FRANCESCO SEVERI
L. Rotu

I.

Francesco Severi was born at Arezzo on 13 April, 1879. From the age
of nine, when he lost his father, until early manhood, he suffered much
hardship. Although he had wealthy relatives, they seem to have given
him no help whatever, a fact which may well have influenced the develop-
ment of his character. He entered Turin University, and while he was
studying there had to subsist on a meagre scholarship which he eked out
by giving private lessons. His first idea was to become an engineer, but
the lectures of Corrado Segre attracted him so powerfully that he turned to
geometry. Segre was quick to recognise the exceptional talent of his
young pupil who, under his master’s direction, soon began to produce
original work of high quality; in fact Severi’s doctoral thesis [5], written
in 1900, still retains its interest.

After having acted as assistant to D’Ovidio (Turin), Enriques (Bologna)
and Bertini (Pisa), he obtained in 1904 the chair of projective and descrip-
tive geometry at Parma. The interview which led to this appointment
must be uniquet in Italian university annals, for the selection committee
insisted on Severi’s giving & trial lesson in descriptive geometry at the
blackboard (and this at a time when the candidate had publications which
placed him in the front rank). In 1905 he transferred to Padua, where he
was Professor for 17 years. His tenure of the chair was interrupted by the
first world war, during which he served as a volunteer in the artillery,
gaining promotions and decorations. In 1922 he was called to Rome
University, over which he presided as Rector for the period 1923-25.
In 1939 he became head of the newly formed Istituto di Alta Matematica ;
in 1950 the Italian Government decided to make him life President of the
Institute. He died on 8 December, 1961, after a painful illness, necessitating
several operations, which had lasted for over four years.

Severi’s scientific work presents several features which, taken together,
must make his career a rarity. To begin with, there is the uniformly high
level of his very considerable scientific production: as a rule Severi
attacks only important questions of general character and usually of great
difficulty. Those few works of his which are devoted to the study of
particular examples either throw light on such questions or else provide
experimental evidence which, to his extraordinary intuitive faculties,

t So Severi himself maintained. After the meeting, Castelnuovo (who was not on the
committee) made his way to Rome railway station, sought out Severi, who was sitting in
the train for Arezzo, and gave him the good news: again an unusual proceeding.
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suggests significant results. Two illustrations must suffice. First, his
examination [11] of the surface representing the pairs of points of a given
curvet not only reveals a very interesting type of irregular surface,
including the Jacobi surface which was to play an important role in Severi’s
later researches, but leads naturally to extensions in the theory of higher
manifolds. Again, Severi’s method of studying correspondences on a
curve [14] transports the problem into the theory of surfaces, and the
union between the two subjects produces a stupendous offspring: the
theory of the base [24].

In the second place, one cannot fail to observe an essential unity of
outlook. Severi maintains a balance between geometry and analysis—he
has actually made outstanding contributions to function theory. But
within his geometrical work itself the same unity is manifest: Severi
passes from one topic to another only to turn back at some future time.
His production resembles a vast network linking many nodal points, and
his thought may pass from one such point to another by seemingly devious
paths. A striking example is furnished by [27], the key result of which is
that, on any non-singulari primal (form) of a space S,, every surface is
a complete intersection with some other primal. To prove this, Severi uses
in turn: an inequality of Noether’s for the genus of a curve common to
two surfaces; two formulae from his own memoir [8] concerning surfaces
in 8,; and then the theory of birational geometry on a threefold (linear
equivalence, adjoint systems, canonical systems). A second example is
the great paper [42] on Grassmannians: beginning with a display of
synthetic technique in the manner of Corrado Segre, it runs through the
whole gamut of birational and postulation theory, ending with & stiff dose
of algebraic calculation.

Thirdly, there is the topicality of Severi’s work. Few of his papers
have been relegated to the museum ; the rest remain part of the living body
of geometrical discipline. Aside from their theoretical importance, they
follow the best of all recipes for scientific longevity : embedded in many of
them is a most interesting problem which still defies all attempts at solution.

Finally, there is the sheer length of Severi’s career: it extends to
60 years of continuous activity in which again and again he returns to the
problems of his youth, sometimes after an interval of 40 or 50 years,
during which his own pupils have carried his work forward. And his
pupils, acknowledged or otherwise, are legion : in the last two generations,
almost every algebraic geometer (classical or abstract) has mastered his
subject and acquired his technique by reading Severi’s papers; the topo-
logists, too, have learned much from him. In the following survey, which

t In what follows, unless the contrary is stated, all manifolds mentioned are algebraic
and defined in & complex projective space; and all correspondences are likewise algebraic.
I A variety is called non-singular if it is irreducible and without multiple points.
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merely glances at his achievements, one can mention only a very few of
those who are indebted to him; for the truth is, nearly everybody has
been to school with Severi.

IL

Severi’s earliest publication [1] is a 20-page pamphlet, printed at his
own expense, dealing with extensions of Pascal’s and Brianchon’s theorems ;
he did not know that these results were already familiar. But with his
first group [2-8] of papers, which treat of enumerative geometry, he at
once comes into his own ; in them one sees how he develops the germ of an
idea into a general theory, whose implications are destined to interest him
for a lifetime, and at whose core lies an unsolved problem which will lead
him far into other fields.

In the previous generation H. Schubert had laid the foundations of
enumerative geometry by observing that conditions imposed on geometrical
entities—for example, the conics of ordinary space, or the subspaces of
given dimension in a given space—may be represented by symbols which
to some extent satisfy algebraic laws. By using this calculus of conditions
he was able to perform considerable feats of computation. Severi applies
this method in [2, 4] to conics which satisfy conditions of incidence or
tangency. But the most striking of Schubert’s achievements was his
formula for the product of two conditions imposed on a system of sub-
spaces; on this idea Severi erected one of his most celebrated works.
After a preliminary note [3] which clears the ground, he first studies the
special case [6] of a surface in S, ; a consideration of its manifold of chords
shows that such a surface will in general possess a finite number of improper
nodes, ¢.e. nodes which leave unaltered the genera of space sections con-
taining them. The great memoir [8] extends the preceding notions to any
variety V; (k> 2) of k dimensions immersed in a space S, (»r > k). Severi
applies Schubert’s calculus to the tangent S,’s of ¥, ; certain basic condi-
tions imposed on these give rise to the elementary projective characters,
analogous to the order and rank of a space curve; such characters are
additive, and are invariant under projection and section. Given two
varieties V, and V, which intersect simply in a V,,,_,, one can calculate
the elementary projective characters of the latter variety in terms of
those of V, and V..

Severi then makes a series of elegant applications of this result. One
of the most important concerns the complete intersection of »—2 primals
of 8, which contain a given surfacet V,; he calculates the characters of
the residual intersection in terms of those of V,, as also those of the curve
common to the two surfaces. In the special case r = 4, Severi shows that

t The case of r—1 primals containing & given curve had already been dealt with by
Veronese. It is considered by Severi in [12] and [30].
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any primal containing V, will have nodes not only at the improper nodes
of V, but also (in general) at a finite number of simple points of ¥V,. He
extends this last result to any V, of S, for which 2k >r. The complica-
tions which this phenomenon causes are still making themselves felt today.

The intersection problems solved in [8] are essentially questions con-
cerning simultaneous polynomial equations; but no algebra yet developed
could even now begin to grapple with them. All the same, it is clear that
the various procedures of enumerative geometry need some justification
before they can be accepted. Most of Schubert’s own work is founded on
skilful specialisation of geometrical figures, for which a principle known as
“the constancy of the number” is invoked. The vindication of this
principle was one of the problems proposed by Hilbert in 1900. In [38]
Severi gives the essentials of the solution. This he achieves by showing
that any condition on geometrical entities can be regarded as a corres-
pondence between manifolds; this correspondence in its turn can be
mapped on a variety and hence be classified as irreducible or reducible
(either pure or impure). The specialisation principle applies to the first
two categories of correspondence, but not to the third.

But this proof in its turn rests on general intersection theory on a
given manifold V,, as Severi points out in a later work [43] on systems of
conics. And here a second and more difficult question presents itself—the
theory of the base for hypersurfaces V;_, of V;. The former problem is
attacked in [59,71] by considerations of continuity; but the latter,
which Severi had already solved in 1906, is only the first step towards a
general theory of enumerative geometry, to which the memoir [61] is
devoted : this requires the theorem of the base for any V,’s of V,
(1 <k <d—1), a subject to which we return in IV. Even the detailed
discussion of [61] leaves various matters unsettled ; Severi himself appears
to think that there can be no finality in posing problems of enumerative
geometry.

Another tantalising problem, raised in the thesis [5], is the justification
of the so-called ¢ functional method” of Cayley. Suppose, for example,
that we wish to determine the number (assumed finite) of quadrisecants
of a non-singular curve C in S;. Replacing this curve by two disconnected
curves C, C’, both non-singular, we observe that the quadrisecants to the
composite curve C+C’ consist of quadrisecants to C or ('; trisecants to
C (or C') which meet C’ (or C); and common chords to C, C'. Assuming
that the required number depends only on the orders n, »" and ranks 7, '
of C, C', we can write down a functional equation for the number in ques-
tion; since the characters #» and r are additive, this takes the form

flntn', r4o') = fu, ) +f0', ) g, v, 7, o) (1)

where g is a known polynomial. Now it is impossible to justify this
proceoding by continuity arguments, since an irreducible curve cannot
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tend continuously to a form consisting of two disconnected components.
And even if this difficulty were disposed of, there seems to be no a prior:
reason why the required number should depend on » and » alone—as in
fact it does.

As a foundation for the results in [5] which concern secant spaces to
curves, Severi obtains the general solution of the equation analogous to
(1), in any number of variables. In 1948 Severi returns again to these
topics in the lectures [73]; they represent a mere fragment of his project,
which he hoped to complete by justifying Cayley’s method. Incidentally,
one may remark that this method has been successfully applied to many
enumerative problems concerning not only curves but surfaces; a rigorous
treatment has still to be given.

Yet another important problem occurs implicitly in [4] and [7]. Here,
in addition to Schubert’s calculus, Severi employs a degeneration method
which consists in replacing a curve by a connected polygon of lines.
Prompted by the publication of [4], the Danish Academy of Sciences
offered in 1901 a prize for a work justifying such methods; but there were
no competitors. In 1915, Severi himself took up the problem in a work [41]
dealing with families of curves, which goes far beyond the limits of the
prize question. His basic entity is the family of plane curves of given
order whose only singularities are nodes (to this any family of non-singular
curves in higher space can be reduced by projection). The elegant method
employed is that of the falde analitiche, which are a generalisation of an
analytic curve branch. Among the many results (which include proposi-
tions on Riemann’s existence theorem and the moduli of curves) of this
investigation, we may quote the following as typical:

(i) The family of curves of order # and genus p in S,, where » > p+r,
contains all possible connected n-gonst of S, with virtual genus p.

(i) For every value of d <4(n—1)(n—2), there exist irreducible plane
curves of order » with d nodes.

(iii) The manifold of the classes of birationally distinct curves of given
genus p is irreducible.

A full account of this work will be found in the treatise [44]. We may
add that various attempts have been made to apply Severi’s methods to
systems of curves possessing other types of singularities; however, even
where these are only cusps, the difficulties encountered are great.

An interesting sequel to these researches comes in 1941. Since a ruled
surface of given order and genus is rather like a curve with analogous
characters, it might be expected that classification problems for scrolls

t It is to be understood that the vertices of these polygons are all simple intersections;
the virtual genus is computed by regarding #(n—1)(n—2)—p of these vertices as nodes,
and by ignoring the remainder.
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could be treated in a manner similar to the above. This is what Severi
does in [62], which he composed as a sort of object lesson in research for
his students at the Istituto.

IIT.

When Severi entered the field of birational geometry of surfaces,
Castelnuovo and Enriques had been working at the subject for about ten
years. Although they had laid much of the foundation, a great deal
remained to be done. Severi’s own contributions were numerous and
invaluable. To begin with, he improved existing demonstrations [15,
22,26], giving among other things the first ¢ modern ’ proof of the Riemann-
Roch theorem for surfaces (¢f. VI). He then introduced new concepts,
with the aid of which he carried the whole theory rapidly forward. His work
[10] is the first of a long chain of results, lasting through most of his life,
in which he continued to give new and fruitful definitions} of the (linear)
canonical system on a surface or a variety. In [13] he deals with the
problem of correspondence between surfaces by a procedure which is a
model for all such discussions, including the correspondence problem for
manifolds : he first breaks down the question into one of (1, ») correspond-
ence and then considers—in all but name—the behaviour of the invariant
geries and systems of equivalence under rational transformation. The
analogous problem for threefolds was first dealt with under wide hypo-
theses by B. Segre in 1936.

In [26] and [36] he gives criteria for linear equivalence on a surface
or a variety which have been used ever since. A fundamental advance in
the theory of linear systems is made in [20], where the notion of virtual
curve first occurs explicitly in the literature; in their previous work
Castelnuovo and Enriques had considered only the case of surfaces of
geometric genus zero but with some plurigenera greater than zero. Severi
now introduces the virtual curve as the difference between two effective
curves, thereby completing the arithmetic of linear equivalence.

An interesting application of this idea occurs in one of Severi’s last
paperst [79]. Suppose that the surface F' has geometric genus zero but
that the virtual canonical system, reversed in sign, is effective of positive
order: we then say that F' possesses an anticanonical system |A|. Tt
turns out that the only surfaces which can have such systems are rational
or (possibly) elliptic scrollar; however, if the antigenus (=dim|4|+1)
exceeds 2, the latter possibility is excluded. The maximum antigenus is
10, and is attained on, for example, the Del Pezzo novenic surface. Since
the antigenus is clearly a relative invariant of F, we are confronted with
the problem of separating all non-singular surfaces with anticanonical

t In recent developments in the theory of canonical varieties of any dimension, these
have proved capable of wide generalisation.
1 It actually occurs in (55], but other authors had employed the concept long before.
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systems into classes such that, within each class, all members are biration-
ally equivalent without exceptions. This problem is by no means simple.
The notion of anticanonical system, applied to varieties, has proved useful
in other work, both before and since the publication of Severi’s paper.
Besides completing the theory of linear equivalence, Severi has the
credit for introducing the concept of algebraic equivalence into geometry.
One day in 1904 Severi announced to his astonished superior Enriques that,
given any continuous system {C} of curves on a surface F, one can define
on the generic member C, & linear series—the * characteristic series ’—
which consists of the sets of intersections of €, with the proximate curves
in {C}. After some reflection, Enriques not only accepted the idea but
produced a demonstration that, for any complete system {C} (i.e. one not
contained in an ampler system of the same order) the characteristic series
on C,is complete. A different proof of this, the *‘fundamental theorem ”,
was soon after proposed by Severi; and a third demonstration which,
unlike the preceding, was transcendental in character, was given in 1910
by Poincaré, but this depended on ideas which were not available in the
period immediately following 1904. The first two proofs were generally
accepted until 1921, when Severi himself perceived them to be inconclusive ;
the discovery [45] of this circumstance was made by applying the same
method of falde analitiche that we have mentioned in1I. In the meantime,
the new concept and the. seemingly unexceptionable result had proved
their worth in various applications, such as the important theorem [31, 70]
that the adjoint systemt of a sufficiently general system of curves on a
surface, is always regular, .e. the virtual dimension of the system, as given
by the Riemann-Roch theorem, is also the effective dimension. In 1954
Kodaira extended this result to manifolds of any dimension whatever.
Recently Demaria has made other extensions, using purely classical
methods. Ashistory shows, it was fortunate that the fundamental theorem
was not called into question earlier ; it was indispensable to—among other
things—the development of the transcendental theory of 1905 (¢f. IV).
During the last thirty years various attempts have been made to obtain
an algebro-geometric proof of the theorem in all its generality; for a
detailed account [85] may be consulted. Examples constructed by
Zappa [85] have revealed that the theorem does not hold for all complete
continuous systems. The best result to date is Severi’s own [67], of 1944,
which establishes the fundamental theorem for any sems-regular curve C
of a surface F, i.e. one with the property that the canonical system of
F cuts on C a complete series. Recent work by Kodaira and Spencer on
complex analytic manifolds has shown that the notion of semi-regularity,
and also the fundamental theorem, extend naturally to such manifolds;
indeed the notion turns out to be just right for the authors’ purpose.

t The system adjoint to a given linear system of curves is characterised by the fact
that it cuts sets of the canonical series on each curve of the system.
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Iv.

It was in 1884 that Picard, deliberately imitating Abel’s procedure for
curves, began his study of the integrals attached to algebraic surfaces from
which has sprung so much of modern mathematics. However, apart from
a few significant applications by G. Humbert, the French school showed
little desire to exploit Picard’s results. Just 20 years later, the Italians
came to the theory, with immediate and spectacular consequences. In
this field Severi, with his great analytical skill, was to produce his most
celebrated work ; it falls roughly into six categories.

(i) Abel’s theorem for surfaces. A special case of Abel’s theorem for
curves, particularly useful in algebraic geometry, is the following. Given
a curve of genus p, suppose that u; (¢ =1, 2, ..., p) are the p linearly inde
pendent integrals of the first kind attached to it : then a necessary and
sufficient condition for the linear equivalence of two point-sets(z,, z,, ..., x,),
(Y15 Ygs ---» ¥y) ON the curve is the existence of the relations

W (y) U (Be) - +%(2,) = v (1) 2, (F2) + - +%:(90), (2)

modulo the periods (:=1, 2, ..., p).

In [21] Severi gives two analogues of this theorem, each expressing
necessary and sufficient conditions for the linear equivalence of two curves
on a surface F'; these are in terms of the ¢ linearly independent simple
integrals of the first kind attached to F': the character q is the irregularity
of F. Further results are given in [25]. Among applications, Severi
establishes the following analoguet of a classical property of curves: a
surface of irregularity ¢ cannot contain a continuous system of irregular
involutions (of point-sets) unless it carries a pencil, of genus ¢, of curves.
In 1942 Severi returns to this topic in [64], where he determines those
types of surface which contain involutions of maximum irregularity q.

(i) The main theorem. Historically, the irregularity ¢ of a surface F
was first defined as the difference p,—p,, where p,, p, are respectively the
geometric and arithmetic genera of F' (see VI). In reality the definition
given above in (i) is half of the following theorem : A swrface of irreqularity
q possesses exactly q linearly independent simple integrals of the first kind, and
exactly 2q linearly independent simple integrals of the second kind.

The fascinating story of how this result was guessed at, and then
established, by the combined efforts of Picard, Humbert, Enriques,
Castelnuovo and Severi, is too long to be told here; fortunately it has been
recounted in detail, with ample references, by Severi himself [88]. We
mention briefly Severi’s own contributions to the result. In the memoir
[18] he introduces the concept of residue function for a simple integral of
the second kind, and proves that a surface which admits simple integrals
of the second (or first) kind is necessarily irregular. In [18] he also estab-

t This result in its turn can be extended to varieties of any dimension.
JOUR. 147 U
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lishes the inequality ¢—¢, < ¢, where %, 1, are respectively the numbers of
integrals of the second and first kinds. Then in [19] he proves that i, <g,
t < 2¢. For the final stage, as well as for other reasons, we must turn to a
work{ by Castelnuovo, also published in 1905, in which it is shown that
3, =>¢q. Whence the above theorem. It should be noted, however, that
in his demonstration Castelnuovo invokes the fundamental theorem for
continuous systems, a use which Poincaré’s work post-legitimised. To
complete the interlocking, he also needs a lemma of Severi’s from [21].

(iii) T'he fundamental theorem. The series [45) of notes in which Severi
incidentally reveals the flaw in the classical proofs of this theorem was
actually written with another aim, namely that of re-elaborating and sim-
plifying Poincaré’s own demonstration : this proves that any arithmetically
effective curve C on F (i.e. one belonging to a linear system whose virtual
dimension is non-negative) defines a unique complete continuous system
{C} consisting of co? distinct linear systems. Poincaré constructs & con-
tinuous system the members of which are linearly isolated—that is, the
complete linear systems defined by them all have zero dimension; from
this system one can deduce the existence of {C} by using Severi’s results on
the Riemann-Roch theorem.

Severi now defines algebraic equivalence on F as follows: two curves
A, B are algebraically equivalent if there exists a third curve C (effective
or virtual) such that 4 + C, B4 C belong to the same complete continuous
system . In that case we write

A+C=B+C. (3)

The curves 4 and B may well be reducible, as indeed may be all the curves
in £. Again, the behaviour of particular linear systems in a system X,
as opposed to the generic linear system, may be very odd; instructive
examples will be found in [85].

(iv) Theorem of the base. Perhaps the most famous of all Severi’s
works is the paper [24] in which he establishes the theorem of the base:
on any surface F there exist p algebraically independent curves Cy, C, ..., C,
such that any other curve C on F satisfies a relation of the form

AC=X, 042, Cot .. 42, C, (4)

where the X and A;’s are integers.

At the time (1905) of this discovery, it was by no means an obvious
deduction from Picard’s work; in fact no one but Severi seems to have
imagined that such a result might be true. Coming as it did years before
the topological theory of the base, it was a stroke of genius. Severi has
related how the theorem suddenly dawned on him one winter night as
he was walking in the streets of Padua; as we have already remarked, the

t Castelnuovo, Rend. Acc. Linces (5), 14 (1905), (three notes).
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hint came from his work on correspondence theory of curves. Max
Noether, who wrote to him requesting his memoir [24] for the Mathematische
Annalen, commented : ““ You have shed a great light on geometry.”

The consequences of this theory were to interest Severi for the rest of
his life (¢f. [77,82]); in all he made some 20 contributions to the subject.
In one elegant minor work [35] he shows how the birational self-trans-
formations of a surface can be deduced from the automorphisms of a
certain quadratic form; this paper is the forerunner of a considerable
literature.

Another interesting deduction from it is an inequality, first given in
[52]. After reading a simplified proof by Kihler of Hodge’s theorem
concerning double integrals attached to a surface, Severi noticed that one
consequence of this theorem is that 2p, <p,, where p, is the number of
transcendental 2-cycles of the surface. This inequality has since proved
to be the key to various problemst in the theory of surfaces.

But perhaps the most interesting application of the theorem is to the
theory of division (as it was then called) or of torsion (as it now is). A
given linear system | C'| of F' may possess submultiples, ¢.e. there may exist
disequivalent linear systems |C,|, |C,| such that C=AC,=)C,. In
other words, F' may possess zero divisors with respect to algebraic equiva-
lence. It follows from the theory of the base that every zero divisor on
F must be algebraically equivalent to one of & certain finite number
(c—1, say) of such zero divisors. The character ¢ is an absolute invariant,
and is called the Severi divisor; it is the order of the torsion group of F.
These matters are expounded at length in the memoir [32], where applica-
tions will also be found.

Both the theory of the base and the phenomenon of torsion, which
Severi considered in the classical case alone, have a natural extension in
abstract algebraic geometry, as recent literature shows. But they are
best presented from the point of view of topology, as Lefschetz was the
first to reveal. In fact, in his last account [85] of the subject, Severi
follows Albanese’s simplified treatment of Lefschetz’s work.

It is clear that all the above results can be transported, with slight
verbal changes, into the theory of hypersurfaces V,_, of a variety V,
(d >=3). But it is far from obvious that an analogous theory must hold
for all subvarieties V;, of V; 1In [60] Severi attacks this question with,
however, only partial success : he establishes the existence of a base

t Here are some examples :—

The only non-singular surfaces with pure canonical series of order zero are the elliptic
and the Picard surfaces (Dantoni).

The only non-singular surfaces for which the class is less than the order are the plane
and the Veronese surface and its projections (Marchionna).

The only non-singular surfaces for which the class is equal to the order are the ruled
surfaces (Gallarati).
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for V,’s of any dimension on V4 but subject to the hypothesis that for
these varieties algebraic equivalence is the same as numerical equivalence
(in the sense of intersection theory). Such a result suffices for the applica-
tions to enumerative geometry [61] which he has in mind.

(v) Applications of the Picard variety. The general Picard surface first
appeared in 1889 as the surface characterised by the fact that it admits an
co? continuous group of automorphisms which is permutable and completely
transitive over the surface. The special case of the Jacobi surface, which
maps the pairs of points of a curve of genus 2, was already well known.
The Picard variety V, (¢ > 3), defined in an analogous way, was introduced
in 1895; the work of Picard and Painlevé established that it possesses
exactly g simple integrals of the first kind. Simultaneous inversion of these
integrals furnishes a parametric representation of ¥, by means of Abelian
functions of rank 1: that is, there exists a (1, 1) correspondence between
points of ¥, and those of the fundamental period polytope.

The first application of V, to the theory of surfaces was made by
Castelnuovo, in the work quoted in (ii). Suppose that a surface F' of
irregularity ¢ contains a continuous system {C} composed of co? distinct
linear systems | C'|; if we map these systems by the points of a manifold, it
can readily be shown that the latter has the property characteristic of V.
Severi proves in [37] and [39] that, provided F' does not contain a pencil
of genus ¢, it can thus be mapped, simply or multiply, upon a surface @,
likewise of irregularity g, lying on V.

In [40] Severi obtains a different mapping for F which is in effect the
inversion theorem for surfaces. We first construct the Picard variety V'
whose period matrix is that of the ¢ simple integrals of the first kind
attached to F'; then, subject to the same proviso as above, F' is mapped,
simply or multiply, on a surface G’, of irregularity ¢, lying on V,/. The
two Picardianst V,and ¥V, are both considered in the memoir [64]. Ever
since 1911 these mappings have been applied to problems concerning
irregular surfaces and varieties, first in classical and, recently, in abstract
algebraic geometry; and we may expect the method to yield much more.

The generalisation to higher varieties is immediate. Suppose that
V; (d > 3)is a manifold of superficialirregularity q,1.e. endowed with exactly
¢ simple integrals of the first kind ; then in general we may map V,, simply
or multiply, on a d-dimensional manifold, also of superficial irregularity g,
immersed in a Picard variety V, or ¥, constructed as above: V  arises
from a continuous system of hypersurfaces on V,, V' from the period
matrix of the ¢ integrals attached to V,;. It may be proved [39, 64] that
either map exists if and only if ¥V ; does not carry a congruence (system of
index 1) of subvarieties V, (1 <k <d—1) such that the congruence has
superficial irregularity g.

t These are in general distinct; the precise relation between them was first established
by Andreotti.
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In [37] Severi uses V, to genel:alise a property of surfaces due to
Castelnuovo: he proves that any V,; with superficial irregularity ¢ and
geometric genus zero must contain some congruence of superficial irregu-
larity ¢, the fact being that, under these hypotheses, the mapping process
must fail. This is one of those rare occasions where Severi might have
taken a shorter cut.

(vi) General theory of the irregularities. The first extensions of the
previous results concerning surfaces are to threefolds; these occur in the
great memoir [33] of 1909, which lays the foundation for most later work
on higher varieties. For a threefold V;, Severi defines two characters:
the superficial irregularity ¢, and the tridimensional irregularity

93 =Py (V3)—Pu(Vy) (cf. VI).

Let | C| be any complete linear system of surfaces, without base points,
on V,, and let | C’| be its complete adjoint system; then Severi proves
(a) The deficiency of the characteristic system | C?| on C' cannot exceed g,;
and there exist systems for which the maximum is attained.

(b) The deficiency of the (canonical) system | (C” C)| cut by [C’| on C
cannot exceed ¢,+¢4; and there exist systems for which the maximum is
attained.

Theorem (a) was proved for any V; by Kodaira in 1954, using modern
techniques. The generalisation of (b) was attempted by Severi in one of
his last papers [89]. This also has been proved by Kodaira.

In the same 1909 memoir, on extremely slender evidence, Severi
conjectures the formula, for any variety V,,

P (V) =tg—tga+...—(—1)%; (8)

where ¢, denotes the number of linearly independent A-fold integrals of
the first kind attached to V; Moreover he predicts that the proof of
this result will be fraught with difficulties. A proof was given in 1954 by
Kodaira, using practically the entire array of known transcendental and
topological methods. These contrast strangely with the equipment then
at Severi’s disposal. As he himself remarked : “ We had only the old army
rifle : they have the atomic bomb.”

With (5) now established, Severi returns in 1956 to complete the
theory of the irregularities of & (non-singular) variety V; [84]; in this
work he uses differential forms instead of integrals. First, introducing
the ‘“last irregularity” ¢q;= P,— P,, we may write (5) as

9a=1%g1—tq-2F ... —(—1)814;. (6)

Next, applying (6) to the general prime section ¥V,;_; of ¥, we obtain a
similar equation for ¢;_,; we then apply (6) to the general prime section
of V;_;; and so on. We thus deduce a set of characters g, ¢4_, ---, ¢,
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which are obviously absolute invariants of V,, in virtue of the absolute
invariance of ¢4,74_y, .... These are the irregularities of ;. An “ ordinary
variety ”’ of V,; is any non-singular V¥, (2 <A <d—1) whose irregularities
are all equal respectively to the corresponding irregularities of V,; An
open question is that of determining best possible conditions for a sub-
variety V, (h > 3) to be ordinary; the case & = 2, d =3 was settled by
Castelnuovo and Enriques, using topological arguments, in 1906.

In [83] Severi gives interesting applications of differential forms of the
first kind. Using the exterior differential calculus, he establishes conditions
under which V,; will carry a superficially irregular congruence of sub-
varieties. This work generalises a theorem of Castelnuovo and Comessatti,
according to which any V,; for which P, <d(g,—d) must carry a super-
ficially irregular congruence. In the abstract algebraic geometry much of
the work described above has been carried over by substituting differential
forms for integrals.

V.

The knowledge of Picard varieties required for the above applications
—important as these are—merely goes skin deep. The memoir [34] by
Enriques and Severi on hyperelliptic surfaces, which was awarded the Prix
Bordin of the French Academy for 1907, is based on a searching investiga-
tion of Picard surfaces from several points of view.

For present purposes we may define a hyperelliptic surface as a surface
which is representable parametrically by Abelian functions of genus 2
with the same period matrix, and which is neither rational nor (elliptic)
scrollar. The work [34], which is in two big sections, is an imposing display
of both geometrical and transcendental virtuosity, providing the authors
with an opportunity to apply the theory acquired during the preceding
years. Part I gives a detailed account of the curve systems on a Picard
surface ; of the various possible types of automorphism of the surface; and
a classification of the irregular hyperelliptic surfaces—these are all Picard-
ian or elliptic (p, =0, p,= —1). Part II deals with the regular types;
although the classification does not claim to be complete, the study com-
bines synthetic and algebraic geometry with group theory in a remarkable
fashion.

Competing for the same prize was another pair of collaborators, G.
Bagnera and M. De Franchis, but they were unable to finish their work in
time (however, the following year they wrote a second paper on the subject,
and this was successful). Their first memoir, which is entirely trans-
cendental and group-theoretic in character, aims at the complete classifica-
tion and effective construction of the hyperelliptic surfaces. Now these
may all be mapped by involutions on Picard surfaces. Accordingly, one
needs the theorem : any involution of order n on a Picard surface V, which
maps a hyperelliptic surface which is not itself Picardian, is generable by a
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group, of order n, of automorphisms of V,. The proof put forward by
Bagnera and De Franchis admittedly contained a lacuna, for they did not
see how to exclude one awkward possibility. However, in 1936 De Firanchis
showed quite simply that this possibility cannot arise; the classification
was therefore a posteriori complete.

Enriques and Severi, who also needed this theorem (although not so
desperately) gave what appeared to be an ingenious synthetic proof of
theresult. But for reasons that are still obscure, their argument is unsound :
when applied to other surfaces, it can lead to erroneous conclusions.
However, this was revealed only many years later.

Severi’s interest in Picard varieties and Abelian functions was life-long.
His first note [28] of 1907 on this topic was followed 40 years later by the
treatise [69] on quasi-Abelian functions. This subject originated with
Weierstrass : when he had terminated his lectures on elliptic functions he
announced, without proof, that the only meromorphic functions of two or
more complex variables which possess an algebraic addition theorem are
the Abelian functions and their degenerate cases. In 1903 Painlevé estab-
lished the truth of this assertion for the case of two variables, stating that
the general result could be proved similarly.

Severi’s approach to the question is geometrical. If in the defining
property of the Picard variety V, we replace the completely transitive
group by one that is only generally transitive, we obtain what Severi calls
a quasi-Abelian variety; this admits a parametric representation by
functions of the kind specified by Weierstrass. The main theorem is that
any such variety W, of superficial irregularity p (= 0) is birationally
equivalent to the product of a Picard variety V, and a linear space S,_,,.
- Severi’s proof uses & working hypothesis which in a later note [78] is shown

to be superfluous. Severi’s treatise illustrates how the pioneer work of
Abel and Riemann on curves can be adapted to yield new results in similar
fields; in particular, in connection with the quasi-Abelian functions, it
reopens the whole question of Riemann matrices; these were investigated
by F. Conforto in the quasi-Abelian case.

VL

Severi’s work on postulation theory, to which we now turn, grows out
of one simple idea, Noether’s «“ Af+ B¢ theorem for plane curves.
Noether himself used the three-dimensional extension of the theorem in his
researches on space curves: Severi was to develop the concept into an
important branch of geometry. The title of his note [9] of 1902, which
forms the basis for this study, describes the subject very aptly. The
following year, in [12], he gives the first striking application of the method.
Let F be a non-singular surface of S, (r > 5) or a surface of §, with only a
finite number of improper nodes; any r—2 primals drawn through F
will meet again in a surface F’. Assuming this to be irreducible, one can
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apply the formulae of [8] (¢cf. II) to deduce the elementary projective
characters of F’ and of the curve common to F, F'. Severi then uses
these results to calculate the postulation of F for primals of sufficiently
high order /, i.e. the number of conditions—which are all linear—imposed
on such primals if they are to contain F.

Quite recently, Marchionna has extended these results to varieties of
any dimension. His work has interesting applications to the arithmetically
normal varieties mentioned below.

The general concept of postulation, already used in [9], had been
formulated by Hilbert in 1890; this is the foundation for much of [33]
and also of [76], which amplifies and clarifies the 1909 work. Suppose that
V;is a variety of §,, possibly reducible but pure, and free from multiple
components ; then the postulation of ¥, for all primals of sufficiently high
order / is given by a formula

o & (ld—1
s v =5 u(H47Y). )

where the k; are certain integers depending on V, and satisfying the
condition that &y, k,, ..., k;_; are the analogous coefficients in the postula-
tion formula for the section of V; by a generic prime §,_;.

Supposing now that W, is a second variety, satisfying similar conditions,
and intersecting ¥V, simply in a pure variety 7' which may possibly be
empty; then we have, for all I >,

¢ V+W)y=¢(; V)+o(; W)+¢(, T). (8)

Within this order of ideas alone there is a notable literature, including
work by Dubreil and Gaeta on varieties of finite residualf.

The passage from these projective notions to birational geometry is
simple. Assuming now that ¥V, is non-singular, let »—d primals of orders
n; (t=1, 2, ..., r—d) be drawn through V; to meet residually in a variety
Wg; then it is easily shown that, whenever the canonical system of ¥,
-is effective, it is cut on V,, residually to the variety T'=V,. W,, by the
primals of order Xn;—r—1 which contain W,;. The dimension of the
canonical system is denoted by P,(V,;)—1, and P, is called the geometric
genus of V.

The virtual arithmetic genus of V, is defined, with reference to (7), by
the formula

Pa(Va) = (—1)% (ko +ky+ ... +Fkg—1). (9)

For the purposes of this definition, the previous wider hypotheses con-
cerning ¥, may be made.

t Such varieties form a chain : first, the complete intersections; next, those varieties
which are residual to complete intersections; and so on.
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In the abstract case, Muhly and Zariski have investigated the arith-
metic genera of arithmetically normal varieties; such a manifold has the
property that the primals of any given order cut on it a complete linear
system.

Returning to the classical case, we observe that pioneer work on curves
and surfaces suggests a second definition for the arithmetic genus. Suppose
that ¥V, is non-singular and of order m, and that we make a general pro-
jection on to a space S4,,, thereby obtaining a primal ¥}, also of order m.
This will have a double hypersurface D, arising from the chords of V,
which meet the vertex of the projection. Severi now defines the second
arithmetic genus by the formula

m—1

V)= (1)) —$m—d—2: D) (10

The question whether p,(V ;) = P,(V ) turns out to be of great import-
ance in the theory. For d = 1, 2, the result is simple. For d = 3, it was
proved by Severi in [33], not without some difficulty; later, the case
d =4 was treated by Albanese. The general result was established
recently by Kodaira and Spencer, using the theory of complex analytic
manifolds. Severi himself made several attempts at an algebro-geometric
demonstration, the last of them in his monograph [86] on the Riemann-
Roch theorem.

This theorem has a remarkable history, in which Severi’s methods and
results are conspicuous. By analogy with the classical case d =1, geo-
meters were led to seek a formula for the dimension r of the complete linear
system | D| defined by a given hypersurface D of V;; such & formula would
naturally be in terms of the invariantive characters of |D| and of V.
Work on the case d = 2 began in earnest in 1893 (there had been a previous
attempt by Noether); but the successive efforts of Enriques, Castelnuovo
and Severi yielded only inequalities for . The same must be said of the
results of Severi [33] and B. Segre concerning the case d = 3.

A true equation for r, valid for all d and under ample hypotheses, was
established by F. Hirzebrucht in purely topological terms. In 1955 Hodge
translated this result into algebro-geometric language by introducing into
the problem d—1 auxiliary linear systems of suitable character; it then
appears that the formula for » involves not only the invariantive characters
mentioned above but also certain others which depend on the intersections
of | D| with these auxiliary systems. In 1958 Marchionna gave a purely
algebro-geometric proof of the Riemann-Roch theorem, in the same form
as Hodge’s equation, and containing d— 1 auxiliary systems of nearly the
same significance. The hypotheses here are quite general: it is merely
agssumed that the system |D|, whether effective or virtual, is virtually

t This followed previous contributions by Kodaira, Spencer and Serre.
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free from base points. A full account will be found in [88]. Itis interesting
to note that the method of proof follows the lines laid down in Severi’s
work of 1903; it is based on the use of the composite variety V,+ W,
described above.

Severi’s results concerning the moduli of forms and postulation theory
find elegant applications to the study of Grassmannians [42]. We have
already alluded to the note [27] in which it is proved that, on any non-
singular primal V,; (d > 3), any hypersurface is the complete intersection
of V; with another primal. In [68] Severi shows that this property persists
even if V; possesses double points, provided they are not too numerous.
Now any Grassmannian @ is a non-singular variety with the above property
of the non-singular primal ; further than that, the section of G by a generic
linear space of sufficiently high dimension likewise has this property.

In [42] Severi obtains the postulation formula for the particular case
of a Grassmannian of lines in any space, and indicates how to compute the
analogous formula for any variety G. This work was completed by Hodge,
who then used the formula to find the arithmetic genera of the various
space sections of G.

VII.

(i) Rational equivalence. Linear equivalence on a variety Vis entirely
concerned with hypersurfaces and their mutual intersections. For many
years Severi considered the possibility of constructing an analogous theory
for subvarieties of any dimension on V,; but the attendant difficulties
seemed insuperable. The solution finally arrived at is an equivalence
based on rationalt, as distinet from linear, systems of varieties.

The first definitive step towards the theory was taken in 1932, and
concerned surfaces only [54]. But the general concept was developed at
great length in two papers [55, 57] which soon followed. Here, however,
is & case where last thoughts are best. In 1955, as the result of a corres-
pondence with van der Waerden, Severi [80, 81] propounds a simple
definition of rational equivalence which is exactly analogous to that of
algebraic equivalence on a surface (¢f. equation (3) above). Thus, two
subvarieties 4,, B, (1 <h <d—2) of ¥, are rationally equivalent if there
exists a third variety C, (effective or virtual) such that 4,-+ C, and B,+C,
belong to the same rational system. At this point we may mention the
illuminating idea of J. A. Todd, according to which all types of equivalence
on a V; may be regarded from a group-theoretic standpoint. The notion
was exploited by Severi in [72]. Clearly rational equivalence is invariant
under birational transformation; Todd’s presentation guarantees that it
will have the other properties obviously required of it.

t A rational system is one whose members can be mapped biunivocally by points of
& rational manifold.
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The train of thought behind [54], showing how Severi was led by means
of transcendental theory to rational equivalence and then to invariant
point-geries on a surface, is too intricate to be described here; in any case,
accounts of it have been published elsewheref.

(ii) Transcendental-topological developments. In the first place, the
topological view of the theory gives immediate significance to the idea
of effective or virtual variety on V,, corresponding to the orientation
(positive or negative) of the associated Riemann manifold. It also clarifies
the notion of pseudo-equivalence which, as will appear, plays a fundamental
role. We say that an irreducible system ¥ of subvarieties on V,; has null
(or pseudo-null) circulation with regard to a (real) dimension = if every
n-cycle of 2 on the Riemannian of V;is homologous (or weakly homologous)
to zero. We also say that X has n-dimensional algebraic circulation if
every m-cycle on this Riemannian is algebraic. Severi [56] proves that
every system of equivalence has null circulation with regard to the odd
dimensions, and algebraic circulation and zero torsion with regard to the
even dimensions. But it is still not known whether these properties are
characteristic of systems of equivalence. A difficulty arises from the possi-
ble presence of systems of pseudo-equivalence, ¢.e. irreducible systems of
V,’s (b < d—1) such that, for a fixed m, all the varieties mV, are rationally
equivalent while the V,’s themselves are not; this cannot happen in the
case of linear equivalence (h=d—1).

For series (of points) of pseudo-equivalence on a V,, Severi [56] has
established a property similar to the direct form of Abel’s theorem [IV (i)]:
the sum of the values taken by every differential form of the first kind and
of degree n (n =1, 2, ..., d—1) at a set of points which varies in a series of
pseudo-equivalence, is zero. A converse theorem is known only for the
case d = 2. All the above results are expounded in [88].

Severi has established a Riemann-Roch theorem for point-sets on an
irregular surface ([65], reproduced in [88]). The parallel with the trans-
cendental theory for curves is remarkable: a point-set is special or non-
special according as it is or is not contained in the canonical series (see
below) of the surface. The results are different in the two cases.

In the series [56] of notes from which the above theorems are taken,
Severi introduces the notion of correspondence with valency on a surface.
He returned to the subject in later work. However, various points in the
theory still require clarification.

(iii) The canonical systems of a V. Of these developments—in which,
for the case d > 2, Severi had no part—there are excellent accounts by
B. Segref and J. A. Todd§. A few remarks will therefore suffice.

t L.g. Zariski, Algebraic surfaces (1948); Severi [63, 85].
1 B. Segre, Proc. Int. Math. Congress (Amsterdam, 1954), IIT, 497,
§ J. A, Todd, Bol. Soc. Mat. Mexicana (1957), 26.
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Briefly, the theory of the canonical systems has been built up in four
different ways. Following Severi, the initial step was taken by B. Segre in
1934 when, on any (non-singular) Vs, he established the existence of & new
invariant curve-system. About two years later Todd, starting from this
result and using algebro-geometric methods, produced a set of d invariant
systems of equivalence {X,(V,} (h=0,1,...,d—1) of A-dimensional
varieties X, the ¢ canonical varieties’ of V;. This work appeared during
the years 1937-1939.

In 1936-1937 M. Eger, following up Severi’s transcendental approach,
produced the same set {X,(V,)} of invariant systems for any superficially
irregular variety V; of suitably general character, and then converted his
theory into one applicable to any (non-singular) variety whatever. A
full account of Eger’s work was not published until 1943.

A novel algebro-geometric formulation of the theory was given by
B. Segre in 1953, based on the concept of ‘ covariant succession’ of
varieties. The following year, using similar techniques, Segre proved that
the canonical varieties are topological invariants.

Lastly, there is the purely topological development of the subject, due
to Chern and Hirzebruch, and dating from about 1953 onwards.

All the foregoing theory has interesting connections with Severi’s own
thought, some traceable back to the work of 1909. Thus, in [33] Severi
was led to the hypothesis that the arithmetic genus P,(V,) [VI, equation
(10)] is an enumerative character of V,, ¢.e. expressible in terms of the
elementary projective characters of V, (II). In 1937 Todd showed that,
on the same hypothesis, P,, is expressible as a linear function, with constant
coefficients, of the various intersection numbers of the systems {X,(V )},
a fact already established for d =1, 2, 3. In 1953 Hirzebruch gave a
topological proof of this result, free from any such assumption.

Again, if we start from either the transcendental or the topological
definition of X,(V), it is easy to show that, for any Picard variety V,
all the canonical varieties are the null varieties of the relative systems of
equivalence. In 1941 Severi made the conjecture that such a property
characterises V,. This is certainly true for ¢ = 2, though even here the
proof is not immediate. The general question still remains open.

A bolder conjecture, at which Severi seems to have hinted, concerns
the pseudo-Abelian varieties, i.e. those varieties which admit continuous
groups of automorphisms whose trajectories are Picard varieties. In the
simplest case, that of the elliptic surfaces, the canonical series is the null
series and, as we have remarked [IV(iv)], this property characterises the
elliptic and the Picard surfaces. Suppose then that, for & manifold V,,
all the varieties X,(V;) (h=0, 1, ..., r—1) are null, while X, is not. Is
V4 necessarily pseudo-Abelian, with trajectories of dimension r ?

VIII.
Severi was always interested in function theory—for & good many
years he was Professor of analysis in Rome—and particularly in functions
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of several complex variables. From 1930 onwards he made outstanding
contributions, such as [48], to this subject; among them we may also
point out his studies on biharmonic functions and the solution of the
associated Dirichlet’s problem [49-51]. In [53] he completes a theorem,
originating with Weijerstrass and Hurwitz, according to which any func-
tion which is everywhere meromorphic on an algebraic variety is necessarily
rational; this result is essential to the developments of IV(v). An
attractive account of Severi’s work on functions of complex variables will
be found in [87]; this, his last book in order of composition, includes
chapters by other writers.

Severi’s long experience of teaching analysis bore fruit in three volumes
[58, 66, 75], the last two written in collaboration with Scorze Dragoni
these are partly based on previous lithographed editions. They deserve
to be more widely known; for one thing, in addition to the main text,
which includes a good deal of algebra and analytical theory of differential
equations, they are crammed with historical notes, examples and critical
comments which provide a survey of most branches of pure mathematics,
with geometry of course well to the fore. These notes reveal Severi’s
great erudition and breadth of outlook. To such gifts his various original
articles on differential geometry, relativity theory and foundations of
mathematics bear further witness.

However, as may be imagined, it was as a teacher of geometry that
Severi excelled. His lectures on his own work were unforgettable; the
style was beautifully simple—in public speaking he rarely descended to
mere oratory—and the presentation masterly. He was greatly interested
in teaching for its own sake, and his didactic skill found an outlet in a
whole stream of books; if one counts school texts, written mostly in
collaboration, as well as the variants represented by successive editions,
they amount to over 40 volumes. But it must be admitted that, while his
treatises have many merits, they do not quite fulfil the promise of his
spoken lectures; one sometimes feels that clarity and comprehensiveness
have been sacrified to stylistic brilliance.

Severi’s first book [16], which was lithographed, later developed into
an excellent treatise on projective geometry. A striking testimonial to his
devotion to teaching is the biggish book [23] of examples in projective
geometry, which he produced in the very thick of his research of 1905-1906.
The preface opens with a piece of advice quoted from Cremona: ¢ Never
write a treatise!”” Fortunately, Severi continued to disregard itf.

Two years after, we have in [29] the first modern account of algebraic
curves, combining the typically Italian approach with the transcendental ;
this book, which is now rare, was later expanded into the well-known

t Cremona goes on: ‘‘ It will cost you more blood and sweat than any amount of
original work, and all that you will get in return is a list of the book’s shortcomings.”
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German version [44). The algebro-geometric aspect of the theory is
further elaborated in the volume [46] of 1926, the most polished of Severi’s
writing on the subject. It was announced as the first of a series which
would eventually embrace the whole of algebraic geometry; but hardly
any of the projected works ever came to birth.

Very many years ago, Severi prophesied that the future of mathematics
lay with functional analysis and topology. In 1927-1929 he gave a course
of lectures [47], which were compiled by B. Segre, and in which the elements
of topology are expounded ; this was a pioneer work in Italy, but it came
just too soon to feel the benefit of modern improvements in theory and
presentation. Incidentally, it contains the first printed account of Severi’s
important construction for an algebraic Riemannian of an algebric variety,
which indeed he had taught in early days at Padua.

1t is a strange thing that, all this time and also for years to come, his
books remained on the fringe of his own original work. It was not until
1942 that a substantial portion [63] of it was put together from his lecture
courses. The resulting book, dealing mainly with rational equivalence, is
however disconnected and diffuse; it unwittingly reveals the weakness ot
the theory—even that of point-series on a surface—namely, that practically
nothing can be done with it}. The author tries to recast the classical theory
of linear systems so as to hide the awkward fact, but to no avail.

Meanwhile the world was still waiting for a definitive account of
Severi’s contributions to the transcendental and invariantive theory of
algebraic surfaces and varieties. In point of fact it only just missed getting
none at all. For about 12 years after the last war Severi lectured on the
theory of integrals attached to algebraic surfaces and actually, for a good
part of the time, from proof sheets, which however he would not pass for
press. At last, in 1957, the book [85] appeared. It is very readable, and
_ includes accounts of the topological aspects of the theory. One can easily
guess why it was so long delayed: evidently Severi had hoped to find an
algebro-geometric proof of the fundamental theorem for curve systems
on a surface. In the event, he gives no complete proof of this result; there
is the attempt at a synthetic demonstration, followed by a sketch of
Poincaré’s treatment, but the latter is too indigestible to be presented in
entirety.

The sequel [88] to the above volume was even luckier in getting pub-
lished—in the author’s eightieth year. Most of it is a collection of Severi’s
later papers, supplementary to [74], with just a few retouches, but one is
glad to have it all the same. Both books should prove useful for a long time
to come; as sources of information they are, and may well remain, unique.
A curious feature of [85] is the apologetic tone of the preface, which all

t Certainly not for lack of effort : Severi’s pupils were often set the task of finding
uses forit. (This criticism does not apply to the topological developments of the theory.)
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but concedes that classical Italian geometry has had its day. But when the
author penned these words, his fatal illness was already upon him.

IX.

In the foregoing account—which perforce dismisses in a few lines works
that merit pages of description—some of Severi’s activities have been
casually mentioned. But these give only a pallid notion of what Severi was
and did. As he approached middle age, mathematics came to occupy less
and less of his time; it had to compete with a host of other occupations.
For Severi by then was (among other things) President of an Arezzo bank,
head of the engineering faculty at Padua, an expert agriculturalist who
managed his own estate. After his transfer to Rome he became & sort of
unofficial deputy for his home town, to whom local people looked to remove
grievances and pull wires—all cf which entailed a heavy correspondence.
Later . still he administered personally the Istituto di Alta Matematica,
down to the smallest detail; he would not delegate authority.

Although after 1915 he made very important discoveries—such as the
solution of Dirichlet’s problem and the theory of rational equivalence—
and continued to publish voluminously, none of this work attains the quality
of what had gone before. The wonder is, however, that it got done at all.
Somehow time was found for it ; but whereas in his young days Severi had
taken immense pains in preparing his manuscripts, he now dictated a
few pages (occasionally by telephone) whenever he felt in the mood, and
was inclined to leave proof sheets to shift for themselves.

Any description of Severi must certainly introduce the forceful person-
ality of his wife: Signora Rosanna, from the Val d’Arno, the dominant
influence throughout his career. Very shrewd and humorous, she shared
to the full his intense zest for living ; she also encouraged his belief—firm
enough in any case—that the world at large failed to treat him with due
consideration. For, incredible as it may seem, although during the whole
period of his maturity honourst were showered upon him and invitations
poured in, yet he remained forever unsatiated. Intellectually, materially
and socially, he had nearly everything a man could hope for; he possessed
a towering presence, with a leonine head, he was a superb talker} and
writer, a connoisseur of art and the humanities in general, & world traveller
—but despite all this he seemed more or less permanently aggrieved.
He was fond of appearing as a martyr, a part that he played with conviction.

It may be that his early hardships had left such a deep impression that
he failed to realise that he had long since arrived. But whatever the
explanation, the struggle for further recognition was waged without a

t Severi was elected corresponding member of the French Academy in 1957, and
honorary member of the London Mathematical Society in 1959.

1 Severi’s conversation was inconceivably fascinating; one could listen to him for
hours—and one frequently did.
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truce. Personal relationships with Severi, however complicated in appear-
ance, were always reducible to two basically simple situations: either he
had just taken offence or else he was in process of giving it—and quite
often genuinely unaware that he was doing so. Paradoxically, endowed as
he was with even more wit than most of his fellow Tuscans, he showed a
childlike incapacity either for self-criticism or for cool judgment. Thus he
meddled in politics, whereas it would have been far better had he left them
alone. Moreover, with his passionate desire to remain young, he insisted
on being regarded simultaneously as revered master and as youthful rival,
a circumstance which made it terribly easy for both colleagues and pupils
to be caught on the wrong foot.

In 1957 the struggle changed its character ; it became bitter and tragic.
He fought his adversary tothe very end. During the last four years of his
life he continued to keep all his affairs in a progressively enfeebled grasp.
He was still publishing [89, 90] when he was no longer in a condition to
recollect his own previous results. He repeatedly expressed the belief
that his health was improving, and that he would yet address another
Congress.

Once, and once only, he seemed to glimpse reality, and then he went
further than the truth. On the last occasion that the writer saw him, just
before the onset of his illness, he suddenly exclaimed: “Do you know
what they are all thinking? ¢If only this Severi were dead!’” But here
he did his compatriots an injustico: as they would all regretfully affirm,
without him Italian mathematics will never be the same again.
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