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Vor 400 Jahren lebte  Frénicle de Bessy (1604 - 1674)

Er korrespondierte mit PIERRE DE FERMAT, RENE DESCARTES,
Frénicle de Bessy (1604 -1674) 2 CHRISTIAAN HUYGENS, MARIN MERSENNE und JOHN WALLIS;
- auch gehorte er im Jahr 1666 zu den Griindungsmitgliedern
der Académie Royale des Sciences. |rrosigeresanisrsnsy
Trotz der Kontakte zu zeitgendssi- ' { A
schen Mathematikern weil man nur
sehr wenig liber BERNARD FRENICLE DE  Fufiy 35 @
BEssy. Ob er tatsdchlich 1604 gebo- i-i----esaiiiiiiil
ren wurde (oder erst 1605), ist nicht | SN
Mathematica bekannt; auch iiber seinen Todestag | G

liegen keine Informationen vor.
FRENICLE DE BEssy stammte aus einem alten Adelsgeschlecht
Frankreichs; sein Vater war der Conseiller a la Cour des Monnaies
BERNARD DE BEssy, also am obersten Gericht fiir Fragen des Miinzwesens und der‘
Staatsfinanzen tdtig, verantwortlich auch fiir die Verwaltung und Produktion der 30
Miinzprdgeanstalten Frankreichs - ein zeitaufwendiges Amt, das sein Sohn FRENICLE
nach erfolgreich absolviertem Jurastudium erbte.

Seine Freizeit widmete FRENICLE vor allem dem Studium der Eigenschaften natiirlicher
Zahlen. Aus dem Nachlass der Briefe MERSENNES weill man, dass er sich auch mit physi-
kalischen Problemen beschdftigte, unter anderem mit GALILEO GALILEIs Dialog iiber die
zwei wichtigsten Weltsysteme.

Wiederholt l6ste er - in Rekordzeit - numerische Probleme, die FERMAT als Heraus-
forderungen seinen Briefpartnern gestellt hatte; eine seiner Losungen veroffentlichte
er (solutio, 1657). Im Jahr 1693, also viele Jahre nach FRENICLES Tod, gab PHILIPPE DE
LA HIRE im Auftrag der Académie vier seiner Abhandlungen (Divers ouvrages de Mathé-
matiques et de Physique), auf die wir weiter unten eingehen.

Heute erinnert noch ein Begriff aus dem Bereich der Unterhaltungs-
mathematik an den franzosischen Rechenkiinstler: Unter den acht mog-
lichen Formen eines magischen 3x3-Quadrates wird die rechts stehen- [ 9 | 5| 1
de Anordnung als FRENICLE-Standard-Form bezeichnet (die ibrigen
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Formen erhdlt man durch Drehung und Spiegelung aus dieser). 41318
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Zu den von FERMAT gestellten Problemen gehorte die Aufgabe, Kubikzahlen zu finden,
fiir die die Summe aller Teiler (einschl. der Zahl selbst) eine Quadratzahl ist, sowie die
Aufgabe, Quadratzahlen zu finden, fiir die die Summe aller Teiler eine Kubikzahl ist.
Beispiel fiir das erste Problem: Summe aller Teiler der Zahl 73 = 343 ist 7° + 71 + 72 + 73 = 400 = 20°.
FRENICLE ergdnzte die Liste der Probleme, beispielsweise:
e Finde eine natirliche Zahl n, bei der die Summe der echten Teiler 5-mal so grol ist wie die Zahl
selbst und auch die Summe der echten Teiler des 5-Fachen dieser Zahl 25-mal so groR ist wie 5n.
e Finde eine natlrliche Zahl n, bei der die Summe der echten Teiler 7-mal so groR ist wie die Zahl
selbst und auch die Summe der echten Teiler des 7-Fachen dieser Zahl 49-mal so groR ist wie 7n.
e Finde zwei aufeinanderfolgende Kubikzahlen, deren Differenz selbst eine Kubikzahl ist.
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AuBerdem stellte er einige Aufgaben, die mit Sechseckzahlen zusam-
menhdngen. Und dass 1729 die kleinste Kubikzahl ist, die sich auf zwei |
Arten als Summe von zwei Kubikzahlen darstellen ldsst, findet man :
bereits bei FRENICLE - und nicht erst in SRINIVASA RAMANUJANS
taxicab problem.
Die erste der posthum veréffentlichten Abhandlungen FRENICLES trdgt den Titel
Méthode pour trouver la Solution des Probléemes par Exclusion - in dieser 85-seitigen
.Methode durch Ausschliefung" ging es ihm insbesondere darum zu erldutern, wie man
- ausgehend von einfachen Beispielen - durch systematisches Erfassen von Gemeinsam-
keiten auf allgemeine GesetzmdBigkeiten schlieBen kann. Die meisten der dabei be-
trachteten Beispiele beschdftigen sich mit ganzzahligen rechtwinkligen Dreiecken.

Oe6i-L4881

Seit EUKLID war bekannt, wie primitive pythagoreische Zahlentripel erzeugt werden
konnen: Sind a, b zwei beliebige zueinander teilerfremde Zahlen, dann erfiillt das Tripel
(a® —b’;2ab;a’ +b*) die gewiinschte Bedingung. Dies wendet FRENICLE an ...

e Gesucht sind zwei Quadratzahlen, deren Differenz eine bestimmte Quadratzahl ergibt.
Beispiel (gerade Quadratzahl): 144 = 122, teile die Zahl durch 4 und zerlege das Ergebnis in
Faktoren:36 =1-36=2-18=3-12=4"-9. Bilde dann fiir die Summe und die Differenz dieser
Faktoren jeweils die Differenz der Quadrate: Aus den (erzeugenden) Faktoren 1, 36 ergeben sich
die Zahlen 35, 37, und weiter: 372 — 352 = 144. Aus 2, 18 ergeben sich die Zahlen 16, 20, und
weiter: 202 — 162 = 144. Aus 3, 12 ergeben sich die Zahlen 9, 15, und weiter: 152 — 92 = 144. Aus 4,
9 ergeben sich die Zahlen 5, 13, und weiter: 132 — 52 = 144,
Beispiel (ungerade Quadratzahl): 81 =92=1-81 =3 - 27. Aus den Faktoren 1, 81 erhélt man die
Zahlen 80, 82. Wenn man diese halbiert, findet man: 412 — 402 = 81 ; analog ergeben sich aus den
Faktoren 3, 27 die Zahlen 24, 30, diese halbiert, ergibt: 152 — 122 = 81.
e Gesucht sind ganzzahlige rechtwinklige Dreiecke, deren Kathetenldangen sich um einen
bestimmten Betrag unterscheiden.
Beispiel: Die pythagoreischen Zahlentripel (5; 12; 13) und (15; 8; 17) geh6ren zu den ganzzahligen
rechtwinkligen Dreiecken, deren Kathetenldngen sich um 7 unterscheiden. Weitere Beispiele
lassen sich finden, indem man geeignete Zahlenfolgen fiir die erzeugenden Faktoren a, b findet:

a b*-a? | 2ab | a*+b? a b*-a* | 2ab | a*+b*
2 5 12 13 1 15 8 17
3 55 48 73 4 65 72 97
8 | 19| 297 | 304 | 425 9 | 22| 403 | 396 | 565
19 | 46 22 | 53

Einige seiner Fragestellungen fiihren zu erstaunlich groBen Zahlen ...




e Gesucht ist ein rechtwinkliges Dreieck, bei dem die Lange der Hypotenuse sowie die Summe der
Kathetenlangen eine Quadratzahl ist. (L6sung: Kathetenlangen: 1.061.652.293.520,
4.565.486.027.761, Hypotenusenlange: 4.687.298.610.289)

e Gesucht ist ein rechtwinkliges Dreieck, bei dem die Lange der Hypotenuse eine Quadratzahl ist
und der Langenunterschied der kiirzeren Kathete zu den beiden anderen Seiten ebenfalls eine
Quadratzahl ist. (Ldsung: Katheten: 473.304, 2.276.953, Hypotenuse: 2.325.625)

In einer weiteren nachgelassenen Schrift, dem 79 Seiten umfassenden Traité des
Triangles rectangles en Nombres (Abhandlung liber ganzzahlige rechtwinklige Drei-
ecke) geht FRENICLE zundchst systematisch auf Eigenschaften von Quadratzahlen ein:

e (Quadratzahlen konnen nicht auf 2, 3, 7 oder 8 enden. Ist die letzte Ziffer 1, 4 oder 9, dann muss
die vorletzte Ziffer gerade sein. Ist die letzte Ziffer eine 6, dann muss die vorletzte Ziffer
ungerade sein.

e (Quadratzahlen, die nicht durch 3 teilbar sind, lassen bei Division durch 3 den Rest 1.

e Ungerade Quadratzahlen lassen bei Division durch 8 den Rest 1; ungerade Quadratzahlen, die
nicht durch 3 teilbar sind, lassen bei Division durch 24 den Rest 1.

e (Quadratzahlen, die nicht durch 5 teilbar sind, lassen bei der Division durch 5 die Reste 1 oder -1.

Weiter entdeckt FRENICLE eine bemerkenswerte Eigenschaft:

e Sind X, y die Katheten und z die Hypotenuse eines rechtwinkligen Dreiecks, dann bilden das Qua-
drat der Differenz der beiden Kathetenlangen, das Quadrat der Hypotenusenldange und das Qua-
drat der Summe der beiden Kathetenlangen eine arithmetische Folge: (y — X)2, X2 + y2, (X + y)2.

Beispiel: x =5,y =12: (y—x)?=49; x2 +y2=169; (X +y)?=289

Bei den pythagoreischen Zahlentripeln spielen Primzahlen, die nach Division durch 4 den
Rest 1 lassen (5, 13, 17, 29, 37, ...), eine besondere Rolle. FRENICLE stellt fest:

e Diese Primzahlen sind eindeutig als Summe von zwei Quadratzahlen darstellbar (5 = 12+22, 13 =
22432 17 = 12442, 29 = 22452, 37 = 12462, ...); zugehorige primitive Tripel: (22-1%;2 - 1 - 2; 12+2?)
=(3;4;5),(32-22%,2-2-3;22+3%) = (5;12; 13), (4212, 2 - 1 - 4; 1>+4?) = (15; 8; 17), ...

e Produkte von zwei verschiedenen Primzahlen dieses Typs sind auf zwei Arten darstellbar
(65=5-13=12+82=42+72,85=5-17 =22492=62+7%, 13 - 17 =221 = 52+14>=10*+112, ...);
zugehorige primitive Tripel: (63; 16; 65), (33; 56; 65) bzw. (77; 36; 85), (13; 84; 85) bzw.

(171; 140; 221), (21; 220; 221), ...

e Produkte von drei verschiedenen Primzahlen sind auf vier Arten darstellbar,
z.B.1105=5-13 - 17 =4?+33%2 = 924322 = 1224312 = 232+24?), zugehorige Tripel:
(264; 1073; 1105), (576; 943; 1105), (744, 817; 1105), (47; 1104; 1105), ...

e Produkte von vier verschiedenen Primzahlen des Typs sind auf acht Arten darstellbar, Produkte
von fiinf verschiedenen Primzahlen des Typs sind auf sechzehn Arten darstellbar usw.

e Zu diesen primitiven pythagoreischen Zahlentripeln findet man im Falle des Produkts von zwei
verschiedenen Primzahlen zwei weitere Vielfachtripel, z. B. 5 - (5; 12; 13) = (25; 60; 65) und
13- (3; 4; 5) = (39; 52; 65), im Falle des Produkts von drei verschiedenen Primzahlen gibt es
neun Vielfachtripel, von vier Primzahlen 32 Vielfachtripel usw.

e Insgesamt gibt es flir Produkte aus 2 verschiedenen Primzahlen dieses Typs 2+2 = 4 Tripel, aus
3 verschiedenen Primzahlen 4+9 = 13 Tripel, aus 4 verschiedenen Primzahlen 8+32 = 40 Tripel,
aus 5 Primzahlen 16+105 = 121 Tripel, aus 6 verschiedenen Primzahlen 32+332 = 364 Tripel, ...

Der Rechenkiinstler FRENICLE scheut sich nicht, im Falle von 4 Primzahlen fiir ein Bei-
spiel alle vierzig Tripel zu bestimmen.

Weiter untersucht er die Anzahl der primitiven pythagoreischen Tripel fiir Potenzen
sowie fiir Produkte von Potenzen von Primzahlen a,b e{5,13,17, 29,...}:




Potenz |a |a?|a®| a*| a® | a® Potenz |a-b |a-b2|a-b3|a-b*|a-b°| a- bt

Anzahl 1| 2 313 Anzahl 2 3 4 5 6 7

Potenz | a?+b | a?-b? | a®-b3 | a?-b* | a?  b° | a?- b® Potenz |a®-b | a®-b% | a® - b3 | a®> - b*|a®-b° | a®-b°®
Anzahl 3 4 6 7 9 10 Anzahl 4 6 8 10 12 14

Weitere Satze beschdftigen sich mit dem Zusammenhang zwischen den erzeugenden
Zahlen und den Vielfachen der pythagoreischen Tripel:

e Vervielfacht man die erzeugenden Zahlen eines primitiven pythagoreischen Tripels mit einer
natilirlichen Zahl, dann vervielfachen sich die Zahlen des Tripels mit dem Quadrat dieser Zahl
und umgekehrt. Auch wenn man die Zahlen eines primitiven pythagoreischen Tripels mit dem
Doppelten einer Quadratzahl vervielfacht, existiert ein Paar erzeugender Zahlen; bei anderen
Vielfachen eines primitiven pythagoreischen Tripels existiert ein solches Paar allerdings nicht.
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FRENICLE beweist u. a. auch noch die folgenden Eigenschaften:

e Die Differenz der Seitenlangen der Hypotenuse und der Kathete mit ungerader Seitenldange in
einem ganzzahligen primitiven rechtwinkligen Dreieck ist das Doppelte einer Quadratzahl, die
Summe und die Differenz der Seitenlangen der Hypotenuse und der Kathete mit gerader

Seitenlange ist eine Quadratzahl.

Die Lange der Hypotenuse eines ganzzahligen primitiven rechtwinkligen Dreiecks ist nicht durch

3 teilbar. Die Seitenlange einer der Katheten eines ganzzahligen rechtwinkligen Dreiecks ist
durch 3 teilbar. Die Seitenlange einer der Katheten eines rechtwinkligen Dreiecks ist durch 4
teilbar. Daher kann es kein ganzzahliges rechtwinkliges Dreieck geben, bei dem die Seiten-
langen der beiden Katheten Primzahlen sind.

Differenz der Seitenldngen der Katheten bei Division durch 8 den Rest -1 oder +1.

schem Flacheninhalt.

Eine der Seitenldangen eines ganzzahligen rechtwinkligen Dreiecks ist durch 5 teilbar.
In einem ganzzahligen primitiven rechtwinkligen Dreieck lasst sowohl die Summe als auch die

Der Flacheninhalt eines ganzzahligen rechtwinkligen Dreiecks ist stets durch 6 teilbar.
Es gibt kein ganzzahliges rechtwinkliges Dreieck mit quadratischem oder mit doppelt-quadrati-

SchlieBlich gibt FRENICLE eine allgemeine Methode fiir das Problem an, zu einem ganz-
zahligen rechtwinkligen Dreieck ein rechtwinkliges Dreieck mit gleichem Flacheninhalt

zu finden. Er geht dabei so vor, wie in

der Tabelle rechts ablesbar. Das Zah-

lenbeispiel in der Tabelle darunter

fihrt von einem rechtwinkligen Drei-

eck mit den Kathetenldngen 3 und 4 zu

einem Dreieck mit den Kathetenldngen

% und £ — beide mit Flacheninhalt 6.

Mithilfe dieses allgemeinen Ansatzes

Kathete 1 | Kathete 2 | Hypotenuse | Flache
Ausgangsdreieck A B C ¥ AB
Hilfsdreieck 1 D:=B*-A? 2AB C2=A%+B? ABD «.2D
Hilfsdreieck 2 D? 4ABC? E:=AZB2+ C*| 2ABC2D? | < -2C?D
Losung D/2C 2ABC/D E/2CD % AB
Kathete 1 | Kathete 2 | Hypotenuse | Fldche
Ausgangsdreieck 3 4 5 6
Hilfsdreieck 1 7 24 25 84 .27
Hilfsdreieck 2 49 1200 1201 4900 | < 2527
Lésung 7/10 120/7 1201/70 6

entdeckt er beispielsweise: (20; 21; 29) und (12; 35; 37) haben beide den ganzzahligen
Fldacheninhalt 210; die Dreiecke (48; 55; 73) und (22; 120; 122) den Fldcheninhalt 1320,
die Dreiecke (27; 364; 365) und (39; 252; 255) den Fldcheninhalt 4914.




FRENICLE fand sogar Beispiele, bei denen drei ganzzahlige Dreiecke gleichen Fldchen-
inhalt haben, u. a. (56; 390; 394), (105; 208; 233) und (120; 182; 218) mit Fldacheninhalt 10920.
Im einem Beispiel mit sechs gleich groBen ganzzahligen rechtwinkligen Dreiecken ergibt
sich fiir den Flacheninhalt eine Zahl mit 32 Stellen.

In einer weiteren Schrift, der 39-seitigen Abhandlung Abregé des Combinaisons, er-
ldutert FRENICLE anhand zahlreicher Beispiele die wichtigsten Regeln der Kombinatorik;
er geht dabei nicht lber die bis dahin bekannten Fragestellungen hinaus.

Die letzte der vier Schriften trdgt den Titel Des Quarréz ou Tables Magique und um-
fasst 146 Seiten. Ohne Hinweise auf eventuell benutzte Quellen beschreibt FRENICLE
verschiedene Verfahren, mit deren Hilfe magische Quadrate erzeugt werden kannen.
Nach der Erlduterung der Grundregeln stellt er zundchst eine Methode vor, die bei
magischen Quadraten mit ungerader Ordnung (Seitenldnge) anwendbar ist: Die auBer-
halb des eingerahmten Quadrats stehenden Zahlen werden in die jeweils waagerecht
bzw. senkrecht am weitesten entfernten Zellen verschoben (vgl. die folgenden Bei-
spiele). Durch symmetrisches Vertauschen von Zeilen und Spalten kénnen hieraus wei-
tere Varianten entwickelt werden. B

6 2
1 1 7 3 1|24 7 |20( 3
4 2 4| 9] 2 16 12 8 4 4|12]|25|8 |16
21 17 13 9 5 17| 5 |13]|21( 9
7 5 3 3|57
22 18 14 10 10[18| 1 |14 22
8 6 816

23 19 15 23( 6 |19 2|15

25

Fir 4x4-Quadrate erldutert FRENICLE eine Methode, bei der die Diagonalelemente des
Startquadrats (schwarz) stehen bleiben, die iibrigen Elemente werden gespiegelt - die
magische Summe des Quadrats betrdgt 34.

Ein 4x4-Quadrat ldsst sich dann gemaR der sog. Rahmen-
methode auf ein 6x6-Quadrat erweitern (magische Zahl:
111), indem man beispielsweise zundchst die Zahlen von 1
bis 8 und von 29 bis 36 beriicksichtigt (magische Zahl: 74)

112(3]|4 11514 4

5|16 (7|8 12|16 | 7|9

9110|1112 8 |10|11| 5

13|14 |15] 16 13| 3| 2 |16

und dann im Rahmen die i.ibr‘igen Zahlen so er- 9 |25]|26(23]|18]10
gdnzt, dass einander gegeniiberliegende Zahlen 1|35(34 4 16| 1(35(3a 4|21
jeweils die fehlende Summe 37 ergeben. Auf den 32|16 (7|2 20132]6|7|29|17
folgenden Seiten erldutert FRENICLE dann die 8 [30|31]5 2418 |30/31[5 |13
ndchsten Konstruktionsschritte - bis hin zu B13]2/3% il il Ll e
einem magischen 14x14-Quadrat. el

Die Rahmenmethode ldasst sich auch auf magische Quadrate mit ungerader Ordnung
anwenden. Da es verschiedene Mdglichkeiten gibt, die Zahlen fiir das innere Quadrat
auszuwdhlen, kénnen entsprechend auch unterschiedliche erweiterte Quadrate erzeugt
werden, wie FRENICLE ausfiihrlich darlegt. - Den Abschluss seines Beitrags bildet eine
Liste aller 880 magischen Quadrate 4. Ordnung. Da jedes dieser Quadrate durch Dre-
hungen und Spiegelungen auf acht verschiedene Arten dargestellt werden kann, gibt es
insgesamt 8 - 880 = 7040 magische Quadrate 4. Ordnung.
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