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Vor 1750 Jahren wirkte   DIOPHANT VON ALEXANDRIA  (um 250 n. Chr.) 
 

Ob DIOPHANT tatsächlich so ausgesehen hat, wie in der 

Darstellung links zu sehen ist, darf bezweifelt werden; 

denn über diesen berühmten Mathematiker weiß man noch 

nicht einmal, wann er gelebt hat. In einer Schrift über 

Polygonalzahlen zitiert DIOPHANT eine verloren gegangene 

Schrift des HYPSIKLES, ein Mathematiker und Astronom, 

der um 175 v. Chr. lebte; das wäre der früheste Zeitpunkt, 

den man für seine Lebensdaten ansetzen könnte. Anderer-

seits bezieht sich THEON VON ALEXANDRIA, Vater der be-

rühmten Mathematikerin HYPATIA, im Jahr 364 n. Chr. in 

einer Schrift auf die Arithmetica, das Hauptwerk DIO-

PHANTs. Da in einem Papyrus aus dem 3. Jahrhundert die 

gleichen Symbole verwendet werden wie in der Arithmetica, vermutet man heute, dass 

DIOPHANT um 250 n. Chr. in Alexandria gelebt hat.  

Auch wenn man nicht herausgefunden hat, wann er lebte, weiß man aus einem um 500 

entstandenen Epitaph dennoch, wie alt er geworden ist. Die zum Rätsel gehörende linea-

re Gleichung hat die Lösung 84: 

Hier dies Grabmal deckt DIOPHANT. Schauet das Wunder! Durch des Entschlafenen Kunst 

lehret sein Alter der Stein. Knabe zu sein gewährte ihm Gott ein Sechstel des Lebens. 

Noch ein Zwölftel dazu, sprosst' auf der Wange der Bart. Dazu ein Siebentel noch, da 

schloss er das Bündnis der Ehe; nach fünf Jahren entsprang aus der Verbindung ein Sohn. 

Wehe, das Kind, das vielgeliebte, die Hälfte der Jahre hatt' es des Vaters erreicht, als es 

dem Schicksal erlag. Darauf vier Jahre hindurch durch der Größen Betrachtung den 

Kummer von sich scheuchend, auch er kam an das irdische Ziel.  

Alexandria spielt in den ersten Jahrhunderten unserer Zeitrechnung noch eine beson-

dere Rolle als Wissenschaftszentrum der antiken Welt mit einer großen Zahl von Buch-

rollen (10.000?, 100.000?). Im Jahr 389 jedoch veranlasst der christliche Kaiser 

THEODOSIUS die Vernichtung aller “heidnischen” Schriften; die Restbestände werden 

im Jahr 642 auf Befehl des Kalifen UMAR verbrannt, da sie „überflüssig“ sind. Es ist 

daher nicht verwunderlich, dass von den Schriften DIOPHANTs nur zwei erhalten sind: 

die Arithmetica und die über Polygonalzahlen. 
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Im 9. Jahrhundert werden die noch erhaltenen 

Schriften der Griechen in Bagdad im Haus der 

Weisheit zusammengetragen und ins Arabische 

übersetzt, darunter vermutlich auch die ersten 

sieben der insgesamt 13 Bücher (Kapitel) von DIO-

PHANTs Arithmetica. Aber auch diese Übersetzun-

gen gehen verloren; erst 1971 findet ein Wissenschaftler in Meshed (Iran) eine Kopie 

der Bücher IV bis VII, die dort unter dem Namen des Übersetzers archiviert waren, da 

bis dahin keiner der Bibliothekare den in kalligraphischer Schrift verfassten Namen 

des wahren Autors entschlüsseln konnte.  

Unabhängig von den Anstrengungen im islamischen Kulturkreis beginnen byzantinische 

Gelehrte im 11. Jahrhundert damit, sich mit den Schriften ihrer griechischen Vor-

fahren zu beschäftigen. Die Aufgaben in DIOPHANTs Arithmetica bereiten ihnen jedoch 

erhebliche Probleme; einer von ihnen schreibt einen Fluch auf DIOPHANT auf den Rand 

des Kapitels, weil er einen Lösungsansatz nicht nachvollziehen konnte. 

1463 entdeckt JOHANNES MÜLLER aus Königsberg, bekannt unter dem Namen 

REGIOMONTANUS (lateinische Übersetzung von Königsberger), in Venedig byzantinische 

Manuskripte von sechs Büchern der Arithmetica – es handelt sich um die Bücher I bis 

III sowie um drei Bücher, die man heute als Kapitel VIII, IX, X bezeichnet (bis 1971 

werden sie irrtümlich mit IV bis VI nummeriert). Von diesem Zeitpunkt an beschäftigen 

sich zahlreiche europäische Mathematiker mit dieser Sammlung von 189 Aufgaben. 

1575 erscheint eine erste gedruckte Übersetzung durch XYLANDER in lateinischer 

Sprache. 1621 wird in Paris eine Übersetzung durch BACHET DE MÉZIRIAC veröffentlicht, 

auf deren Rand PIERRE DE FERMAT den berühmten Satz notiert: Cuius rei demonstra-

tionem mirabilem sane detexi. Hanc marginis exiguitas non 

caperet. (Ich habe einen wahrhaft wunderbaren Beweis 

gefunden, aber dieser Rand ist zu schmal, ihn zu fassen.) – 

Im Zusammenhang mit dem Problem, eine gegebene Qua-

dratzahl in zwei Quadratzahlen zu zerlegen, stellt er fest, 

dass das entsprechende Problem für Kubikzahlen nicht lös-

bar ist und auch nicht für höhere natürliche Exponenten: Die 

Gleichung n n nx y z+ =  mit , ,x y z  hat keine Lösung für 2n 

(FERMAT’sche Vermutung). 

FERMAT ist fasziniert von der Fülle der originellen Aufgaben-

stellungen und trickreichen Lösungen in DIOPHANTs Werk, und er 

setzt sich mit den Problemen und der Frage der Verallgemeine-

rung einzelner Probleme auseinander. Nach seinem Tod werden 

FERMATs gesammelte Anmer-

kungen zur BACHET’schen 

Übersetzung veröffentlicht 

(siehe Abb. links), die dann wiederum andere 

Mathematiker, wie EULER und LAGRANGE, veranlas-

sen, sich noch intensiver mit Fragestellungen zu 

beschäftigen, die sich aus den Problemen der 

Arithmetica ergeben.  



Im ersten Band seiner Arithmetica definiert DIOPHANT Grundbegriffe und Buch-

stabensymbole, die er im Weiteren verwendet: Das Zeichen ς, der letzte Buchstabe 

des Wortes ἀριθμός (arithmos = Zahl), wird als Platzhalter für die zu bestimmende 

unbekannte Zahl verwendet; auch führt er beson-

dere Zeichen für deren Potenzen bis zum Grad 6 

ein, außerdem für deren Kehrwerte. Terme werden 

als Abfolge von Zahlsymbolen notiert (vgl. rechts), 

zwischen denen Zeichen für die Addition bzw. Sub-

traktion stehen; durch die Buchstaben ἴσ (ἴσος; isos 

= gleich) werden sie zu Gleichungen ergänzt. 

Im Unterschied zu EUKLID löst DIOPHANT Gleichungen nicht durch geometrische Über-

legungen, sondern durch Umformen und Substituieren. Daher hat die Wiederent-

deckung der Arithmetica die Entwicklung der Algebra maßgeblich beeinflusst.  

Während EUKLID Brüche nur im Sinne von Verhältniszahlen verwendet, rechnet DIO-

PHANT mit ihnen wie mit natürlichen Zahlen. Lösungen der von ihm betrachteten Glei-

chungen können beliebige positive rationale Zahlen sein (im Unterschied zum heute 

verwendeten Fachbegriff „DIOPHANTische Gleichungen“, deren Lösungen ganzzahlig sein 

müssen).  

Im Buch I beschäftigt sich DIOPHANT mit linearen und quadratischen Gleichungen sowie 

mit linearen Gleichungssystemen, die er durch geschickte Einführung von neuen Variab-

len löst; die Methoden sind 2000 Jahre zuvor in Babylonien entwickelt worden und 

gelten zur Zeit DIOPHANTs offensichtlich als Routineverfahren.  

Die im Folgenden aus verschiedenen Büchern ausgewählten Beispiele (hier in der heute 

üblichen Schreibweise notiert) sollen einen Einblick in die virtuosen Methoden geben, 

mit denen DIOPHANT die von ihm zusammengestellten Probleme gelöst hat. In den meis-

ten Fällen gibt er außer der beispielgebundenen Lösung auch notwendige Bedingungen 

für die vorgegebenen Zahlen an. 

•  Problem 1 aus Buch I: Eine gegebene Zahl in zwei Zahlen zerlegen, wenn deren Diffe-

renz gegeben ist. 

Am Beispiel der Ausgangszahl 100 und Differenz 40 setzt DIOPHANT wie folgt an: Ist  

x die kleinere Zahl, dann ist 40x +  die größere Zahl und die Summe der beiden Zahlen 

ist gleich 2 40x + ; daher ist die kleinere Zahl x gleich 30 und die größere gleich 70. 

•  Problem 16 aus Buch I: Drei Zahlen zu finden, sodass die Summen von je zwei der 

Zahlen jeweils gleich vorgegebenen Zahlen sind. 

Wenn z. B. für die vorgegebenen Summen gilt: 20x y+ = , 30y z+ =  und 40z x+ = , dann 

setzt DIOPHANT s x y z= + + , also: 30; 40; 20x s y s z s= − = − = − . Für die Summe x y z+ +  

gilt dann: 3 90s s= − , also 45s = , daher 15; 5; 25x y z= = = .   

•  Problem 28 aus Buch I: Zwei Zahlen finden, deren Summe und deren Summe der 

Quadrate der Zahlen gegeben sind.   

Beispiel: Summe der Zahlen: 20, Summe der Quadratzahlen: 208. Ansatz: Bezeichne die 

Differenz der Zahlen mit 2x; dann ist die eine Zahl 10 x+ , die andere 10 x−  und die 

Summe der Quadrate ist 2 2 2(10 ) (10 ) 208 200 2 208x x x+ + − =  + = , 2 4x = also 2 4x =  und 

2x = . Die gesuchten Zahlen sind also 8 und 12.  

 



Problem 8 aus Buch II: Eine gegebene Quadratzahl in zwei Quadrate zu zerlegen. 

(FERMAT notiert seine berühmte Rand-Bemerkung neben der Lösung dieses Problems.) 

Beispiel: Wenn 16 die gegebene Quadratzahl ist und 2x  eine der beiden gesuchten 

Quadratzahlen, dann muss 216 x−  ebenfalls eine Quadratzahl sein. 

Ansatz: Setze 2 216 (2 4)x x− = − , dann ist 25 16x x= , also 16
5

x = . Die Zahl 16 lässt sich also 

in die Quadratzahlen 216 256
5 25

( ) =  und 256 144
25 25

16 − =  zerlegen. Das Verfahren gelingt für 

jeden Ansatz mit einer natürlichen Zahl m, also: 2 2( 4) 16mx x− = − , wobei die 4 in der 

Klammer die Wurzel aus der gegebenen Quadratzahl 16 ist. 

•  Problem 9 aus Buch II: Eine gegebene Zahl, die Summe zweier Quadrate ist, in zwei 

andere Quadrate zu zerlegen. 

Das Lösungsverfahren erläutert DIOPHANT am Beispiel der Zahl 13: 2 22 3 13+ = . 

Ansatz: 2 ; 2 3x t y t= + = − ; dann ist  
2 2 2 2 24 2 4 12 9 5 8 13 13x y t t t t t t+ = + + + − + = − + = , also (5 8) 0t t − = , d. h. 8

5
t = . 

Tatsächlich ist 18 1
5 5

;x y= =  eine weitere Zerlegung der Zahl 13 in zwei Quadrate: 

2 218 324 3251 1
5 5 25 25 25

( ) ( ) 13+ = + = =  . Das Verfahren gelingt nicht nur mit dem Ansatz 2x t= + ,

2 3y t= − , sondern für beliebiges ,a k  mit 2 ; 3x at y kt= + = − . 

•  Problem 11 aus Buch II: Zu zwei gegebenen Zahlen ein und dieselbe Zahl addieren, so 

dass jede ein Quadrat wird. 

Beispiel: Die Zahlen sollen 2 und 3 sein, d. h. 2 t+  und 3 t+  müssen dann Quadratzahlen 

sein. Zur Lösung verwendet DIOPHANT die Eigenschaft, dass für beliebige Zahlen ,x y  

gilt: 2 2( ) ( )x y x y x y+  − = −  und 1 1
2 2

[ ) ( )]; [ ) ( )]x x y x y y x y x y=  + + − =  + − − . 

Die Differenz 2 2 (3 ) (2 ) 1x y t t− = + − + =  lässt sich z. B. als Produkt von 4x y+ =  4x y+ =  

und 1
4

x y− =  darstellen, also ist 17 151 1 1 1
2 4 8 2 4 8

[4 ] ; [4 ]x y=  + = =  − = , d. h. 2 2289 225
64 64

;x y= = . 

Aus 289 225
64 64

3 ; 2t t+ = + =  folgt jeweils 97
64

t = .  

•  Problem 20 aus Buch II: Zwei Zahlen so zu finden, dass das Quadrat einer jeden, 

vermehrt um die andere, jeweils ein Quadrat ergibt. 

Sind x, y die beiden Zahlen, dann soll also gelten: 2x y+  und 2y x+  sind Quadratzahlen. 

Ansatz: ; 2 1x t y t= = + ; dann ist 2 2 22 1 ( 1)x y t t t+ = + + = +  offensichtlich eine Quadrat-

zahl.  

Damit 2 24 5 1y x t t+ = + +  das Quadrat einer Zahl ist, setzt DIOPHANT weiter an:  
2 2 24 5 1 (2 2) 4 8 4t t t t t+ + = − = − + , also 13 3t =  oder 3

13
t = .  

Zwei Zahlen, welche die o. a. Bedingung erfüllen, sind demnach 3 19
13 13

;x y= = : 
2 23 19 9 19 9 247 256 16

13 13 169 13 169 169 169 13
( ) ( )+ = + = + = =  ; 

2 23 19 3 361 39 361 400 20
13 13 13 169 169 169 169 13

( ) ( )+ = + = + = =   

Das Verfahren gelingt auch hier mit anderen Ansätzen, bei denen schließlich die Qua-

drate der Variablen wegfallen. 

•  Problem 10 aus Buch III: Drei Zahlen so zu finden, dass das Produkt aus je zwei von 

ihnen, vermehrt um 12, jedesmal eine Quadratzahl ergibt. 

DIOPHANT macht den Leser darauf aufmerksam, dass man von der Zahl 12 ausgehen 

sollte, die sich auf unterschiedliche Weise als Produkt darstellen lässt:  
2 212 2 6 (4 2) (4 2) 4 2=  = −  + = − , also 2 22 12 4+ = . 2 27 1

2 2
12 3 4 ( ) ( )=  = − ., also 2 271

2 2
( ) 12 ( )+ = .    



Startet man mit der Zahl 4t, dann ist die zweite Zahl 1
t
, und deren Produkt, vermehrt 

um 12, ist gleich der Quadratzahl 16. Als dritte Zahl muss man 1
4
t  wählen, dann ist das 

Produkt mit 4t gleich 2t  und das Produkt mit 1
t

 gleich 1
4
. Für welche Zahlen 2 12t +  eine 

Quadratzahl ist, findet man mit dem Ansatz 3t +  heraus: Die Gleichung 2 212 ( 3)t t+ = +  

hat die Lösung 1
2

t = . Drei geeignete Zahlen sind demnach 1
8

2, 2, . 

•  Problem 1 aus Buch VIII: Eine Zahl so in zwei Kubikzahlen zerlegen, dass die Summe 

der dritten Wurzeln aus den Kubikzahlen gleich einer vorgegebenen Zahl ist. 

Beispiel: Vorgegeben sind 370 und 10; dann sind 343 und 27 die beiden Kubikzahlen.   

•  Problem 18 aus Buch VIII: Zwei Zahlen sind so zu finden, dass die dritte Potenz der 

ersten, vermehrt um die zweite, eine Kubikzahl ergibt und das Quadrat der zweiten, 

vermehrt um die erste, eine Quadratzahl. 

Lösung: Die Zahlen sind 1
16

 und 262143
4096

. 

•  Problem 26 aus Buch VIII: Zwei Zahlen so zu finden, dass ihr Produkt, vermehrt um 

die beiden Zahlen, eine Kubikzahl ergibt. 

Lösung: Die Zahlen sind 112
13  und 27

169 . 

•  Problem 38 aus Buch VIII: Drei Zahlen so zu finden, dass deren Summe multipliziert 

mit der ersten Zahl eine Dreieckszahl ergibt, multipliziert mit der zweiten Zahl eine 

Quadratzahl und mit der dritten Zahl eine Kubikzahl. 

Lösung: Die Zahlen sind 153 6400 8
81 81 81

, , . 

•  Problem 15 aus Buch IX: Drei Zahlen so zu finden, dass die dritte Potenz von deren 

Summe, vermehrt um jede der Zahlen, eine Kubikzahl ergibt. 

Lösung: Die Zahlen sind 1538 18577
3375 3375

, ,7 . 

•  Problem 23 aus Buch IX: Drei Quadratzahlen so zu finden, dass jede, vermindert um 

das Produkt der drei Zahlen, eine Quadratzahl ergibt. 

Lösung: Die Zahlen sind 100 676144
169 169 625

, , . 

•  Problem 2 aus Buch X: Ein rechtwinkliges Dreieck so zu finden, dass die Hypotenuse, 

addiert zu den anderen beiden Seiten, jeweils eine Kubikzahl ergibt. 

Lösung: Die Seitenlängen sind 135, 352 und 377 (oder Vielfache). 

•  Problem 18 aus Buch X: Ein rechtwinkliges Dreieck so zu finden, dass die Hypotenuse, 

addiert zur Fläche, eine Kubikzahl ergibt, und der Umfang eine Quadratzahl ist. 

Lösung: Die Seitenlängen sind 1257728, 24121185 und 24153953 (oder Vielfache). 

Wer sich mit DIOPHANTs Arithmetica beschäftigt, spürt die Faszination, die von den 

Aufgaben ausgeht, und kann nachvollziehen, warum sich so viele berühmte Mathema-

tiker mit ihnen auseinandergesetzt haben. Der deutsche Mathematiker CARL GUSTAV 

JACOB JACOBI (1804–1851) fasste die Bedeutung DIOPHANTs in die Worte: Immer aber 

wird DIOPHANTOS der Ruhm bleiben, zu den tiefer liegenden Eigenschaften und Bezie-

hungen der Zahlen, welche durch die schönen Forschungen der neueren Mathematik 

erschlossen wurden, den ersten Anstoß gegeben zu haben. 
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