' XJ = 0. In
particular, the fundamental tensor-at P gives a non-degenerate quadric; for space-
time this corresponds neatly to the null cone. A skew-symmetric second-order
covariant tensor with components btj determines a linear complex in S3, given by
bijPiJ = 0, where pij = X1 YJ — XJ Yl are the Pliicker coordinates of the line joining
the points X1 and Y\ The curvature tensor, whose components Rhijk are skew-
symmetric in the suffixes h, i and in the suffixes j , k determines a quadratic complex,
given by Rhijkp"1 pjk = 0.

 14692120, 1976, 2, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/blm
s/8.2.203 by N

IC
E

, N
ational Institute for H

ealth and C
are E

xcellence, W
iley O

nline L
ibrary on [30/10/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



206 HAROLD STANLEY RUSE

These geometrical ideas seem to have had their origin in relativity (14), but perhaps
more significant is the way in which they have come to be of importance in relativity
itself. The work done by Ruse plays a vital part in the classification of certain types
of space-time configurations (see A. Z. Petrov, Einstein Spaces, Pergamon Press,
1969). The idea of expressing the curvature tensor of a 4-dimensional space in terms
of a 6 x 6 symmetric matrix, given explicitly by Ruse (see (22), p. 8), is important here.
Further papers (18,19, 28) also contain material of interest in this connection, even
though they are not explicitly on relativity.

Ruse developed his methods in other directions. Whilst the restriction to four-
dimensional Riemannian spaces is less appropriate for differential geometry than for
relativity, he was nevertheless able to make useful contributions to the theory of
harmonic Riemannian spaces and related topics (18,19, 20, 21, 22, 28, 30, 31) where
the elegance of his approach was often illuminating. Furthermore the ideas could be
applied to spaces of dimension greater than 4. A good example of the insight some-
times achieved through Ruse's methods is to be found in his paper on multivectors
and " catalytic " tensors (24). This contained a re-examination of E. T. Whittaker's
work in spinor-calculus, in which it appeared that spinor-calculus could in certain
circumstances be used to construct, by the operations of addition, multiplication and
contraction, new tensors which in tensor-calculus could be constructed only by
solving tensor equations (actually by a process akin to taking square roots); further-
more spinor-calculus could be used to obtain directly a tensor which could not be
obtained by tensor analysis except through the use of an unrelated tensor, which
played a "catalytic" role: that is, its significance in the problem resembled the part
played by a catalyst in a chemical reaction, in that it was necessary to the process but
disappeared in the final result. However, Ruse was able to show that spinor-calculus
was not after all necessary for the constructions described by Whittaker and that
Whittaker's catalyst could in fact be omitted from consideration if the problem were
approached differently. It was the geometrical methods that brought this to light,
and incidentally it showed that the methods could be used to discover tensor formulae
involving covariant derivatives.

Ruse's earliest papers were essentially on the theme of extending parts of classical
analysis to the realm of general relativity. Some of the papers (for example (1, 3))
are basically on pure mathematics, whilst others have a strong flavour of mathe-
matical physics. However there was usually much more mathematics than physics.
Thus the paper " Gauss' theorem in general space-time " (13) generalised the work
of Whittaker, who had extended the classical theorem of Gauss to the case of a static
gravitational field, but Ruse admitted that his generalisation may not be of physical
significance.

Laplace's equation and other partial differential equations feature prominently in
Ruse's work (2, 4, 5, 11, 16, 17, 36). Indeed his last paper but one was on Laplace's
equation in a simply harmonic manifold and it was out of one of his earliest works (4)
that the concept of harmonic spaces arose. The theory of these spaces is one of the
most significant of British contributions to local differential geometry and Ruse
played a major part in its development.

The origin was Ruse's attempt, in 1930, to generalise the " elementary " solution
of Laplace's equation

d2V d2V d2V _

~ter+ dy2 +!ter = 0
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HAROLD STANLEY RUSE 207

to a general Riemannian space. For the classical form of the equation quoted above,
the elementary solution is V = 1/^/(20), where

and it is valid in any neighbourhood not containing the point (x0, y0, z0). The general
form for Laplace's equation in a Riemannian space, in which the fundamental
tensor has components gu and the corresponding contravariant tensor has components
gu, is

d2 V . dV

where the summation convention applies and rfc
lV are the Christoffel symbols formed

from the g^. Ruse appeared to have determined the elementary solution in the form

v . • ds

where 5 is the geodesic distance from the point Po of coordinates (A-0') to the point
(x% g is the determinant of the components g{j, g0 is the value of g at P and J is the
determinant of the nxn matrix whose (i,j)th element is

dx'dx0
J'

However, there was a flaw, namely the implicit assumption that the integrand is a
function of s alone. This is so for a space of constant curvature, but is not necessarily
true; Ruse's only joint paper (16), in which the co-author was his former Edinburgh
colleague E. T. Copson, draws attention to the error and explains it in detail (a neces-
sary process, for the error is not immediately obvious). Copson and Ruse described
a space as " centrally harmonic " with respect to a point Po if Laplace's equation
A2 V = 0 has a solution depending only upon the geodesic distance from Po, and
" completely harmonic " if the space is centrally harmonic with respect to each point.
They proved some results on centrally harmonic spaces, showing that every Schur
space is centrally harmonic with respect to the origin but not every centrally harmonic
space is a Schur space. However, little seems to have been done on spaces which are
just centrally harmonic; the main focus of attention has been on "completely"
harmonic spaces. Copson and Ruse observed that a space of constant curvature is
completely harmonic. They derived a sequence of conditions on the curvature tensor
of a centrally harmonic space, the first of which shows that a completely harmonic
space is an Einstein space; the sequence is not only infinite but becomes increa-
singly complicated, so it is hard to decide whether the conditions imply that the
space is essentially of constant curvature. The matter was left by Copson and
Ruse as a reasonable conjecture but an unanswered question.

The concept of a harmonic space and the conjecture attracted some attention; it
was clear that the problem was a nontrivial one. Associated with it was the problem
of simply harmonic spaces (see A. G. Walker, " Note on a distance invariant and the
calculation of Ruse's invariant", Proc. Edinburgh Math. Soc. (2), 7 (1942), 16-26).
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208 HAROLD STANLEY RUSE

The most convenient way to define these is to use Ruse's invariant p, defined by

_ yfgyfgQ
P-~~J~

and featuring in the paper (4) on the elementary solution of Laplace's equation.
For a completely harmonic space, p is a function of s alone; a simply harmonic space
is one for which p = 1 for every pair of points. At first it seemed reasonable to
conjecture that every simply harmonic space is flat.

It proved to be the case that completely harmonic spaces are not necessarily of
constant curvature and that simply harmonic spaces are not necessarily flat. Whilst
Ruse himself did not produce the necessary counter-examples, his paper (20) suggested
strongly that there were grounds for believing that the conjecture might prove to
be false.

Another conjecture arose from the work of A. Lichnerowicz (" Sur les espaces
riemanniens completement harmoniques", Bull Soc. Math. France, 72 (1944),
146-168). This was that completely harmonic spaces are symmetric in Cartan's sense:
that is, the covariant derivative of the curvature tensor is zero. Thinking about this,
Ruse produced a brand new idea. He noticed that the condition for a space to be
symmetric, namely that the components Rhijk of the curvature tensor satisfy

where the comma denotes covariant differentiation, could be replaced by

where KP are the components of some covariant vector field, without basically upsetting
the algebraic situation: in the case of a metric satisfying either of these conditions, the
requirement for the space to be completely harmonic reduces to a finite set of algebraic
equations. This of course does not produce examples of completely harmonic spaces,
but merely indicates that, from one point of view at least, they are algebraically
possible. What Ruse went on to show was that not only is this true, but in fact spaces
of the required kind do exist. Such spaces came to be called " spaces of recurrent
curvature " and for some time a good deal of interest centred around the idea of
recurrence of tensors, both in relation to harmonic spaces and to other considerations,
notably the theory of parallel fields of planes (27, 29).

Recurrent spaces are now established in relativity as well as geometry, where they
have some significant applications. It is interesting to note how they arose in differ-
ential geometry from a problem that had its roots in relativity and have turned out
to be of importance in relativity itself. In the same way, Ruse's geometrical ideas
were born in relativity and, having evolved outside it, returned with a new significance.
One would not, however, regard differential geometry as a catalyst for relativity!

Full details of the theory of harmonic spaces may be obtained from the book (38)
which Ruse wrote jointly with A. G. Walker and T. J. Willmore; it is worth noting
that there are other types of spaces which are harmonic. Ruse's work opened up
fascinating and challenging new areas of differential geometry, which attracted the
attention of many mathematicians, including A. Lichnerowicz, A. G. Walker, T. J.
Willmore, A. J. Ledger and A. C. Allamigeon and other colleagues of Professor
Lichnerowicz in Paris. Interest became especially keen once it had been established
that harmonic spaces are non-trivial. By no means all the problems concerning such
spaces have been solved, even in the positive definite case.
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HAROLD STANLEY RUSE 209

Ruse's many friends were greatly saddened by his sudden and unexpected death.
At the meeting in Durham in July he had seemed well enough and in some ways was
more relaxed than he had been at one time. He was glad to meet old friends, including
several who had worked on harmonic spaces. He had had an operation for cataract
some two or three years earlier, but he still kept up his swimming, which was an
exercise he always enjoyed. He kept his day to day interest in mathematics going
through his continuing contact with the School of Mathematics at Leeds. The day
before he collapsed he attended an algebra seminar in the Department of Pure
Mathematics.

He had good friends outside the mathematical world and was well-liked and
respected by the Brethren of the Community of the Resurrection at Mirfield. His
acquaintance with the Community dated from his early days in Leeds, when he stayed
for a time as a guest in the Hostel of the Resurrection. Subsequently be became
warden of one of the University's halls of residence, Woodsley Hall, where he showed
unfailing tact and courtesy to all involved in the difficult task of running a student
community in days of severe rationing. To the students themselves he was the ideal
warden, presiding firmly yet with compassion and understanding, so that he obtained
their full cooperation and made the Hall a happy one. He relinquished this duty
when it became abundantly clear that nobody could be expected to cope with all the
duties he had acquired.

His association with the Community of the Resurrection continued throughout
and ultimately it came to play a big part in his life. He was a regular attender at the
Anglican Chaplaincy, he was appointed to the Anglican Chaplaincy Committee of the
University of Leeds, and was also a member of the Parochial Church Council and the
Deanery Synod.

My thanks are due to Mrs. M. M. Turner, for many years a priceless asset to
Harold Ruse as his efficient and understanding secretary, to Professor A. G. Walker
and to Professor J. V. Armitage, for help in preparing this notice.
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