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 Vor 225 Jahren geboren    BERNARD BOLZANO    (05.10.1781 – 18.12.1848) 
 

BERNARD PLACIDUS JOHANN NEPOMUK BOLZANO wurde als 

viertes von zwölf Kindern in Prag geboren; nur er und ein 

Bruder erreichten das Erwachsenenalter. Sein Vater war 

ein aus Norditalien stammender Kunsthändler (Bolzano ist 

der italienische Name von Bozen), seine Mutter Tochter 

eines Kaufmanns aus Prag. Die Eltern erzogen ihn in tiefer 

Religiosität; er besuchte ein Gymnasium in kirchlicher Trä-

gerschaft, bevor er mit 15 Jahren ein Studium der Philo-

sophie, Mathematik und Physik an der Prager Karls-Univer-

sität aufnahm, mit 19 ein Theologiestudium. Wenige Tage 

nach seiner Promotion über die Frage, was einen korrekten 

mathematischen Beweis ausmacht, wurde er zum Priester geweiht. 

Prag war damals die Hauptstadt des Königreichs Böhmen, Teil des Habsburger Reichs. 

Zwar hatte Kaiser Joseph II seinen Untertanen im Jahr 1781 Religionsfreiheit ge-

währt, die Freiheitsideen der Französischen Revolution forderten jedoch mehr: gene-

relle Gedankenfreiheit und Freiheit für die Nationen. Zur Abwehr der Liberalisierungs-

bestrebungen verfolgte Kaiser Franz I einen konservativen Kurs, der 1804 durch Ein-

richtung eines Lehrstuhls für Religionsphilosophie gestützt werden sollte. BOLZANO 

bewarb sich auf diesen Lehrstuhl, gleichzeitig auch auf einen für Elementarmathema-

tik, gleichermaßen qualifiziert für beide. Schnell merkte die Obrigkeit, dass man ihn 

für den „falschen“ Lehrstuhl berufen hatte: Als Führer der „Böhmischen Aufklärung“ 

verbreitete er in seinen Vorlesungen pazifistisches und sozialistisches Gedankengut. 

1819 wurde er wegen der Verbreitung von „Irrlehren“ seines Amtes enthoben und 

wegen Häresie angeklagt. Unter Hausarrest stehend, beschäftigte er sich weiter mit 

philosophischen und mathematischen Fragen. 1837 erschienen zwei seiner wichtigsten 

Werke: „Von dem besten Staate“ und „Wissenschaftslehre“; aber erst 1840 wurde ihm 

wieder erlaubt, Schriften nicht-theologischen Inhalts in der Königlich Böhmischen 

Gesellschaft der Wissenschaften zu veröffentlichen. 
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Das Werk „Von dem besten Staate“ war eine sozialistische Utopie, in der er sich für 

ein sehr weit gehendes Gleichheitsprinzip aussprach und Eigentum kriti-

sierte, das nicht durch Arbeit erworben war. In seiner „Wissenschafts-

lehre“ setzte er sich mit der Frage des Urteilens und Fürwahrhaltens 

auseinander und beschrieb die Entwicklung der Logik als Wissenschaft 

– von ARISTOTELES bis KANT. Im Gegensatz zu KANT und HEGEL vertrat 

er die Ansicht, dass Zahlen, Ideen und „Sätze-an-sich“ auch unabhängig 

von den Personen existieren, die diese „denken“. 

Die Werke BOLZANOs fanden (u. a. wegen des Publikationsverbots) zu seinen Lebzeiten 

nicht die Anerkennung, die sie verdient gehabt hätten; mit vielen Überlegungen war er 

seiner Zeit weit voraus. So kam es, dass etliche seiner Ideen und Gedankengänge erst 

Jahrzehnte später wiederentdeckt wurden. Bereits in seinen frühen mathematischen 

Schriften bemühte sich BOLZANO um die Präzisierung der Beweise und der darin ent-

haltenen Argumentationen. 1810 erschienen seine „Beyträge zu einer begründeteren 

Darstellung der Mathematik“. 1816 folgte „Der binomische Lehrsatz, als Folgerung aus 

ihm der polynomische, und die Reihen, die zur Berechnung der Logarithmen und Expo-

nentialgrößen dienen, genauer als bisher erwiesen“. BOLZANO kritisierte in diesem Bei-

trag die geniale, aber nicht genügend exakte Vorgehensweise von 

LEONHARD EULER (1707–1783) und JOSEPH LOUIS LAGRANGE (1736–1813). 

Mit dem Binomischen Lehrsatz ist hier die Binomische Reihe gemeint, 

die man nicht nur für natürliche Exponenten, sondern auch für ganze, 

rationale, ja sogar für beliebige reelle Exponenten n definieren kann: 
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BOLZANO schreibt, dass der Unterschied zwischen (1 )nx+  und 
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bene Größe gemacht werden kann, wenn man die Menge der Glieder in 

der Reihe genug nimmt“, und, dass dies nur für | | 1x   sinnvoll ist. 

1817 verfasste er die Abhandlung „Rein analytischer Beweis des Lehr-

satzes, daß zwischen je zwei Werten, die ein entgegengesetztes Resul-

tat gewähren, wenigstens eine reelle Wurzel der Gleichung liege“, heute bezeichnet als  

Nullstellensatz von BOLZANO: Ist eine Funktion f in einem abgeschlossenen Intervall 

[ ; ]a b  stetig (mit ,a b ) und ist außerdem ( ) ( ) 0f a f b  , dann liegt mindestens eine 

Nullstelle von f im Innern des Intervalls. 

Eine wichtige Voraussetzung für den Beweis dieses Nullstellen-Satzes ist eine exakte 

Definition des Begriffs der Stetigkeit; für BOLZANO bedeutet Stetigkeit in einem 

Intervall, „daß wenn x irgend ein solcher Werth [aus dem Intervall] ist, der Unterschied  

( ) ( )f x f x+ −  kleiner als jede gegebene Größe gemacht werden könne, wenn man  so 

klein, als man nur immer will, annehmen kann“ – eine Formulierung, die sich inhaltlich nur 

wenig von der in Mathematik-Vorlesungen heute verwendeten unterscheidet.  

CAUCHYsches Konvergenzkriterium: Eine Folge ( )n na 
 konvergiert genau dann, wenn zu 

jedem 0   ein 0n   existiert, so dass für alle n, m mit 0n n  und 0m n  gilt: 

| |m na a −  . 



AUGUSTIN LOUIS CAUCHY (1789–1857) veröffentlichte diesen mathematischen Satz im 

Jahr 1821; bereits vier Jahre vorher hatte BOLZANO in der o. a. Schrift die gleiche 

notwendige und hinreichende Bedingung für die Konvergenz einer unendlichen Reihe 

(also einer Summenfolge) angegeben, ohne dass sie beachtet worden war: „Wenn eine 

Reihe von Größen 
1 2 3( ), ( ), ( ), ..., ( ), ..., ( )n n rF x F x F x F x F x+

, von der Beschaffenheit ist, daß 

der Unterschied zwischen ihrem n-ten Glied ( )nF x  und jedem späteren ( )n rF x+ , sey die-

ses jenem auch noch so weit entfernt, kleiner als jede vorgegebene Größe verbleibt, 

wenn man n groß genug angenommen hat: so gibt es jedesmahl eine gewisse beständige 

Größe, und zwar eine, der sich die Glieder dieser Reihe immer mehr nähern, und der sie 

so nahe kommen, als man nur will, wenn man die Reihe weit genug fortsetzt.“ 

Er schreibt, für ihn enthalte die Existenz eines Grenzwertes (von ihm „eine gewisse 

beständige Größe“ genannt) „nichts Unmögliches“, da es „bey dieser Voraussetzung mög-

lich wird, diese Größe genau, als man nur immer will, zu bestimmen“. Den Mathematikern 

jener Zeit war nicht bewusst, dass dies ist ein Zirkelschluss ist, da man vor der Defi-

nition des Grenzwerts erst überhaupt einmal definieren muss, was eine reelle Zahl ist. 

Um 1860 formulierte KARL WEIERSTRASS (1815 – 1897) einen Satz, von dem man eben-

falls erst viele Jahre danach bemerkte, dass BOLZANO ihn bereits 1817 notiert hatte: 

Satz von BOLZANO-WEIERSTRASS:  

Jede beschränkte unendliche Zahlenfolge hat mindestens einen Häufungswert. 

Dabei nennt man eine reelle Zahl a Häufungswert einer Folge von reellen Zahlen, wenn 

in jeder noch so kleinen Umgebung von a unendlich viele Folgenglieder liegen. 

Erst 1930 wurde entdeckt, dass es BOLZANO (lange vor 

WEIERSTRASS) gelungen war, eine Funktion zu konstruieren, 

die auf einem Intervall überall stetig, aber an keiner Stelle 

differenzierbar ist. Diese Funktion ist Grenzfunktion einer 

Folge von abschnittsweise definierten linearen Funktionen; 

die Abbildung links zeigt 1 2 3, ,f f f .  

Auch in seiner letzten Schrift, den „Paradoxien des 

Unendlichen“ (1847), findet man Überlegungen, die erst 

viele Jahre später GEORG CANTOR (1845-1918) aufgreift: 

„Ich behaupte nämlich: Zwei Mengen, die beide unendlich 

sind, können in einem solchen Verhältnisse zueinander ste-

hen, daß es einerseits möglich ist, jedes der einen Menge 

gehörige Ding mit einem anderen zu einem Paare zu verbinden mit dem Erfolge, daß kein 

einziges Ding in beiden Mengen ohne Verbindung zu einem Paare bleibt, und auch kein 

einziges in zwei oder mehr Paaren vorkommt; und dabei ist es doch andererseits mög-

lich, daß die eine dieser Mengen die andere als bloßen Theil in sich faßt, so daß die 

Vielheiten, welche sie vorstellen, wenn wir die Dinge derselben alle als gleich, d.h. als 

Einheiten betrachten, die 2x y x→ = Verhältnisse zueinander haben.“  

Beispiel: Die Abbildung 2x y x→ =  ordnet jedem Punkt des Intervalls [0 ;1]  umkehrbar 

eindeutig einen Punkt des Intervalls [0 ; 2]  zu; obwohl die eine Menge echte Teilmenge 

der anderen ist, sind beide Mengen „gleichmächtig“. 
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