Oktober 2021
Vor 700 Jahrenlebte  INARAYANA PANDITA (ca. 1325 - 1400)

Im Jahr 1688 versffentlichte der franzssische Botschafter
im Kénigreich Siam, SIMON DE LA LOUBERE, hach seiner Riick-
kehr aus Ostasien ein Buch iiber seine Erlebnisse und Er-
fahrungen; 1693 erschien es auch in englischer Sprache.

In einem der Kapitel stellte er die - wie er sie nannte -
siamesische Methode zur Erstellung magischer Quadrate
ungerader Ordnung vor. Tatsdchlich wurde diese Methode
: iber 300 Jahre zuvor bereits von NARAYANA PANDITA be-
Mathematica schrieben (Pandita, Sanskrit = der Gelehrte).

Uber das Leben dieses Mathematikers ist fast nichts be-
kannt - auBer, dass er zwei Biicher veroffentlichte: Bijaganita-Vatamsa, ein Buch iiber
Algebra, und im Jahr 1356 sein Hauptwerk Ganita-kaumudi (wortlich: Mondschein der
Mathematik), das 14 Kapitel umfasst.

Das letzte dieser Kapitel mit dem Titel Bhadraganita beschdftigt sich mit magischen
Quadraten und Figuren. Der Zweck des Studiums magischer Figuren besteht laut
NARAYANA darin, ein Yantra zu konstruieren (ein geometrisches Diagramm, das zur
Meditation dienen soll), um das Ego der schlechten Mathematiker zu zerstoren und das
Vergniigen der guten Mathematiker

Narayana Pandita (1325 - 1400)
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zu férdern. - Die ,siamesische" Me- y 1 17 el s
thode ldsst sich wie folgt beschrei-
. ) i 3 3 3]s 3|57
ben: Man beginnt damit, dass man die
Zahl 1 in das mittlere Feld der oberen 2 ¢ 2 419]2

Reihe eintrdgt, dann von dort aus schrdg nach rechts oben fortlaufend die ndchsten
natirlichen Zahlen. Wenn der obere Rand erreicht ist, schreibt man die ndchste Zahl
in ein Feld der untersten Zeile in der ndchsten Spalte. Gelangt man an den rechten
Rand, trdgt man die ndchste Zahl in ein Feld der duBerst links liegenden Spalte in der
ndchsten Zeile ein. Kommt man auf ein Feld, das bereits belegt ist, oder in die rechte
obere Ecke des Quadrats, dann setzt man das Verfahren im darunter liegenden Feld
fort. - Die Abb. zeigt die Methode fiir ein 3x3-Quadrat (mit zusdtzlichen Hilfsfeldern).
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124 3736 NARAYANAs Ausfiihrungen umfassen verschiedene Ver-
fahren zur Konstruktion von magischen Quadraten belie-
biger Ordnung, darunter auch alle Maglichkeiten fiir
magische Quadrate der Ordnung 4. AbschlieBend prd-
19 sentiert er noch beson-
dere geometrische For-
., /1| men mit magischen Ei-
16\ 44| genschaften, darunter
den diamantenen Lotus,
bei dem je vier Zahlen
einer Reihe die Summe 98 ergeben, acht Zahlen einer
Reihe die Summe 196 und jedes Teilquadrat mit zwolf
Feldern die Summe 294 (vgl. Abb. links), sowie den
einbeschriebenen Lotus, bei dem jede Blume ebenfalls
die magische Summe 294 hat (vgl. Abb. rechts).

In seinem Werk Ganita-kaumudi beschreibt NARAYANA sich selbst als bescheidenen
Seefahrer im Ozean der Mathematik. Das Buch gibt einen eindrucksvollen Uberblick
liber den Wissensstand der Mathematiker des indischen Subkontinents
am Ende des Mittelalters. Etliches davon hatte zuvor BHASKARACHARYA
(BHASKARA II, 1114-1185) veroffentlicht, zu dessen Hauptwerk Lilavatr
(Die Schone) NARAYANA einen umfangreichen Kommentar verfasst
hatte. Ganita-kaumudi enthdlt aber auch eine Fiille neuer Materialien.

Im ersten Kapitel gibt NARAYANA einen Uberblick iiber die gebrduch-
lichen Gewichts-, Ldngen-, Flachen- und RaummaBe, iiber die Rechenarten (bis ein-
schlieflich dem Verfahren zum Ziehen einer Kubikwurzel) sowie iiber Typen von Glei-
chungen. Um das Ergebnis einer Multiplikation zu iiberpriifen, empfiehlt er, die Reste
der Faktoren (bzgl. der Division durch eine beliebige Zahl) mit dem entsprechenden
Rest des Ergebnisses zu vergleichen - so, wie wir es mit der Neunerprobe kennen.

Im Umgang mit Wurzeln zeigen sich erstaunliche Fertigkeiten, z. B.

V175 + 4150 + /105 +/90 + /70 +/60 /2100 + /1800 + /1260 + /1080 . —J3E4+30

J5+B++2 J60++/36

Im zweiten Kapitel werden Aufgaben behandelt, die auf lineare Gleichungen fiihren, wie
beispielsweise Mischungs- und Zinsaufgaben sowie Bewegungsaufgaben.

Beispiel: Zwei Reisende gehen von zwei Orten A1 bzw. Az, die eine Entfernung d voneinander
haben, zum selben Zeitpunkt mit den Geschwindigkeiten vi und vz aufeinander zu. Zu wel-
chem Zeitpunkt und an welcher Stelle treffen sie sich? Vom Ziel aus kehren sie sofort
wieder an ihre Ausgangsorte zuriick. Wann und wo begegnen sie einander ein zweites Mal?
Das dritte Kapitel beschaftigt sich mit Folgen und Reihen. AuBer den typischen Auf-
gaben fiir arithmetische und geometrische Folgen enthdlt es auch Summenformeln fiir
natirliche Zahlen, fiir deren Quadrate und dritte Potenzen, auerdem wird die Sum-

menfolge der Dreieckszahlen untersucht ZZr:Zr'(r;l) = n-(nJlrl;-én+2)
. . ) _ n-(n+1)-(n+2)-...-(n+k)
Ergebnis verallgemeinert: > .3 > r=..= 123 (kaD) .
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Bhaskara (1114 - 1185)
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Kapitel 4 ist das umfangreichste Kapitel des Buches; es umfasst 149 Regeln und 94

Beispiele zu geometrischen Problemen, darunter auch eine Reihe von Ndherungsformeln

fir Kreisfiguren. Bemerkenswert ist eine von NARAYANA neu entwickelte Formel zur

Bestimmung des Fldcheninhalts eines Sehnenvier- E

ecks mithilfe einer sog. dritten Diagonale. ; D

Aus dem Sehnenviereck ABCD ergibt sich durch

Vertauschen der Seiten b und c das Sehnenvier-

eck ABED mit den Diagonalen f und g. Die Fldchen-

inhalte der beiden Vierecke stimmen liberein, da A B A B

gemadR der Formel von BRAHMAGUPTA der Fldcheninhalt nur von der Ldnge der vier Seiten

des Sehnenvierecks abhdngt: A:\/(s—a)~(s—b)-(s—c)-(s—d) mit s=1-(a+b+c+d).

§ Der Fldacheninhalt des Vierecks ABED kann berechnet werden als
Summe der Fldcheninhalte des Dreieck ABE mit den Seiten a, c, g
und des Dreiecks AED mit den Seiten b, d, g:

a-c-g g-b-d g
A =A. +A_ = + =—-.(a-c+b-d).
'ABED 'ABE AED 4R 4R 4R ( )
B Andererseits gilt nach dem Satz von PTOLEMAUS, dass das Produkt

der Ldngen der Diagonalen eines Sehnenvierecks gleich der Summe der Produkte der
einander gegeniiberliegenden Seiten des Sehnenvierecks ist, also a-c+b-d =e- f .
e-f-g

4R

Eine der Aufgaben beschdftigt sich mit besonderen Dreiecken, deren
Seitenldngen natiirliche Zahlen sind und die sich nur um eine Einheit
unterscheiden; auch die Ldnge der Hohe auf der Grundseite soll eine
natirliche Zahl sein. NARAYANA erkennt, dass der linke Abschnitt der
" Grundseite die Ldnge %-x—2 haben muss, der rechte Abschnitt ent-

sprechend %-x+2, denn gemdB dem Satz von PYTHAGORAS gilt fiir die beiden Teil-
dreiecke: (x-1)*—(3-x-2)*=y*=(x+1)°—-(3-x+2)*, d. h., es gilt: y*=2.x*-3. Diese
Gleichung hat unendlich viele Losungen: (4;3), (14;12), (52;45), (194;168), (724;627), ...

Daher folgt: Apcp = Asgep = %-(a-c+b-d) ,also Agep =

x+1

In den ndchsten Kapiteln werden Anwendungsaufgaben behandelt
(Ausheben von Gruben, Aufschiitten von Getreide, Berechnungen von
Hohen und Entfernungen mithilfe von Schattenldngen u. A. m.).

In Kapitel 9 wird ausfiihrlich die von ARYABATHA (476-550) ent-
wickelte Kuttaka-Methode zur Losung diophantischer Gleichungen be-
schrieben und an Beispielen erldutert. (Zeichnungen © Andreas Strick) Mathematica

Aryabhata (476 - 550)
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In Kapitel 10 geht NARAYANA auch auf die Losung von spdter so

genannten PELL'schen Gleichungen ein (gemadl der Methode von BHASKARACHARYA); dabei
spricht er ausdriicklich die Tatsache an, dass man die Losungspaare (a;b) von Glei-
chungen des Typs Nx*+1=y® dazu benutzen kann, um Ndherungswerte fiir die Wurzel

aus einer natiirlichen Zahl zu bestimmen: N ~ &,

Beispiel: Fiir die Gleichung 10x’ +1=y* findet man die Lésungspaare (6;19), (228;721),
(8658;27379) usw. Daher gilt: V10 ~2=316; /10 ~ 22 =3,162280...; /10 ~ 232 = 3,162277...



In Kapitel 11 beschdftigt sich NARAYANA mit der Zerlegbarkeit einer |
natiirlichen Zahl n (die keine Quadratzahl ist) in Faktoren. Dabei
entwickelt er eine Methode, die auf der gleichen Idee beruht, die / :
PIERRE DE FERMAT im Jahr 1643 - also 300 Jahre spdter - in einem i 77 el |
Brief an MERSENNE beschreibt. Ziel der Untersuchung ist es, die betrachtete Zahl n
als Differenz von zwei Quadratzahlen x* und y* darzustellen: Aus n=y*-x* folgt
n=(y—x)-(y+x); die natiirlichen Zahlen y—x und y+x konnen dann ihrerseits nach
dem gleichen Verfahren auf Zerlegbarkeit untersucht werden.

Um zu priifen, ob eine natiirliche Zahl n als Produkt zweier natiirlicher Zahlen darge-
stellt werden kann, macht man den Ansatz n=a’+r, wobei also a* die ndchst-kleinere
Quadratzahl ist (und entsprechend (a+1)* die ndachst-grofere Quadratzahl).

Ist (2a+1)—r eine Quadratzahl b?, dann gilt n+b*=(a’+r)+(2a+1-r)=(a+1)* und so-
mit n=(a+1)°-b*=(a+b+1)-(a—b+1). Ist 2a+1-r keine Quadratzahl, dann geht man
zur ndchst-groferen Quadratzahl iber; dies macht man, indem man 2a+3 addiert
(= Differenz (a+2)*—(a+1)* zur ndchsten Quadratzahl) usw.

Beispiel: n=527=22°+43, also (2a+1)-r=(2-22+1)-43=45-43=2; dies ist keine
Quadratzahl. Weiter: (2a+3)+(2a+1)—r=(2-22+3)+(2-22+1)-43=47+45-43=49="7°
dh. (2a+3)+(2a+1)-r=(4a+4)-r=b’> und somit n+b’=(a*+r)+(4a+4)-r=(a+2),
also n=(a+2°-b’=(a+b+2)-(a-b+2)=(22+7+2)-(22-7+2)=31-17.

In Kapitel 12 greift NARAYANA ein Thema auf, mit dem sich bereits MAHAVIRA (ca. 800-
870) auseinandergesetzt hatte: Welche Moglichkeiten gibt es, die Zahl 1 als Summe
von Stammbriichen darzustellen?

MAHAVIRA hatte auer dem - spdter so genannten - FIBONAccI-Algorithmus auch Dar-
stellungen mithilfe von speziellen Teilfolgen entdeckt: %{1 L +ij 213n

=1
3 F 3"

und EIL S S i—1 NARAYANA erkannte u. a., dass allgemein
1.2 2.3 3.4 (2n—-1)-2n) 2n

(kz_kl)'k1+( 3_k2)'k1+ +(kn_kn—1)'k1+1'k1:1_

die folgende Beziehung qilt:
| f J | I3 kz'kl k3'k2 kn'kn—l k

n

Das vorletzte, ebenfalls sehr umfangreiche Kapitel enthdlt 97 Regeln und 45 Beispiele
zu vielfdltigen kombinatorischen Fragestellungen, u. a. zur Anzahl der méglichen Permu-
tationen; in diesem Zusammenhang entwickelte NARAYANA einen Algorithmus, mit dem
man systematisch alle Permutationen von Objekten generieren kann.

Dieses Kapitel enthdlt u. a. das sog. Kuh-Problem (OEIS A000930), das eine {18 &
dhnliche Struktur hat wie FIBONAccIs Kaninchen-Problem: ’ |
Eine Kuh bringt jedes Jahr ein Kalb zur Welt. Beginnend mit dem vierten
Jahr bringt dann auch jedes Kalb zu Beginn eines jeden Jahres ein Kalb
zur Welt. Wie viele Kiihe und Kdalber gibt es insgesamt nach 20 Jahren?
Das Problem ldsst sich durch Anwenden der Rekursionsgleichung a(n)=a(n—1)+a(n— 3)
mit den Anfangswerten a(0) =a(-1) =a(-2) =1 losen; es gilt: a(20) =2745. NARAYANA be-
rechnete die Anzahl mithilfe von Binomialkoeffizienten.
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