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Vor 334 Jahren gestorben    PIETRO MENGOLI (1626 – 07.06.1686) 

 

Über PIETRO MENGOLIs Herkunft ist nur wenig bekannt, 

auch sein genaues Geburtsdatum wird man wohl nicht mehr 

herausfinden. Er verbrachte sein gesamtes Leben in Bolog-

na, das zur damaligen Zeit zum Kirchenstaat des Papstes 

gehörte. 

An der Universität von Bologna besuchte er Vorlesungen 

bei BONAVENTURA CAVALIERI. Als dieser im November 1647 

starb, wurde MENGOLI beauftragt, dessen Vorlesungen in 

Arithmetik zu übernehmen. 1650 promovierte MENGOLI in 

Philosophie, drei Jahre später auch in Zivil- und Kirchen-

recht – parallel dazu hielt er Vorlesungen über Mechanik. 

Von 1668 an bis zu seinem Tod hatte er den Lehrstuhl für Mathematik inne.  

Zum Priester geweiht, übernahm er von 1660 an die Pfarrei Santa 

Maria Magdalena sowie die Leitung eines angeschlossenen Klosters, 

was ihn zeitlich so sehr beanspruchte, dass er erst 1670 wieder dazu 

kam, etwas zu veröffentlichen. Die Publikationen aus den 1650er- und 

1670er-Jahren befassten sich u. a. mit unendlichen Reihen und mit 

Flächenbestimmungen (s. u.), mit EUKLIDs Lehre von den Proportionen 

sowie mit der Brechung und der Parallaxe von Sonnenstrahlen.  

In einer der Schriften setzte er sich mit GALILEIs Theorie zu der Frage auseinander, 

wie Musik gehört wird (mit der spekulativen Annahme eines zweiten Trommelfells im 

Ohr). In seinen letzten Werken (Arithmetica rationalis und Arithmetica realis) unter-

nahm er den Versuch, ein logisches, physikalisches und metaphysisches System auf 

mathematischer Grundlage aufzubauen, durch das eine rationale 

Rechtfertigung der katholischen Glaubenslehre möglich werden soll-

te. Hierbei stand er in einem engen brieflichen Kontakt mit dem 

einflussreichen Kardinal LEOPOLDO DE’ MEDICI – der Prozess gegen 

GALILEO GALILEI und dessen Verurteilung war auch Jahrzehnte da-

nach eine noch immer präsente Bedrohung, insbesondere im Bewusst-

sein der im Kirchenstaat lebenden Wissenschaftler. 
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Da MENGOLI seine Schriften in einem seltsamen, schwer verständlichen Latein ver-

fasste, ließ das Interesse an seinen Veröffentlichungen schnell nach. Gleichwohl gab es 

positive Rückmeldungen, u. a. vom Sekretär der Royal Society, HENRY OLDENBURG, der 

sich besonders für MENGOLIs Musiktheorie interessierte. Erst im 20. Jahrhundert 

wurde deutlich, dass der italienische Mathematiker in einigen seiner Überlegungen 

seiner Zeit weit voraus war.   Eines dieser Themen war die Untersuchung unendlicher 

Reihen. Seit dem Altertum war das Rechnen mit geometrischen Folgen und den zuge-

hörigen Teilsummenfolgen, den geometrischen Reihen, bekannt:  

Für a  und 0 1q   konvergiert die Zahlenfolge 2 3, , , , ...a aq aq aq  gegen null und die 

Folge der Teilsummen 2 3( ... )n

na aq aq aq aq + + + + +  gegen die Zahl 
1

a
q−
.  

MENGOLI stellte nun fest, dass aus „Die Folge ( )n na 
 konvergiert gegen null“ nicht not-

wendig folgt „Die zugehörige Folge 
1

( )
n

n n

k

a 

=

  der Teilsummen konvergiert gegen eine 

(endliche) Zahl“. Zwar hatte der französische Mathematiker und Philosoph NICOLE 

ORESME bereits 300 Jahre zuvor bewiesen, dass dies für die sog. harmonische Reihe, 

also die Folge der Teilsummen der Kehrwerte der natürlichen Zahlen 
1 1 1 1
2 3 1

1 ...n n n
H

−
= + + + + + , nicht zutrifft; sein Beweis geriet jedoch in Vergessenheit und 

war auch MENGOLI nicht bekannt. ORESME hatte mithilfe einer divergierenden Mino-

rante gezeigt, dass nH  über alle Grenzen hinauswächst:  
1 1 1 1 1 1 1

1 2 42 2 3 4 2 4 4
1; 1 1,5; 1 ( ) 1 ( ) 2;H H H= = + = = + + +  + + + =

( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1 1 1 1 1
8 2 3 4 5 6 7 8 2 4 4 8 8 8 8

1 1 2,5H = + + + + + + +  + + + + + + + = ;

( ) ( ) ( ) ( ) ( )1 1 1 1 1 1 1 1 1 1 1 1 1
16 2 3 4 9 10 16 2 4 4 8 8 16 16

1 ... ... 1 ... ... 3H = + + + + + + + +  + + + + + + + + + =   usw. 

MENGOLI führte in seinem 1650 erschienenen Buch Novae quadraturae arithmeticae, 

seu de additione fractionum einen indirekten Beweis dieser Eigenschaft, d. h., er 

machte den Ansatz: Angenommen, die Reihe nH  besitzt ein endlichen Grenzwert 

( ) ( ) ( )1 1 1 1 1 1 1 1 1
2 3 4 5 6 7 8 9 10

1 ...H = + + + + + + + + + + . 

Nun gilt für drei aufeinanderfolgende Stammbrüche 1 1 1
1 1a a a− +
+ + , dass sie größer sind 

als das Dreifache des mittleren Bruchs: 
1 1 2 2 31 1 1 1 1 1 1 2

1 1 ( 1) ( 1) ² 1 ²
a a a a

a a a a a a a a a a a a a
+ + −

− + −  + −
+ + = + = +  + = + = , also beispielsweise 

3 61 1 1 1 1 1 2
2 3 4 3 4 3 9 3 3

1+ + = +  + = + =  und 1 1 1 1 12 1 12 1 2 1
5 6 7 6 35 6 36 6 6 2
+ + = +  + = + = . 

Daher kann man H  wie folgt abschätzen: 3 3 3 1 1
3 6 9 2 3

1 ... 1 1 ... 1H H + + + + = + + + + = +  

Da die positive, endliche Zahl H  nicht größer sein kann als 1 H+ , muss die Annahme 

falsch sein, dass H  eine endliche Zahl ist. Somit ist bewiesen, dass die harmonische 

Reihe keinen endlichen Grenzwert hat, also divergent ist. 

MENGOLI untersuchte in seinem Buch auch die alternierende harmonische Reihe und 

fand heraus, dass 1 1 1 1 1
2 3 4 5 6

1 ... ln(2)− + − + − + = . Dieses Ergebnis wurde 18 Jahre später 

und unabhängig von MENGOLI auch von NICOLAUS MERCATOR bewiesen. 

Weiter findet man in der Novae quadraturae den Beweis, dass die Summe der Kehr-

werte der Folge der Dreieckszahlen gegen den Grenzwert 2 konvergiert. Dabei zeigte 

er zunächst, dass gilt 1
2

11 1 1 1 1
3 6 10 15 1( 1)

... n
nn n

−
+  +

+ + + + + =  und dann, dass die Differenz 1
1

1 n
n
−
+
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kleiner als jede noch so kleine positive Zahl werden kann, wenn man nur n groß genug 

wählt – eine Beschreibung, die dem heutigen Grenzwertbegriff sehr nahe kommt. 



In einem nächsten Schritt beschäftigte sich MENGOLI allgemeiner mit Teilsummen-

folgen, deren Summanden Kehrwerte von Produkten natürlicher Zahlen sind: 
1 1 1 1

1 (1 ) 2 (2 ) 3 (3 ) ( )
...

r r r n n r +  +  +  +
+ + + + . Für 1r =  erhält man die Hälfte der zuletzt betrachteten 

Folge. Für 2r =  ergibt sich 1 1 1 1
3 8 15 ( 2)

...
n n +

+ + + +  mit Grenzwert 3
4
, für 3r =  hat man 

1 1 1 1
4 10 18 ( 3)

...
n n +

+ + + +  mit Grenzwert 11
18

, für 4r =  ergibt sich 1 1 1 1
5 12 21 ( 4)

...
n n +

+ + + +  mit 

Grenzwert 25
48

 usw.  

Alle Teilsummenfolgen dieses Typs sind konvergent; MENGOLI konnte beweisen, dass 

für den Grenzwert gilt: 1 1 1 1 1 1 1
1 (1 ) 2 (2 ) 3 (3 ) 2 3

... (1 ... )
r r r r r +  +  +
+ + + =  + + + + . 

Vergeblich versuchte er, auch den Sonderfall 0r =  zu lösen; der Beweis, dass die Folge 

der Teilsummen der reziproken Quadratzahlen 2

1 1 1 1
4 9 16

1 ...n n
Q = + + + + +  konvergiert und 

dass für den Grenzwert gilt 
2

1 1 1
4 9 16 6

1 ... + + + + = , gelang erst 85 Jahre 

später LEONHARD EULER. Zuvor hatten Mathematiker der Universität 

Basel, darunter JACOB BERNOULLI, vergeblich versucht, den Grenz-

wert zu bestimmen (sog. Basler Problem).  

Übrigens ging man lange Zeit irrtümlich davon 

aus, dass es JACOB BERNOULLI war, der als Erster die Divergenz der 

harmonischen Reihe bewiesen hatte, bis man entdeckte, dass 

ORESME und MENGOLI ihm zuvor gekommen waren.  

MENGOLI untersuchte auch Kehrwerte von Produkten aus drei aufeinanderfolgenden 

natürlichen Zahlen; u. a. zeigte er, dass 1 1 1 1 1 1 1
1 2 3 2 3 4 3 4 5 6 24 60 4

... ...
     

+ + + = + + + = . 

In seinem Werk Geometriae speciosae elementa aus dem Jahr 1659 setzte er seine 

Untersuchungen zu konvergenten und divergenten Folgen fort; im Prinzip entdeckte er 

dabei die Grenzwertsätze für Summen, Produkte und Quotienten. Er zerlegte Flächen 

mithilfe von einbeschriebenen und umbeschriebenen Parallelogrammen und bewies, dass 

die zugehörigen Teilsummenfolgen gemeinsame Grenzwerte besitzen; der Einfluss 

seiner Vorgehensweise auf WALLIS und LEIBNIZ ist unverkennbar.  

In einer 1672 veröffentlichten Schrift (Circulo) untersucht er, 

welche Flächen unter Graphen vom Typ (1 )m nx x −  einge-

schlossen werden (in der Abb. rechts sind die Graphen von 
1 (1 )ny x x=  −  und 1(1 )my x x=  −  mit 1 , 5m n   dargestellt). 

Angeregt durch Veröffentlichungen des französischen Mathematikers JACQUES 

OZANAM beschäftigte sich MENGOLI in den 1670er Jahren mit speziellen diophantischen 

Gleichungen, also Gleichungen mit ganzzahligen Lösungen. OZANAM hatte u. a. das 

folgende 6-Quadrate-Problem gestellt: Gesucht sind drei natürliche Zahlen x, y, z, deren 

Differenzen , ,x y x z y z− − −  jeweils Quadratzahlen sind und die Differenzen 
2 2 2 2 2 2, ,x y x z y z− − −  der Quadrate ebenfalls. (Hinweis: OZANAM stellte später auch ein 

analoges Problem mit Summen anstelle von Differenzen.) 

MENGOLI versuchte zu beweisen, dass es keine Lösungen für das Problem gibt; als aber 

OZANAM ein Lösungstripel präsentierte (2.288.168;1.873.432; 2.399.057) , sah er seine 

Reputation gefährdet und machte sich erneut auf die Suche. Und nachdem er sich in-

tensiv mit den Eigenschaften PYTHAGOReischer Zahlentripel beschäftigt hatte, fand er 

schließlich zwei weitere Lösungen. 
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