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Vor 700 Jahren lebte   NARAYANA PANDITA             (ca. 1325 – 1400) 

 

Im Jahr 1688 veröffentlichte der französische Botschafter 

im Königreich Siam, SIMON DE LA LOUBÈRE, nach seiner Rück-

kehr aus Ostasien ein Buch über seine Erlebnisse und Er-

fahrungen; 1693 erschien es auch in englischer Sprache.  

In einem der Kapitel stellte er die – wie er sie nannte – 

siamesische Methode zur Erstellung magischer Quadrate 

ungerader Ordnung vor. Tatsächlich wurde diese Methode 

über 300 Jahre zuvor bereits von NARAYANA PANDITA be-

schrieben (Pandita, Sanskrit = der Gelehrte). 

Über das Leben dieses Mathematikers ist fast nichts be-

kannt – außer, dass er zwei Bücher veröffentlichte: Bijaganita-Vatamsa, ein Buch über 

Algebra, und im Jahr 1356 sein Hauptwerk Ganita-kaumudi (wörtlich: Mondschein der 

Mathematik), das 14 Kapitel umfasst.  

Das letzte dieser Kapitel mit dem Titel Bhadraganita beschäftigt sich mit magischen 

Quadraten und Figuren. Der Zweck des Studiums magischer Figuren besteht laut 

NARAYANA darin, ein Yantra zu konstruieren (ein geometrisches Diagramm, das zur 

Meditation dienen soll), um das Ego der schlechten Mathematiker zu zerstören und das 

Vergnügen der guten Mathematiker 

zu fördern. – Die „siamesische“ Me-

thode lässt sich wie folgt beschrei-

ben: Man beginnt damit, dass man die 

Zahl 1 in das mittlere Feld der oberen 

Reihe einträgt, dann von dort aus schräg nach rechts oben fortlaufend die nächsten 

natürlichen Zahlen. Wenn der obere Rand erreicht ist, schreibt man die nächste Zahl 

in ein Feld der untersten Zeile in der nächsten Spalte. Gelangt man an den rechten 

Rand, trägt man die nächste Zahl in ein Feld der äußerst links liegenden Spalte in der 

nächsten Zeile ein. Kommt man auf ein Feld, das bereits belegt ist, oder in die rechte 

obere Ecke des Quadrats, dann setzt man das Verfahren im darunter liegenden Feld 

fort. – Die Abb. zeigt die Methode für ein 33-Quadrat (mit zusätzlichen Hilfsfeldern). 
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NARAYANAs Ausführungen umfassen verschiedene Ver-

fahren zur Konstruktion von magischen Quadraten belie-

biger Ordnung, darunter auch alle Möglichkeiten für 

magische Quadrate der Ordnung 4. Abschließend prä-

sentiert er noch beson-

dere geometrische For-

men mit magischen Ei-

genschaften, darunter 

den diamantenen Lotus, 

bei dem je vier Zahlen 

einer Reihe die Summe 98 ergeben, acht Zahlen einer 

Reihe die Summe 196 und jedes Teilquadrat mit zwölf 

Feldern die Summe 294 (vgl. Abb. links), sowie den 

einbeschriebenen Lotus, bei dem jede Blume ebenfalls 

die magische Summe 294 hat (vgl. Abb. rechts). 

In seinem Werk Ganita-kaumudi beschreibt NARAYANA sich selbst als bescheidenen 

Seefahrer im Ozean der Mathematik. Das Buch gibt einen eindrucksvollen Überblick 

über den Wissensstand der Mathematiker des indischen Subkontinents 

am Ende des Mittelalters. Etliches davon hatte zuvor BHASKARACHARYA 

(BHASKARA II, 1114-1185) veröffentlicht, zu dessen Hauptwerk Līlāvatī 

(Die Schöne) NARAYANA einen umfangreichen Kommentar verfasst 

hatte.  Ganita-kaumudi enthält aber auch eine Fülle neuer Materialien. 

Im ersten Kapitel gibt NARAYANA einen Überblick über die gebräuch-

lichen Gewichts-, Längen-, Flächen- und Raummaße, über die Rechenarten (bis ein-

schließlich dem Verfahren zum Ziehen einer Kubikwurzel) sowie über Typen von Glei-

chungen. Um das Ergebnis einer Multiplikation zu überprüfen, empfiehlt er, die Reste 

der Faktoren (bzgl. der Division durch eine beliebige Zahl) mit dem entsprechenden 

Rest des Ergebnisses zu vergleichen – so, wie wir es mit der Neunerprobe kennen.  

Im Umgang mit Wurzeln zeigen sich erstaunliche Fertigkeiten, z. B.  
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Im zweiten Kapitel werden Aufgaben behandelt, die auf lineare Gleichungen führen, wie 

beispielsweise Mischungs- und Zinsaufgaben sowie Bewegungsaufgaben. 

Beispiel: Zwei Reisende gehen von zwei Orten A1 bzw. A2, die eine Entfernung d voneinander 

haben, zum selben Zeitpunkt mit den Geschwindigkeiten v1 und v2 aufeinander zu. Zu wel-

chem Zeitpunkt und an welcher Stelle treffen sie sich? Vom Ziel aus kehren sie sofort 

wieder an ihre Ausgangsorte zurück. Wann und wo begegnen sie einander ein zweites Mal?  

Das dritte Kapitel beschäftigt sich mit Folgen und Reihen. Außer den typischen Auf-

gaben für arithmetische und geometrische Folgen enthält es auch Summenformeln für 

natürliche Zahlen, für deren Quadrate und dritte Potenzen, außerdem wird die Sum-

menfolge der Dreieckszahlen untersucht 
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Kapitel 4 ist das umfangreichste Kapitel des Buches; es umfasst 149 Regeln und 94 

Beispiele zu geometrischen Problemen, darunter auch eine Reihe von Näherungsformeln 

für Kreisfiguren. Bemerkenswert ist eine von NARAYANA neu entwickelte Formel zur 

Bestimmung des Flächeninhalts eines Sehnenvier-

ecks mithilfe einer sog. dritten Diagonale.  

Aus dem Sehnenviereck ABCD ergibt sich durch 

Vertauschen der Seiten b und c das Sehnenvier-

eck ABED mit den Diagonalen f und g. Die Flächen-

inhalte der beiden Vierecke stimmen überein, da 

gemäß der Formel von BRAHMAGUPTA der Flächeninhalt nur von der Länge der vier Seiten 

des Sehnenvierecks abhängt: ( ) ( ) ( ) ( )A s a s b s c s d= −  −  −  −  mit 1
2

( )s a b c d=  + + + . 

Der Flächeninhalt des Vierecks ABED kann berechnet werden als 

Summe der Flächeninhalte des Dreieck ABE mit den Seiten a, c, g 

und des Dreiecks AED mit den Seiten b, d, g:  
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Andererseits gilt nach dem Satz von PTOLEMÄUS, dass das Produkt 

der Längen der Diagonalen eines Sehnenvierecks gleich der Summe der Produkte der 

einander gegenüberliegenden Seiten des Sehnenvierecks ist, also a c b d e f +  =  .  

Daher folgt: ( )
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Eine der Aufgaben beschäftigt sich mit besonderen Dreiecken, deren 

Seitenlängen natürliche Zahlen sind und die sich nur um eine Einheit 

unterscheiden; auch die Länge der Höhe auf der Grundseite soll eine 

natürliche Zahl sein. NARAYANA erkennt, dass der linke Abschnitt der 

Grundseite die Länge 1
2

2x −  haben muss, der rechte Abschnitt ent-

sprechend 1
2

2x + , denn gemäß dem Satz von PYTHAGORAS gilt für die beiden Teil-

dreiecke: 2 2 2 2 21 1
2 2

( 1) ( 2) ( 1) ( 2)x x y x x− −  − = = + −  + , d. h., es gilt: 2 23
4

3y x=  − . Diese 

Gleichung hat unendlich viele Lösungen: (4;3), (14;12), (52;45), (194;168), (724;627), … 

In den nächsten Kapiteln werden Anwendungsaufgaben behandelt 

(Ausheben von Gruben, Aufschütten von Getreide, Berechnungen von 

Höhen und Entfernungen mithilfe von Schattenlängen u. Ä. m.).  

In Kapitel 9 wird ausführlich die von ARYABATHA (476-550) ent-

wickelte Kuttaka-Methode zur Lösung diophantischer Gleichungen be-

schrieben und an Beispielen erläutert.      (Zeichnungen © Andreas Strick) 

In Kapitel 10 geht NARAYANA auch auf die Lösung von später so 

genannten PELL’schen Gleichungen ein (gemäß der Methode von BHASKARACHARYA); dabei 

spricht er ausdrücklich die Tatsache an, dass man die Lösungspaare (a;b) von Glei-

chungen des Typs 2 21Nx y+ =  dazu benutzen kann, um Näherungswerte für die Wurzel 

aus einer natürlichen Zahl zu bestimmen: b
a

N  . 

Beispiel: Für die Gleichung 2 210 1x y+ =  findet man die Lösungspaare (6;19), (228;721), 

(8658;27379) usw. Daher gilt: 19 721 27379
6 228 8658

10 3,16 ; 10 3,162280... ; 10 3,162277... =  =  =   



In Kapitel 11 beschäftigt sich NARAYANA mit der Zerlegbarkeit einer 

natürlichen Zahl n (die keine Quadratzahl ist) in Faktoren. Dabei 

entwickelt er eine Methode, die auf der gleichen Idee beruht, die 

PIERRE DE FERMAT im Jahr 1643 – also 300 Jahre später – in einem  

Brief an MERSENNE beschreibt. Ziel der Untersuchung ist es, die betrachtete Zahl n 

als Differenz von zwei Quadratzahlen 2x  und 2y  darzustellen: Aus 2 2n y x= −  folgt 

( ) ( )n y x y x= −  + ; die natürlichen Zahlen y x−  und y x+  können dann ihrerseits nach 

dem gleichen Verfahren auf Zerlegbarkeit untersucht werden.  

Um zu prüfen, ob eine natürliche Zahl n als Produkt zweier natürlicher Zahlen darge-

stellt werden kann, macht man den Ansatz 2n a r= + , wobei also 2a  die nächst-kleinere 

Quadratzahl ist (und entsprechend 2( 1)a+  die nächst-größere Quadratzahl).  

Ist (2 1)a r+ −  eine Quadratzahl 2b , dann gilt 2 2 2( ) (2 1 ) ( 1)n b a r a r a+ = + + + − = +  und so-

mit 2 2( 1) ( 1) ( 1)n a b a b a b= + − = + +  − + . Ist 2 1a r+ −  keine Quadratzahl, dann geht man 

zur nächst-größeren Quadratzahl über; dies macht man, indem man 2 3a +  addiert  

(= Differenz 2 2( 2) ( 1)a a+ − +  zur nächsten Quadratzahl) usw. 

Beispiel: 2527 22 43n = = + , also (2 1) (2 22 1) 43 45 43 2a r+ − =  + − = − = ; dies ist keine  

Quadratzahl. Weiter: 2(2 3) (2 1) (2 22 3) (2 22 1) 43 47 45 43 49 7a a r+ + + − =  + +  + − = + − = =  

d.h. 2(2 3) (2 1) (4 4)a a r a r b+ + + − = + − =  und somit 2 2 2( ) (4 4) ( 2)n b a r a r a+ = + + + − = + , 

also  2 2( 2) ( 2) ( 2) (22 7 2) (22 7 2) 31 17n a b a b a b= + − = + +  − + = + +  − + =  . 

In Kapitel 12 greift NARAYANA ein Thema auf, mit dem sich bereits MAHAVIRA (ca. 800-

870) auseinandergesetzt hatte: Welche Möglichkeiten gibt es, die Zahl 1 als Summe 

von Stammbrüchen darzustellen?   

MAHAVIRA hatte außer dem – später so genannten – FIBONACCI-Algorithmus auch Dar-

stellungen mithilfe von speziellen Teilfolgen entdeckt: 
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Das vorletzte, ebenfalls sehr umfangreiche Kapitel enthält 97 Regeln und 45 Beispiele 

zu vielfältigen kombinatorischen Fragestellungen, u. a. zur Anzahl der möglichen Permu-

tationen; in diesem Zusammenhang entwickelte NARAYANA einen Algorithmus, mit dem 

man systematisch alle Permutationen von Objekten generieren kann.  

Dieses Kapitel enthält u. a. das sog. Kuh-Problem (OEIS A000930), das eine 

ähnliche Struktur hat wie FIBONACCIs Kaninchen-Problem:  

Eine Kuh bringt jedes Jahr ein Kalb zur Welt. Beginnend mit dem vierten 

Jahr bringt dann auch jedes Kalb zu Beginn eines jeden Jahres ein Kalb 

zur Welt. Wie viele Kühe und Kälber gibt es insgesamt nach 20 Jahren? 

Das Problem lässt sich durch Anwenden der Rekursionsgleichung ( ) ( 1) ( 3)a n a n a n= − + −  

mit den Anfangswerten (0) ( 1) ( 2) 1a a a= − = − =  lösen; es gilt: (20) 2745a = . NARAYANA be-

rechnete die Anzahl mithilfe von Binomialkoeffizienten. 
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