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Vor 400 Jahren lebte      Frénicle de Bessy             (1604 – 1674) 

 

Er korrespondierte mit PIERRE DE FERMAT, RENÉ DESCARTES, 

CHRISTIAAN HUYGENS, MARIN MERSENNE und JOHN WALLIS; 

auch gehörte er im Jahr 1666 zu den Gründungsmitgliedern 

der Académie Royale des Sciences. 

Trotz der Kontakte zu zeitgenössi-

schen Mathematikern weiß man nur 

sehr wenig über BERNARD FRÉNICLE DE 

BESSY. Ob er tatsächlich 1604 gebo-

ren wurde (oder erst 1605), ist nicht 

bekannt; auch über seinen Todestag 

liegen keine Informationen vor.  

FRÉNICLE DE BESSY stammte aus einem alten Adelsgeschlecht 

Frankreichs; sein Vater war der Conseiller à la Cour des Monnaies 

BERNARD DE BESSY, also am obersten Gericht für Fragen des Münzwesens und der 

Staatsfinanzen tätig, verantwortlich auch für die Verwaltung und Produktion der 30 

Münzprägeanstalten Frankreichs – ein zeitaufwendiges Amt, das sein Sohn FRÉNICLE 

nach erfolgreich absolviertem Jurastudium erbte.  

Seine Freizeit widmete FRÉNICLE vor allem dem Studium der Eigenschaften natürlicher 

Zahlen. Aus dem Nachlass der Briefe MERSENNEs weiß man, dass er sich auch mit physi-

kalischen Problemen beschäftigte, unter anderem mit GALILEO GALILEIs Dialog über die 

zwei wichtigsten Weltsysteme. 

Wiederholt löste er – in Rekordzeit – numerische Probleme, die FERMAT als Heraus-

forderungen seinen Briefpartnern gestellt hatte; eine seiner Lösungen veröffentlichte 

er (solutio, 1657). Im Jahr 1693, also viele Jahre nach FRÉNICLEs Tod, gab PHILIPPE DE 

LA HIRE im Auftrag der Académie vier seiner Abhandlungen (Divers ouvrages de Mathé-

matiques et de Physique), auf die wir weiter unten eingehen. 

Heute erinnert noch ein Begriff aus dem Bereich der Unterhaltungs-

mathematik an den französischen Rechenkünstler: Unter den acht mög-

lichen Formen eines magischen 3x3-Quadrates wird die rechts stehen-

de Anordnung als FRÉNICLE-Standard-Form bezeichnet (die übrigen 

Formen erhält man durch Drehung und Spiegelung aus dieser). 
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Zu den von FERMAT gestellten Problemen gehörte die Aufgabe, Kubikzahlen zu finden, 

für die die Summe aller Teiler (einschl. der Zahl selbst) eine Quadratzahl ist, sowie die 

Aufgabe, Quadratzahlen zu finden, für die die Summe aller Teiler eine Kubikzahl ist.  

Beispiel für das erste Problem: Summe aller Teiler der Zahl 73 = 343 ist 70 + 71 + 72 + 73 = 400 = 202. 

FRÉNICLE ergänzte die Liste der Probleme, beispielsweise:  

• Finde eine natürliche Zahl n, bei der die Summe der echten Teiler 5-mal so groß ist wie die Zahl 

selbst und auch die Summe der echten Teiler des 5-Fachen dieser Zahl 25-mal so groß ist wie 5n. 

• Finde eine natürliche Zahl n, bei der die Summe der echten Teiler 7-mal so groß ist wie die Zahl 

selbst und auch die Summe der echten Teiler des 7-Fachen dieser Zahl 49-mal so groß ist wie 7n.  

• Finde zwei aufeinanderfolgende Kubikzahlen, deren Differenz selbst eine Kubikzahl ist. 

Außerdem stellte er einige Aufgaben, die mit Sechseckzahlen zusam-

menhängen. Und dass 1729 die kleinste Kubikzahl ist, die sich auf zwei 

Arten als Summe von zwei Kubikzahlen darstellen lässt, findet man 

bereits bei FRÉNICLE – und nicht erst in SRINIVASA RAMANUJANs 

taxicab problem.  

Die erste der posthum veröffentlichten Abhandlungen FRÉNICLEs trägt den Titel 

Méthode pour trouver la Solution des Problèmes par Exclusion – in dieser 85-seitigen 

„Methode durch Ausschließung“ ging es ihm insbesondere darum zu erläutern, wie man 

– ausgehend von einfachen Beispielen – durch systematisches Erfassen von Gemeinsam-

keiten auf allgemeine Gesetzmäßigkeiten schließen kann. Die meisten der dabei be-

trachteten Beispiele beschäftigen sich mit ganzzahligen rechtwinkligen Dreiecken.  

Seit EUKLID war bekannt, wie primitive pythagoreische Zahlentripel erzeugt werden 

können: Sind a, b zwei beliebige zueinander teilerfremde Zahlen, dann erfüllt das Tripel 
2 2 2 2( ;2 ; )a b ab a b− +  die gewünschte Bedingung. Dies wendet FRÉNICLE an … 

• Gesucht sind zwei Quadratzahlen, deren Differenz eine bestimmte Quadratzahl ergibt.  

Beispiel (gerade Quadratzahl): 144 = 12², teile die Zahl durch 4 und zerlege das Ergebnis in 
Faktoren: 36 = 1 ∙ 36 = 2 ∙ 18 = 3 ∙ 12 = 4 ∙ 9. Bilde dann für die Summe und die Differenz dieser 
Faktoren jeweils die Differenz der Quadrate: Aus den (erzeugenden) Faktoren 1, 36 ergeben sich 
die Zahlen 35, 37, und weiter: 37² – 35² = 144. Aus 2, 18 ergeben sich die Zahlen 16, 20, und 
weiter: 20² – 16² = 144. Aus 3, 12 ergeben sich die Zahlen 9, 15, und weiter: 15² – 9² = 144. Aus 4, 

9 ergeben sich die Zahlen 5, 13, und weiter: 13² – 5² = 144. 

Beispiel (ungerade Quadratzahl): 81 = 9² = 1 ∙ 81 = 3 ∙ 27. Aus den Faktoren 1, 81 erhält man die 
Zahlen 80, 82. Wenn man diese halbiert, findet man: 41² – 40² = 81 ; analog ergeben sich aus den 
Faktoren 3, 27 die Zahlen 24, 30, diese halbiert, ergibt: 15² – 12² = 81. 

• Gesucht sind ganzzahlige rechtwinklige Dreiecke, deren Kathetenlängen sich um einen 
bestimmten Betrag unterscheiden. 

Beispiel: Die pythagoreischen Zahlentripel (5; 12; 13) und (15; 8; 17) gehören zu den ganzzahligen 
rechtwinkligen Dreiecken, deren Kathetenlängen sich um 7 unterscheiden. Weitere Beispiele 
lassen sich finden, indem man geeignete Zahlenfolgen für die erzeugenden Faktoren a, b findet: 

    

Einige seiner Fragestellungen führen zu erstaunlich großen Zahlen … 



• Gesucht ist ein rechtwinkliges Dreieck, bei dem die Länge der Hypotenuse sowie die Summe der 
Kathetenlängen eine Quadratzahl ist. (Lösung: Kathetenlängen: 1.061.652.293.520, 
4.565.486.027.761, Hypotenusenlänge: 4.687.298.610.289) 

• Gesucht ist ein rechtwinkliges Dreieck, bei dem die Länge der Hypotenuse eine Quadratzahl ist 
und der Längenunterschied der kürzeren Kathete zu den beiden anderen Seiten ebenfalls eine 
Quadratzahl ist. (Lösung: Katheten: 473.304, 2.276.953, Hypotenuse: 2.325.625) 

In einer weiteren nachgelassenen Schrift, dem 79 Seiten umfassenden Traité des 

Triangles rectangles en Nombres (Abhandlung über ganzzahlige rechtwinklige Drei-

ecke) geht FRÉNICLE zunächst systematisch auf Eigenschaften von Quadratzahlen ein:  

• Quadratzahlen können nicht auf 2, 3, 7 oder 8 enden. Ist die letzte Ziffer 1, 4 oder 9, dann muss 
die vorletzte Ziffer gerade sein. Ist die letzte Ziffer eine 6, dann muss die vorletzte Ziffer 
ungerade sein. 

• Quadratzahlen, die nicht durch 3 teilbar sind, lassen bei Division durch 3 den Rest 1. 

• Ungerade Quadratzahlen lassen bei Division durch 8 den Rest 1; ungerade Quadratzahlen, die 
nicht durch 3 teilbar sind, lassen bei Division durch 24 den Rest 1. 

• Quadratzahlen, die nicht durch 5 teilbar sind, lassen bei der Division durch 5 die Reste 1 oder -1.  

Weiter entdeckt FRÉNICLE eine bemerkenswerte Eigenschaft: 

• Sind x, y die Katheten und z die Hypotenuse eines rechtwinkligen Dreiecks, dann bilden das Qua-
drat der Differenz der beiden Kathetenlängen, das Quadrat der Hypotenusenlänge und das Qua-
drat der Summe der beiden Kathetenlängen eine arithmetische Folge: (y – x)², x² + y², (x + y)². 

Beispiel: x = 5, y = 12: (y – x)² = 49 ; x² + y² = 169 ;  (x + y)² = 289 

Bei den pythagoreischen Zahlentripeln spielen Primzahlen, die nach Division durch 4 den 

Rest 1 lassen (5, 13, 17, 29, 37, …), eine besondere Rolle. FRÉNICLE stellt fest: 

• Diese Primzahlen sind eindeutig als Summe von zwei Quadratzahlen darstellbar (5 = 1²+2², 13 = 

2²+3², 17 = 1²+4², 29 = 2²+5², 37 = 1²+6², …); zugehörige primitive Tripel: (2²–1²; 2 ∙ 1 ∙ 2; 1²+2²) 
= (3; 4; 5), (3²–2²; 2 ∙ 2 ∙ 3; 2²+3²) = (5; 12; 13), (4²–1²; 2 ∙ 1 ∙ 4; 1²+4²) = (15; 8; 17), … 

• Produkte von zwei verschiedenen Primzahlen dieses Typs sind auf zwei Arten darstellbar  
(65 = 5 ∙ 13 = 1²+8² = 4²+7², 85 = 5 ∙ 17 = 2²+9² = 6²+7², 13 ∙ 17 = 221 = 5²+14² = 10²+11², …); 
zugehörige primitive Tripel: (63; 16; 65), (33; 56; 65) bzw. (77; 36; 85), (13; 84; 85) bzw.  
(171; 140; 221), (21; 220; 221), … 

• Produkte von drei verschiedenen Primzahlen sind auf vier Arten darstellbar,  
z. B. 1105 = 5 ∙ 13 ∙ 17 = 4²+33² = 9²+32² = 12²+31² = 23²+24²), zugehörige Tripel:  
(264; 1073; 1105), (576; 943; 1105), (744; 817; 1105), (47; 1104; 1105), … 

• Produkte von vier verschiedenen Primzahlen des Typs sind auf acht Arten darstellbar, Produkte 
von fünf verschiedenen Primzahlen des Typs sind auf sechzehn Arten darstellbar usw. 

• Zu diesen primitiven pythagoreischen Zahlentripeln findet man im Falle des Produkts von zwei 
verschiedenen Primzahlen zwei weitere Vielfachtripel, z. B. 5 ∙ (5; 12; 13) = (25; 60; 65) und  
13 ∙ (3; 4; 5) = (39; 52; 65), im Falle des Produkts von drei verschiedenen Primzahlen gibt es 
neun Vielfachtripel, von vier Primzahlen 32 Vielfachtripel usw. 

• Insgesamt gibt es für Produkte aus 2 verschiedenen Primzahlen dieses Typs 2+2 = 4 Tripel, aus  
3 verschiedenen Primzahlen 4+9 = 13 Tripel, aus 4 verschiedenen Primzahlen 8+32 = 40 Tripel, 
aus 5 Primzahlen 16+105 = 121 Tripel, aus 6 verschiedenen Primzahlen 32+332 = 364 Tripel, … 

Der Rechenkünstler FRÉNICLE scheut sich nicht, im Falle von 4 Primzahlen für ein Bei-

spiel alle vierzig Tripel zu bestimmen.  

Weiter untersucht er die Anzahl der primitiven pythagoreischen Tripel für Potenzen 

sowie für Produkte von Potenzen von Primzahlen , {5,13,17, 29,...}a b :  



  

 
Weitere Sätze beschäftigen sich mit dem Zusammenhang zwischen den erzeugenden 

Zahlen und den Vielfachen der pythagoreischen Tripel: 

• Vervielfacht man die erzeugenden Zahlen eines primitiven pythagoreischen Tripels mit einer 
natürlichen Zahl, dann vervielfachen sich die Zahlen des Tripels mit dem Quadrat dieser Zahl 
und umgekehrt. Auch wenn man die Zahlen eines primitiven pythagoreischen Tripels mit dem 
Doppelten einer Quadratzahl vervielfacht, existiert ein Paar erzeugender Zahlen; bei anderen 
Vielfachen eines primitiven pythagoreischen Tripels existiert ein solches Paar allerdings nicht. 

       

FRÉNICLE beweist u. a. auch noch die folgenden Eigenschaften: 

• Die Differenz der Seitenlängen der Hypotenuse und der Kathete mit ungerader Seitenlänge in 
einem ganzzahligen primitiven rechtwinkligen Dreieck ist das Doppelte einer Quadratzahl, die 
Summe und die Differenz der Seitenlängen der Hypotenuse und der Kathete mit gerader 
Seitenlänge ist eine Quadratzahl. 

• Die Länge der Hypotenuse eines ganzzahligen primitiven rechtwinkligen Dreiecks ist nicht durch 
3 teilbar. Die Seitenlänge einer der Katheten eines ganzzahligen rechtwinkligen Dreiecks ist 
durch 3 teilbar. Die Seitenlänge einer der Katheten eines rechtwinkligen Dreiecks ist durch 4 
teilbar. Daher kann es kein ganzzahliges rechtwinkliges Dreieck geben, bei dem die Seiten-
längen der beiden Katheten Primzahlen sind. 

• Eine der Seitenlängen eines ganzzahligen rechtwinkligen Dreiecks ist durch 5 teilbar.  

• In einem ganzzahligen primitiven rechtwinkligen Dreieck lässt sowohl die Summe als auch die 
Differenz der Seitenlängen der Katheten bei Division durch 8 den Rest -1 oder +1. 

• Der Flächeninhalt eines ganzzahligen rechtwinkligen Dreiecks ist stets durch 6 teilbar. 

• Es gibt kein ganzzahliges rechtwinkliges Dreieck mit quadratischem oder mit doppelt-quadrati-
schem Flächeninhalt. 

Schließlich gibt FRÉNICLE eine allgemeine Methode für das Problem an, zu einem ganz-

zahligen rechtwinkligen Dreieck ein rechtwinkliges Dreieck mit gleichem Flächeninhalt 

zu finden. Er geht dabei so vor, wie in 

der Tabelle rechts ablesbar. Das Zah-

lenbeispiel in der Tabelle darunter 

führt von einem rechtwinkligen Drei-

eck mit den Kathetenlängen 3 und 4 zu 

einem Dreieck mit den Kathetenlängen 
7

10  und 120
7  – beide mit Flächeninhalt 6.  

Mithilfe dieses allgemeinen Ansatzes 

entdeckt er beispielsweise: (20; 21; 29) und (12; 35; 37) haben beide den ganzzahligen 

Flächeninhalt 210; die Dreiecke (48; 55; 73) und (22; 120; 122) den Flächeninhalt 1320, 

die Dreiecke (27; 364; 365) und (39; 252; 255) den Flächeninhalt 4914.  



FRÉNICLE fand sogar Beispiele, bei denen drei ganzzahlige Dreiecke gleichen Flächen-

inhalt haben, u. a. (56; 390; 394), (105; 208; 233) und (120; 182; 218) mit Flächeninhalt 10920. 

Im einem Beispiel mit sechs gleich großen ganzzahligen rechtwinkligen Dreiecken ergibt 

sich für den Flächeninhalt eine Zahl mit 32 Stellen. 

In einer weiteren Schrift, der 39-seitigen Abhandlung Abregé des Combinaisons, er-

läutert FRÉNICLE anhand zahlreicher Beispiele die wichtigsten Regeln der Kombinatorik; 

er geht dabei nicht über die bis dahin bekannten Fragestellungen hinaus. 

Die letzte der vier Schriften trägt den Titel Des Quarréz ou Tables Magique und um-

fasst 146 Seiten. Ohne Hinweise auf eventuell benutzte Quellen beschreibt FRÉNICLE 

verschiedene Verfahren, mit deren Hilfe magische Quadrate erzeugt werden können.  

Nach der Erläuterung der Grundregeln stellt er zunächst eine Methode vor, die bei 

magischen Quadraten mit ungerader Ordnung (Seitenlänge) anwendbar ist: Die außer-

halb des eingerahmten Quadrats stehenden Zahlen werden in die jeweils waagerecht 

bzw. senkrecht am weitesten entfernten Zellen verschoben (vgl. die folgenden Bei-

spiele). Durch symmetrisches Vertauschen von Zeilen und Spalten können hieraus wei-

tere Varianten entwickelt werden.  
 

 

 

 

 

 

 

 
Für 4 4 -Quadrate erläutert FRÉNICLE eine Methode, bei der die Diagonalelemente des 

Startquadrats (schwarz) stehen bleiben, die übrigen Elemente werden gespiegelt – die 

magische Summe des Quadrats beträgt 34.  

Ein 4 4 -Quadrat lässt sich dann gemäß der sog. Rahmen-

methode auf ein 6 6 -Quadrat erweitern (magische Zahl: 

111), indem man beispielsweise zunächst die Zahlen von 1 

bis 8 und von 29 bis 36 berücksichtigt (magische Zahl: 74) 

und dann im Rahmen die übrigen Zahlen so er-

gänzt, dass einander gegenüberliegende Zahlen 

jeweils die fehlende Summe 37 ergeben. Auf den 

folgenden Seiten erläutert FRÉNICLE dann die 

nächsten Konstruktionsschritte – bis hin zu 

einem magischen 14 14 -Quadrat. 

Die Rahmenmethode lässt sich auch auf magische Quadrate mit ungerader Ordnung 

anwenden. Da es verschiedene Möglichkeiten gibt, die Zahlen für das innere Quadrat 

auszuwählen, können entsprechend auch unterschiedliche erweiterte Quadrate erzeugt 

werden, wie FRÉNICLE ausführlich darlegt. – Den Abschluss seines Beitrags bildet eine 

Liste aller 880 magischen Quadrate 4. Ordnung. Da jedes dieser Quadrate durch Dre-

hungen und Spiegelungen auf acht verschiedene Arten dargestellt werden kann, gibt es 

insgesamt 8 ∙ 880 = 7040 magische Quadrate 4. Ordnung. 
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