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ALFRED YOUNG
1873-1940.

H. W. TuRNBULL.

Alfred Young was born at Birchfield, Farnworth, near Widnes,
Lancashire, on 16 April 1873. He died after a short illness on Sunday,
15 December 1940. He was the youngest son of Edward Young, a
prosperous Liverpool merchant and a Justice of the Peace for the county.
His father married twice and had a large family, eleven living to grow
up. The two youngest sons of the two branches of the family rose to
scientific distinction: Sydney Young, of the elder family, became a
distinguished chemist of Owen’s College, Manchester, University College,
Bristol, and finally, for many years, of Trinity College, Dublin. He was
elected Fellow of the Royal Society in his thirty-sixth year and died in
1937. Alfred, who was fifteen years his junior, was elected Fellow
in 1934, at the age of sixty, in recognition of his mathematical contributions
to the algebra of invariants and the theory of groups, a work to which
he had devoted over ten years of academic life followed by thirty years
of leisure during his duties as rector of a country parish. Recognition
of his remarkable powers came late but swiftly; he was admitted to the
Fellowship in the year when his name first came up for election.

In 1879 the family moved to Bournemouth, and in due course the
younger brothers went to school and later to a tutor, under whom Alfred
suffered for his brain power, being the only boy considered worth keeping
in. Next, he went to Monkton Combe School, near Bath, and there
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again his unusual mathematical ability was recognised. Thence he gained
a scholarship at Clare College, Cambridge, where he matriculated in 1892.
At Clare he formed his life-long friendship with G. H. A. Wilson, another
distinguished mathematician, who eventually became Master of the
College. Young was a good oarsman and rowed in the Junior Trial
Eights as a freshman and in the Scratch Fours of 1893. His college friends
still remember him as a shy, clever lad with a great humility of spirit
which so marked him in his youth and indeed throughout his life. Early
in his third year at college his interest in research began, and his enthusiasm
doubtless diverted him from the subjects laid down for the Tripos examina-
tion, for which he was prepared by the celebrated coach, Webb of St. John’s
College. In 1895 he graduated as tenth Wrangler, his friend Wilson
being placed fifth. It was a brilliant year; Bromwich was Senior
Wrangler, Grace and Whittaker were bracketed second, and thereafter
followed Hopkinson, Godfrey, and Maclaurin twelfth Wrangler, to whom
one of the three Smith’s Prizes was subsequently awarded. Young, who
according to Grace was the most original man of his year, would probably
have occupied a higher place in the list had he directed his attention to the
examination schedule; but in turning to his research, as Wilson tells us,
undoubtedly he chose the better path. In the following year Young was
placed in the Second Class of the Mathematical Tripos, Part II. From
1901 to 1905 he lectured at Selwyn College, Cambridge, but resigned that
appointment shortly after his election to a Fellowship at his own college,
where he was also Bursar until 1910. His work received recognition
when he was approved for the degree of Sc.D. at Cambridge in 1908.
Young had always intended to take Holy Orders, but it was not until
1908 that he was ordained, when he accepted a curacy at Christ Church,
Blacklands, Hastings. Two years later he was presented by his
College to the living of Birdbrook, a village of Essex about twenty-five
miles east of Cambridge and on the borders of Suffolk. There he lived
and worked for thirty years, quietly and faithfully performing the duties
of a parish priest, beloved by his congregation, who respected and wondered
at his great scholastic gifts so modestly set forth. He was always a
welcome visitor in their homes, and he conducted the services in the parish
church with dignity and sincerity, and was an excellent preacher. He
readily undertook the responsibilities of his calling further afield, was
appointed in 1923 to be Rural Dean of Belchamp, and in 1929 Chaplain
to the Bishop of Colchester. As recently as November 1940 he was
installed as Honorary Canon of Chelmsford Cathedral. In 1926 he
accepted an invitation from the University of Cambridge to give a course
of lectures on Higher Algebra, and this he continued to do for several
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years during the Lent, and occasionally the May, Term. In 1931 he was
awarded the Honorary LL.D. Degree of the University of St. Andrews.

In 1907 Alfred Young married Edith Clara, daughter of Mr. Edward
Wilson, of Sheffield, by whom he is survived. There were no children
of the marriage. Their home was a typical country rectory, set in an
old world garden full of colour and of great charm, where a warm welcome
awaited a visitor from Cambridge or elsewhere, young or old, who sought
out in this secluded corner of Essex a master of abstract algebra, and
found more than a mathematician, a friend. After a thirty-mile bicycle
ride (these were the days before the motor bus had become ubiquitous)
the shade and peace of the rectory garden on a summer day were greatly
refreshing.

“He was charming to us ”’, an undergraduate wrote after such a visit,
““and I remember how delighted I was with the Rectory, and how he told
us of the excellence of the beer brewed with the water of his pond”. He
was a practical mechanic, and had a device by which all the water in the
house was pumped up with the help of a little motor engine which was
run round to the pump each day. He had also successfully set up a small
electric light plant to supply the house. His expert knowledge of its
working seemed odd amid those rustic surroundings, till one recalled his
interests in the more practical mathematics besides the theory of groups,
and the paper he had published on the electromagnetic properties of coils.
He was very methodical in planning his duties and his leisure; he was a
willing correspondent and would take great pains to answer the mathe-
matical queries of his friends, sharing with them liberally his own abundant
thoughts on algebra, invariants and geometry. He could take up or lay
aside and again, after several weeks, resume a formidable piece of algebraic
computation, without apparently losing the threads of the arguments and
with the utmost composure. Every year he and his wife would regularly
take their holiday shortly after Easter at a South Coast resort, and every
Tuesday they would go over to Cambridge and thus keep in touch with
their University friends, a practice which doubtless started when Young
returned to the lecture room at the call of the University. His quiet
determination and his unhurried devotion to the things of the mind and
of the spirit were very impressive. Of such might Whittier have been
thinking when he wrote:  And let our ordered lives confess, The beauty of
Thy peace”. Young was intellectually alert to the end of his life, and
during his last year he was constantly working at his ninth memoir, to
which he attached great importance. It was nearly finished and lay on
his desk awaiting the final touches. During the last few days of illness
he asked his doctor whether he could hope to live to finish his work.
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My friend W. L. Edge has supplied a picture of the lecture course
when Young resumed his teaching at Cambridge: “I remember (who
could forget?) very well my experiences of attending his first lectures.
This was only a.course of one lecture a week for one term; you can see
for yourself how much he got through. . . . Doubtless it is all standard
work to you, but it will be interesting to see how the old warrior entered
the lists again and what he considered should be given to his first hearers.
I went along on 19 January 1926, in my third year, just two terms before
my Tripos, to Clare . . . there were eleven of us and I was the only under-
graduate who ventured. Others in the class were, I think, Cooper, now
at Belfast; Broadbent, now at Greenwich; L. H. Thomas, who got a
Smith’s Prize and a Trinity Fellowship and went to America; Dirac
certainly, and F. P. White, the only M.A. And I remember the tall
clerical figure entering the room, and his surprise at so large an audience,
and shaking hands with White with obvious pleasure. And so to linear
transformations and Aronhold’s symbolic notation. . . . At the end of his
last lecture in March, Young said that he was so pleased that people had
turned up that he would lecture again in the following term. And he
and I were both surprised, and I very embarrassed, when no other member
of the class but myself showed up in April. It was my Tripos term, but
I'wasnot going to miss hislectures ! . . . One lecture fell during the General
Strike, and no preparation of room, blackboard, chalk or anything had
been made by the college. So Young sat down beside me and wrote out
the notes with his own hand ”.

Young had a quiet humour. I remember an occasion’, writes
Wilson, “when he said to me with a grave face: ‘I have lost all sense of
personal security’. It appeared that the maidservant at his Cambridge
lodgings had used some of his manuseripts to light the fire rather than
waste clean paper for that purpose .

Young wrote his first mathematical paper in 1899 and continued to
write and to publish for over forty years. With the exception of his
work on electromagnetism in 1918, every paper was devoted to one theme,
the algebra of groups. It began with the algebraic theory of invariants,
a subject which was first explicitly started a hundred years ago, in 1841,
by Boole, and then developed by Cayley, Salmon and Sylvester, and later
by Macmahon and Elliott. It provided the analytical aspect of geometrical
projection and of those properties of a figure which remain unchanged
for any such projection. This led, first of all, to the discovery of algebraic
forms which were invariant for the corresponding linear transformations,
and then to the search for the basic set of forms, out of which all other

invariants of a given system of ground forms could be constructed. Such
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a form is the binary »-ic
2(n
f= < a, ¥z,
r=0 \7

and the study resolved itself into the theory of annihilators, that is, of
certain differential operators linearly composed of terms such as

0

@, 1 ’a—&' .
T

At an early stage it was supposed that, for binary forms higher than the
quartic, the invariant theory was essentially different from that for lower
forms. Indeed, in his second Memowr on Quantics (1855), Cayley had
stated his conclusion that whereas the number of different irreducible
invariants and covariants for a quartic was finite, this was no longer true
of the quintic. But this surmise was upset in 1869 when Gordan startled
the mathematical world by proving the finiteness of such systems for a
binary form of any order. Gordan followed this up with the publication
of his Programm at Erlangen in 1875 which widened the scope of the
finiteness to all systems of binary forms. Finally, the theory was extended
to all higher types of form by Hilbert in 1890. The influence of Gordan’s
work was apparent in the successful use of generating functions by
Sylvester and MacMahon, who made important advances both in detailed
systems and in the general theory. A friendly rivalry sprang up between
the English mathematicians and the Continental algebraists, Gordan with
his followers, the former following the non-symbolic method, a8 it is
called, and the latter the symbolic. The work of the English school is
ably expounded by Elliott in his Algebra of Quantics, which brings us to
the beginning of the twentieth century.

The development by the symbolic method, which went on in Germany,
grew out of certain hyperdeterminants invented by Cayley. In this
branch of the theory the coefficient @, in the form f was regarded as a
numerical multiple of 0" f/dx7-" 0z, or, let us say, 0y~ 0," f, where 9, = 8/dz,,
0y, =0/0z5. All such forms together with all their invariants and co-
variants were expressed in terms of the d,, d, belonging to the variables
%, %3, and of analogous symbols for any further cogredient variables.
Clebsch and Aronhold perfected the technique of these symbols. There-
upon Clebsch and Gordan used them systematically for invariant theory
with conspicuous success. They proved that every rational integral
invariant of binary forms could be expressed as a polynomial aggregate
of symbols 0%/0x, dy,—0?/0x, 0y, (the hyperdeterminants of Cayley) and
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of y,(0/0%,)+y,(0/0x,), the polar operators (the First Fundamental
Theorem); that all invariantive properties could be deduced by means
of certain specified determinantal identities which left these characteristic
hyperdeterminantal and polar structures unimpaired (the Second Funda-
mental Theorem); that every such invariant could be expressed rationally
and integrally in terms of a finite number of invariants (Gordan’s Theorem,
1869); and they established an important expansion (the Clebsch-Gordan
series) which enables one to deal with forms involving many sets of
variables by means of forms in fewer variables and their polars.

These symbolic advances, together with the generating functions and
perpetuants of MacMahon, opened up a wide field of enquiry, and it was
this into which Young entered, in company with his friend J. H. Grace,
soon after and possibly even before they took their degrees. Their
interest was first aroused in 1895 by reading Meyer’s newly published

" Bericht iber den gegenwartigen Stand der Invariantentheorie, which opened
up a vast world of algebra and gave them their first ideas of modern
mathematics. They came to grips with the symbolic method, which
fascinated them, and at once began to make important contributions
to a subject hitherto very little known in England. With the publica-
tion of their treatise, the Algebra of Invariants, in 1903, a new era
dawned for the teaching and progress of Higher Algebra. This excellent
book, with its fine display of algebraic technique and geometrical
insight, had a considerable influence on the younger geometers and
algebraists at Cambridge, particularly in the decade preceding the last
war. Both authors were masters of their subject, Grace as a geometer
and Young as an algebraist. The pages of the book have a deceptively
simple appearance, owing to the extraordinary compactness of the
symbolic notation, where, for example, an invariant eya,—4a, a5+ 3a,?
of a binary quartic appears in the guise }(ab)®. The book ends with
four lively appendices, bringing the latest results to the notice of the
reader—and one almost expects to see a stop press column on the last
page!

From the outset Young’s rapid and skilful handling of symbolic
algebra bore all the signs of genius. Grace likens him to Ramanujan,
not only for what each achieved but for what each ignored. Young at
once found his own solutions for the complete systems of the binary
octavic and septimic forms: and, of his ingenious device for treating the
octavic as the symbolic square of a quartic, Grace says “I could
not have thought of that in fifty years’’. Young began his research
in algebra by solving the problem of binary quartic types——the invariant
theory of any number of quartics; and it was through the practice of
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the symbolic methods upon such problems that he was led to his first
great discovery, which he  called Quantitative Substitutional Analysis.
He was dealing with functions of a finite number of variables; and
these variables always occurred in sets, let us say @, b, ¢, ..., each
of which could be manipulated as a single vector, or as a column
of a determinant. In the course of the work innumerable varieties
of alternative expressions were produced, many of which only differed
among themselves by sign, or else by derangements of these vectors,
in much the same way as a three-rowed determinant, |a,b,cs|=A4,
assumes two values A and six alphabetical forms, when the letters are
permuted without disturbing the suffix sequence. His functions were, of
course, usually much more complicated than single determinants; never-
theless the determinant provided the clue to a general theory which
comprehends all the details of the algebra. Now functions such as these
are evidently closely connected with the theory of finite groups, and it
became clear to Young that sets of functions, which at first sight were
quite distinct, but which on examination proved to belong to the same
group, could be dealt with by a single prescription if only the properties
of that particular group were thoroughly known. Young therefore set
himself to extricate the group properties of these functions, and accordingly
he expressed the functions as well as the relations between such functions
by means of a new kind of symbolic operator depending at once on a
substitution group.

This operator, which consisted of two main ingredients N; and P,,
can best be explained by a simple example : thus, if f(a, b, ¢) is a function
of three variables, then

f(a, b, ¢)+£(b, @, c) = Pf(a, b, c),
fla, b, ¢c)—f(b, @, ¢) = N f(a, b, ¢),

where P =14 (ab), N =1—(ab) and (ab) denotes the operation of
interchanging @ with 6 in the function f(a, b, ¢). For n letters such a
P has n! positive terms, and forms the positive symmetric group, while
N forms the negative symmetric group with the same terms, half of which
have a negative sign. For n such elements a,, a,, ..., @,, Young
writes

P={ma,..a,}, N={a0,..0,}
In the above two-letter illustration it will at once be seen that, when f
is the determinant A, then PA = 0, NA = 2A. Moreover, if any expression
¢ = Z Aa, by ¢y is taken which involves each letter and each suffix once in

each term, besides a numerical coefficient A, then the effect of the three-
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letter operators P and N upon ¢ are pA, and pA, where p=ZA, and
A,, A are the permanent and the determinant respectively. These examples
serve to explain how Young transferred the whole emphasis from the
operand f to the substitutional operator, and very soon he had elabor-
ated a considerable theory of these operators.

The main result was contained in the method of the tableau (1900).
A tableau is an arrangement of the variable in rows and columns, equal
or diminishing both downwards and from left to right. A function,
depending on, let us say, five permutable variables, possesses (among
others) the tablean

X X X abce
X X de

From this model Young constructs the operators
P, P, Ny N, Ny = {abc} {de} {ad}’ {be} {c}',

where each P refers to a particular row, and each N to a particular
column. The sum of all 5! such expressions, due to the permutations
of all five letters, Young calls T, ,, the suffixes denoting the lengths of
the rows of the tableau. Clearly there are as many such shapes (with
the longest row and column always at the top and on the left) as there
are partitions of n, the number of letters. For four letters there are
five shapes

X
X X X X X X
XX XX, 07 s >>§ P (1)
X
and therefore five operators Ty, T3, Ty 5, Ty 1,1, T'y,1,1,1- Young found
that, for all values of #, a certain positive linear combination of these

T’s was identically equal to unity, say

%A(p) Tp=1,

where each (p) denotes a different partition of n, and the coefficient A4,
is a non-zero perfect square rational number. In fact
2
4= (I (@—o,—r+)! [M(a+h—n)1),
7, 8 r
where o, is the number of letters in the rth row of the corresponding
tableau and & is the number of rows. This may well be called Young’s

Theorem (1900). From it he deduced the Clebsch-Gordan series and a
host of other results. It acted as a powerful crystallising influence by
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turning an amorphous function f, depending on several sets of variables,
into the highly organized but limited varieties of forms 7'f. Moreover,
many such forms T'f vanish identically (as in the example above), and
so do many products T, T, They certainly vanish if the partition (g)
precedes (p) in the descending order as illustrated in (1). And, again,
Toy=Ag TE) It is remarkable that the whole of this theory was
elaborated out of one simple basic fact—that it is impossible for a non-
zero function to be simultaneously symmetric and skew symmetric in
two of its variables. This fact is the unit out of which Young
constructed his whole edifice. It was natural for the enquiry to be
suggested, how to find the general solution for one or more substitutional
equations such as were constantly occurring. The whole of Young’s
subsequent work provided a substantial answer to this.

These results were given in the early papers of 1900 and 1902 on
Quantitative Substitutional Analysis, which at once attracted the notice
of Burnside and Frobenius, the two greatest contemporary experts on the
theory of groups. Indeed it had been at the request of Burnside, who
refereed the papers, that they were thrown into a form which emphasized
the underlying group theory. But Young published his work in ignorance
of its close connection with that of Frobenius, who had begun to write
long and deep memoirs (1896-1903) on the finite group, and had already
used matrices and linear transformations to represent any such group.
In particular, Frobenius had set himself the problem of finding, if possible,
numerical coefficients such as should satisfy the equation A4 = (2A4)2;
that is to say, a certain linear combination of all the elements of the
group was to be equal to its own square, with the significant proviso that
elements belonging to any one and the same class should all have the same
coefficient. The fundamental group property 4B = C affords an a priors
reagson for such a possibility. The successful answer to this question led
Frobenius to study sets of coefficients involving group characters, whereby
he opened up a wide field of reséarch which is still far from exhausted.

When Young’s work appeared Frobenius at once saw its close relation
with his own, and explained the connection and adapted the tableau
method to his own work in his “Die charakterischen Einheiten der
symmetrischen Gruppe” (Berliner Sitzungsberichte, 1903, 349). Young
first learnt of these memoirs through Burnside in 1906, but apparently
it was not until after the last war—a period of inevitable mathematical
inactivity for so many—that Young had fully mastered them. He
had certainly started his research again in 1922 when he wrote
his Ternary Perpetuants, and he had already been re-reading Frobenius
for several months when I first met him in the summer of 1925. The
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reading was slow and painstaking for, as he remarked, the German was
involved and he was no linguist. This opportunity to visit Young occurred
when I sought his advice on the problem of extending Pascal’s Theorem
of the hexagram inscribed in a conic to the decagon inscribed in a quadric
surface. Algebraically the hexagon satisfies the condition

(123)(156)(264)(345)— (456)(423)(531)(612) = 0,

where each expression (123) denotes the determinant of the coordinates for
three of the points. The function on the left is skew symmetric in each
pair of the six symbols; and a corresponding sum of terms containing
five four-rowed determinants of ten points in space was known to exist.
E. Study had conjectured that it would consist of four terms, but I had
found it to have five, even in the special case when three of the ten points
were in line. In reply to a query whether the five-term expression could
be rendered quite general, Young, who was at once interested in the
problem, suggested the trial of a certain simple operator, adding that
it would produce either a zero result or else the desired form. Happily
I was able to report to Young that it turned out to be non-zero; but,
alas, the series had sixty times as many terms as Study had conjectured.
This, however, did not daunt Young, who thought in terms of factorial
n as easily as most of us with n. He at once went into the general
theory of the symmetric group of ten letters, and in an amazingly short
time produced a highly elaborate but complete account of the linear
invariants of ten quadrics.

During my visit to Birdbrook he also told me that he was gradually
mastering Frobenius, though the work was very abstract and he always
preferred to embark upon‘a theory by way of a practical problem. Already
he had learnt much from Frobenius and had greatly improved his own
substitutional analysis by inventing standard forms and a new matrical
representation of his 7' operators. These important results were published
two years later (1927) in the third memoir of the series, in which he paid
generous tribute to Frobenius. The original stages of Young’s theory
had suffered from a defect which is also inherent in the symbolic invariant
theory; in it results would certainly be complete, but they might often
be redundant. The discovery of standard forms removed the redundancy
without impairing the completeness, and there were certain numerical
checks, issuing from the theory of Frobenius, which would safeguard the
accuracy of the results. It is indicative of the care and deliberation
with which Young worked that he should have turned aside from this
general theory to the problem of ten quadrics, which he treated as a
challenge to his newer technique, before publishing the main result.

LONIPUOD PUe SWIS | 84} 885 *[5202/2T/ST] uo ArigiTauluo &M ‘AIsBAIUN SMBIPUY 1S JO AISIBAIUN AQ ¥6T '€ 9T-TSAWII/ZTTT 0T/I0p/W0d A8 | 1M Aleiq 1 Bui U0 00SUPeLUpUO |//Sdy WOl papeojumod ‘s ‘Ty6T ‘0S2269YT

[ AeiqipulL

5UB017 SUOWILLOD) BAIEaID) 3|gea ! [dde auy Aq pausenoh afe sap e WO ‘88N JO sajni Joy Aiq 1 aunuQ £a|1Im uo



204 A. Youna.

By standard forms he meant arrangements of the tableau such as the
ten following, for the case of four letters,

a
ab
abc  abd acd ab o e ad
abcd, , , , , , ¢, b, b,
d c b cd’  bd ¢
d d d

Here the alphabetical order is strictly preserved in each row and down
each column. The 4! arrangements of each of the five shapes are now
seen to be reduced to 1, 3, 2, 3, 1 arrangements respectively. Young
found that all others can be expressed in terms of these standard arrange-
ments, so that the series S A7 =1 can be greatly simplified. The
resulting forms are also linearly independent and give exact information
about the number of functions of a particular type. The most general
function of the type 7', f then has exactly g2 arbitrary constants, where
¢ is the number of standard forms of the partition (p). As an illustration
of this remarkable result, which may be called Young’s Standard Theorem,
we may take the above case of four letters. In the list of ten standard
forms the sum of the squares of the subsets 12-432+224-324-12 must
be 4!; and in general 3g®>=mn!. Also, in terms of the original coefficients

Agy, ¢ =n!v/(4g)-
The original 7', is now replaced by a modified form

T(,p)= z“’\nprorslvs

where each of 7 and s is summed from 1 to g, while A, is numerical, and
the P, o, N are definite substitutional expressions arising from the tableau.
This leads to a matrix [A,;] of ¢ rows and columns which completely specifies
the function T, f(x, ¥, ..., 2), derived from any function f of n variables
x, ¥, ..., 2, which may undergo derangement. In fact the sum or product
of two such modified 7' operators obeys the matrix law.

For the general function f(z, ...) the numbers A, in each matrix
are quite arbitrary: so for four variables there are five matrices of
orders 1x1, 3X3, 2X2, 3x3 and 1X1 respectively, thus possessing
altogether 24 elements. Furthermore, any modification of the function
due to symmetry, or to skew symmetry, or to any other such property
of the variables, is at once visible in the matrices—blank spaces
appear. For example, if fla, b, ¢, d) is symmetric in a, b, it is
then capable of at most twelve values, by interchange of the variables
in all possible ways. In this case Young found that half the rows of
the matrices would be blank. Exactly which rows then survive pro-
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vided a very interesting problem, and it was analysed directly from the
standard forms; for the case in point Young proved that this amounted
to rejecting each standard form wherein the symmetrical letters a, b
occur in the same column. A glance shows that this leaves only
1, 2, 1, 1, 0 standard forms; and these tell us the numbers of non-zero
rows, which have, of course, the same respective numbers of elements
in them as before, namely, 1, 3, 2, 3, 1. Thence the full number of
constants is found, by multiplying together respective pairs, to be
14+6+243+40= 12, correctly.

Young took a modest but wholehearted pleasure in these results, and
his enthusiasm was infectious. ‘I am delighted ”’, he wrote some months
later (1926), ‘“ to find someone else really interested in the matter. The
worst of modern mathematics is that it is now so extensive that one finds
there is only about one person in the universe really interested in what
you are”. The tide turned in his favour with the appearance of the
third memoir. Within a few years his method of the tableau and the
standard theorem appeared in Weyl’'s Theory of Groups and Quantum
Mechanics (2nd ed., 1930), as a means of elucidating the properties of
quantum numbers, while the Clebsch-Gordan series, which had been
largely responsible for substitutional analysis, was now found to be of
fundamental importance for the whole of spectroscopy. Also during the
last decade an interest in the theory of group characters has developed
among several of the younger algebraists throughout the country.

During the last fourteen years of his life Young wrote a steady series
of papers elaborating his theory and applying it to the problems of
invariants and their generating functions. In a letter to a friend, he
wrote (1930): ““For the last two years I have been working at a paper
on the application of substitutional analysis to invariants, but though I
have obtained a good many interesting results that I think might be worth
publishing, yet I feel that it is too scrappy as yet to write out. . . . My
ambition is at the moment to present the complete system for a single
cubic in any number of variables. Quite do-able if things turn out as
I hope; but I am a confirmed optimist, and so suffer many defeats .

Something should perhaps be said in detail of this later work. The
fourth memoir was mainly illustrative and technical, but it brought out
the close relation between the matrices [A,] and the group matrices of
Frobenius and Schur (1908). The fifth dealt with the group of rotations
and reflexions of the hyperoctahedron in # dimensions. In the sixth
a proof of Frobenius’ generating function for characters of the symmetric
group was obtained by the method of the tableaux, together with semi-
normal (or triangular) group matrices. The seventh and eighth memoirs,
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together with the communication to the Royal Society (1935), were
devoted to invariant theory; in the eighth was included an illustration
from the invariants of a quaternary cubic, which has an irreducible system
of six forms of degrees 8, 16, 24, 32, 40, 100. They had been discovered
seventy years earlier by Clebsch and Salmon independently, but of this
Young was unaware. The impression left by these examples, and by all
the replies to his friends which he readily supplied on particular problems
of geometry or invariants, was that in his hands the method of the tableau
was irresistible. Known and unknown results alike were treated sum-
marily and afresh; he merely reaffirmed (or corrected where they were
wrong) the old and recorded the new.

The motif which ran through these last few memoirs related to certain
well-known forms called gradients (homogeneous and isobaric polynomials
in the coefficients of the ground forms). Gradients were fundamental in
the nineteenth century progress of invariant theory and in all the work
of Elliott. Their behaviour at bottom depended on additive properties
of sets of the positive integers occurring among their indices and suffixes.
But so, also, were the properties of the forms which the method of the
tableau produced. When the semi-normal matrices were used, Young
found a marked parallelism in these two methods, which he called respec-
tively the method of leading gradients and that of irreductible forms.
Indeed, for the binary case, parallelism became coincidence; and on this
evidence, and his own instinct for algebraic truth, he surmised the following
theorem :

In general the complete set of leading gradients is defined in the same
way as the complete set of irreductible forms.

It is probable that his most recent and unfinished work deals with
this, and in any case it is greatly to be hoped that the pages are complete
enough to make their publication possible.

Young’s work is never easy reading, for it lacks that quality which
helps the reader to grasp the essential point at the right time. The very
closest and constant attention is required to pick out some of the most
fundamental results from a mass of detail. One could almost suppose
that he camouflaged his principal theorems. His work resembles a noon-
day picture of a magnificent sunlit mountain scene rather than the same
in high relief with all the light and shade of early morning or sunset.
The craftsmanship is accurate and logical, and the ideas underlying many
of the proofs are very beautiful. His powers of combining deep insight
into abstract algebraic theory with an uncanny technical manipulative
skill in all the practical applications give him a place unrivalled among
his contemporaries. His humility, and perhaps his isolation and lack of
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teaching experience among undergraduates, prevented him from realising
the importance of clarifying the crucial passage from abstract theory to
detailed practice. It is hard to believe that processes which to the mind
of Young were intuitively clear cannot yet be made part of our common
mathematical heritage; for if they can, then there is a great future for
algebra.

In drawing up this notice I have been very much indebted to Mrs.
Gunnery, Mr. G. H. A. Wilson, Prof. E. T. Whittaker, Mr. J. H. Grace,
Dr. A. C. Aitken and Mr. W. L. Edge for supplying family, academic or
mathematical details.]
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The Council wish to remind members that a substantial portion of
the Society’s Library was destroyed or damaged at University College,
London, in the autumn of 1940. They do not ask for immediate gifts of
books, since there is no suitable place for their deposit, but they hope
that members will do what they can later to replace the books which
have been lost.

ADDENDUM
‘“ON A CHAIN OF THEOREMS DUE TO H. COX *
H. W. RicamMoND.

The theorem of § 3, p. 106. is, of course, the well-known configurationt of 8 points
and 8 planes discovered by Mobius in 1828. Cox may have been unaware that the theorem
was already known, but my omission of Mdbius’ name was careless and regrettable. To
recognise, as Cox did, that this result suffices to prove the whole chain of theorems appears
to me as great an achievement as the ingenious reasoning devised by Clifford for the
special case of lines and circles in a plane.

A correspondent points out that Cox’s argument has been rediscovered by Baker?,
who uses it to prove Clifford’s chain, noticing, but not drawing attention to, its much
wider scope.

* Journal London Math. Soc., 16 (1941), 105-107.
1 See. for example, Baker, Principles of geometry, 1 (1922), 81.
{ Baker, loc. cit., 4 (1925), 29.
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